Mathematica Pannonica 23/2 (2012), 195–200

SEMI-OPEN, SEMI-CLOSED SETS AND SEMI-CONTINUITY OF FUNCTIONS

Zbigniew Duszyński

Casimirus the Great University, Institute of Mathematics, pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

Takashi Noiri

Yatsushiro College, 2949-1 Shiokita-cho, Hinagu, Yatsuhiro-shi, Kumamoto-ken, 869-5142, Japan

Received: November 2011

MSC 2010: 54 C 08

Keywords: Semi-open, semi-closed, nowhere dense, dense sets; semi-continuous, continuous mappings.

Abstract: We state a condition under which the well-known Levine's Th. 15 of [7] is reversible. A topology τ_w determined by a given topology τ on X is introduced in order to generalize the Hamlett's main result of [5].

1. Preliminaries

Throughout the present paper (X, τ) , (Y, σ) , and (Z, γ) mean topological spaces on which no separation axioms are assumed unless explicitly stated. The closure and the interior of a subset S in (X, τ) are denoted by cl(S) and int(S) respectively. A subset S of (X, τ) is said to be **semi-open** [7] (resp. **semi-closed** [2, Th. 1.1]) if there exists an open set O with $O \subset S \subset cl(O)$ (resp. if there exists a closed F with $int(F) \subset S \subset F$). The family of all semi-open (resp. semi-closed; closed) subsets of (X, τ) is denoted as SO (X, τ) (resp. SC (X, τ) ; $c(\tau)$). Obviously, $F \in SC(X, \tau)$ if and only if $X \setminus F \in SO(X, \tau)$. It is well-known [7] that $\bigcup_{t\in T} S_t \in SO(X,\tau)$ for every collection $\{S_t : t\in T\} \subset SO(X,\tau)$. In [7, Th. 7] Levine proved that if $A \in SO(X,\tau)$, then $A = G \cup N$ for a certain $G \in \tau$ and a certain nowhere dense N. Dlaska et al. made a deeper remark [3, Sec.1, p.1163]: $A \in SO(X,\tau)$ if and only if $A = G_A \cup N_A$ with G_A being a suitable open set and a nowhere dense $N_A \subset Fr(G_A)$ (Fr(S) stands for the boundary of S).

A space (X, τ) is said to be *extremally disconnected* if $cl(S) \in \tau$ for every $S \in \tau$.

2. Two semi-continuous functions

In 1963 Levine has shown [7, Th. 15], that if $h: (X, \tau) \to (Y, \sigma) \times \times (Z, \gamma)$ defined by h(x) = (f(x), g(x)), where $f: (X, \tau) \to (Y, \sigma)$ and $g: (X, \tau) \to (Z, \gamma)$, is semi-continuous, then also f and g are both semi-continuous. [7, Ex. 10] shows that the converse to this theorem fails to be true in general. In our note we propose a condition under which the converse holds.

The remark of Dlaska et al. [3] concerning representation of semiopen sets is reformulated as follows.

Lemma 1. Let (X, τ) be a topological space. Then, $A \in SO(X, \tau)$ if and only if $A = int(A) \cup N$ for a certain $N \subset Fr(int(A))$.

Proof. Obvious. \Diamond

Lemma 2. Let (X, τ) be a topological space. For each $S \subset X$ and $G \in \tau$ we have

$$G \cap \operatorname{Fr}(S) \subset \operatorname{Fr}(G \cap S).$$

Proof. We calculate as follows:

$$G \cap \operatorname{Fr} (S) = (G \cap \operatorname{cl} (S)) \setminus (G \cap \operatorname{int} (S)) \subset \subset \operatorname{cl} (G \cap S) \setminus \operatorname{int} (G \cap S) = \operatorname{Fr} (G \cap S). \qquad \Diamond$$

Theorem 1. Let $f: (X, \tau) \to (Y, \sigma), g: (X, \tau) \to (Z, \gamma)$ be both semicontinuous on (X, τ) . If for each $U \in \sigma$ and $V \in \gamma$ we have $\operatorname{Fr}\left(\operatorname{int}\left(f^{-1}(U)\right)\right) \cap \operatorname{Fr}\left(\operatorname{int}\left(g^{-1}(V)\right)\right) = \emptyset,$

then the function $h: (X, \tau) \to (Y \times Z, \sigma \times \gamma)$ defined as h(x) = (f(x), g(x)) for $x \in X$, is semi-continuous on (X, τ) .

Proof. Let $U \times V$ be any basic open subset of the product $(Y \times Z, \sigma \times \gamma)$. By semi-continuity of f and g we infer that $f^{-1}(U) = \operatorname{int} (f^{-1}(U)) \cup N_U$

196

and
$$g^{-1}(V) = \operatorname{int} (g^{-1}(V)) \cup N_V$$
, where $N_U \subset \operatorname{Fr} (\operatorname{int} (f^{-1}(U)))$,
 $N_V \subset \operatorname{Fr} (\operatorname{int} (g^{-1}(V)))$ (see Lemma 1). Clearly, we have
 $h^{-1}(U \times V) = f^{-1}(U) \cap g^{-1}(V) =$
 $= \operatorname{int} (f^{-1}(U) \cap g^{-1}(V)) \cup (\operatorname{int} (f^{-1}(U)) \cap N_V) \cup$
 $\cup (\operatorname{int} (g^{-1}(V)) \cap N_U) \cup (N_U \cap N_V) \subset \operatorname{int} (f^{-1}(U) \cap g^{-1}(V)) \cup$
 $\cup \operatorname{Fr} (\operatorname{int} (f^{-1}(U) \cap g^{-1}(V))) \cup (N_U \cap N_V)$

by Lemma 2. Thus with the assumption one gets

$$h^{-1}(U \times V) \subset \operatorname{int} \left(f^{-1}(U) \cap g^{-1}(V) \right) \cup \operatorname{Fr} \left(\operatorname{int} \left(f^{-1}(U) \cap g^{-1}(V) \right) \right) = \\ = \operatorname{cl} \left(\operatorname{int} \left(f^{-1}(U) \cap g^{-1}(V) \right) \right) = \operatorname{cl} \left(\operatorname{int} \left(h^{-1}(U \times V) \right) \right),$$

whence h is semi-continuous. \Diamond

With the aid of Lemma 1 one can easily obtain the following corollary.

Corollary 1. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (X, \tau) \to (Z, \gamma)$ be any functions. Then, h = (f, g) is semi-continuous if and only if for each $U \in \sigma$ and $V \in \gamma$ we have $h^{-1}(U \times V) = \operatorname{int} (f^{-1}(U) \cap g^{-1}(V)) \cup N_{U,V}$, where $N_{U,V} \subset \operatorname{Fr} (\operatorname{int} (f^{-1}(U) \cap g^{-1}(V)))$.

A classical theorem concerning continuous functions (see for instance [4, Th. 1.5]), was generalized by Hamlett [5] as follows: Let (X, τ) be arbitrary, (Y, σ) be Hausdorff, and $f, g: (X, \tau) \to (Y, \sigma)$, where f is continuous and g is semi-continuous. Then

(1) $\{x \in X : f(x) = g(x)\} \in SC(X, \tau),$

(2) if $D \subset X$ is dense and $f \upharpoonright D = g \upharpoonright D$, then f = g on X.

[5, Ex. 2.2] shows that for the case 'f and g are both semi-continuous', (1) and (2) do not hold, in general.

The reader is advised to compare the following lemma to Lemma 1. Lemma 3. For any space (X, τ) , $B \in SC(X, \tau)$ if and only if there exist $F \in c(\tau)$ and $M \subset X$ with

(1)
$$B = \operatorname{int}(F) \cup M$$
 and

(2) $M \subset \operatorname{Fr}(F)$.

Proof. (\Rightarrow) . Let $B \in \text{SC}(X, \tau)$. Then $\text{int}(F) \subset B \subset F$ for a certain set $F \in c(\tau)$. Clearly, $B = \text{int}(F) \cup M$ and $M = B \setminus \text{int}(F) \subset \text{Fr}(F)$, where Fr(F) is a nowhere dense subset of X.

 (\Leftarrow) . Obvious. \Diamond

Remark 1. It should be noticed that the boundary of each semi-open and each semi-closed subset S of (X, τ) , is nowhere dense in (X, τ) . Indeed, by [8, Lemma 2] and its dual we have

 $\operatorname{int}\left[\operatorname{cl}\left(\operatorname{cl}\left(\operatorname{int}\left(S\right)\right)\setminus\operatorname{int}\left(S\right)\right)\right]=\operatorname{int}\left[\operatorname{cl}\left(\operatorname{cl}\left(S\right)\setminus\operatorname{int}\left(\operatorname{cl}\left(S\right)\right)\right)\right]=\emptyset.$

Lemma 4. Let (X, τ) be any topological space and (Y, σ) be a \mathcal{T}_1 -space. Let $f, g: (X, \tau) \to (Y, \sigma)$ be both semi-continuous. Then the set $\{x \in \in X : f(x) = g(x)\}$ is of the form $\bigcap_{\alpha} (G_{\alpha} \cup N_{\alpha})$, where $\{G_{\alpha}\}_{\alpha} \subset \tau$ and each N_{α} is a certain nowhere dense subset of (X, τ) .

Proof. Consider the set $A = X \setminus \{x \in X : f(x) = g(x)\}$ and an arbitrary $x \in A$. We have $f(x) \neq g(x)$. Since (Y, σ) is \mathcal{T}_1 , then $\{f(x)\}, \{g(x)\} \in c(\sigma)$. By hypothesis we obtain

$$f^{-1}(\{f(x)\}), g^{-1}(\{g(x)\}) \in SC(X, \tau).$$

Let for each $x \in A$, $U_x = f^{-1}(\{f(x)\}) \cap g^{-1}(\{g(x)\})$. Obviously, for each $z \in U_x$ we have $f(z) \neq g(z)$, thus $z \in A$. Consequently $\bigcup_{x \in A} U_x = A$. We calculate now as follows:

$$R = \{x \in X \colon f(x) = g(x)\} = X \setminus A = X \setminus \bigcup_{x \in A} U_x = X \setminus \left(\bigcup_{x \in A} A_x \cup \bigcup_{x \in A} L_x\right),$$

where for each $x \in A$, $U_x = A_x \cup L_x$ with $A_x \in \tau$, L_x is nowhere dense in (X, τ) , since $U_x \in SC(X, \tau)$ (see Lemma 3). We have (denote $A' = \bigcup_{x \in A} A_x$) that $R = (X \setminus A') \cap \bigcap_{x \in A} (X \setminus L_x)$, where $X \setminus A' \in c(\tau)$ and $X \setminus L_x \in SO(X, \tau)$ for each $x \in A$ (since $L_x \in SC(X, \tau)$; see [2, Th. 1.3]). Clearly $X \setminus A' = G_0 \cup N_0$ for a certain $G_0 \in \tau$ and a nowhere dense $N_0 \subset X$. Similarly, for each $x \in A$, $X \setminus L_x = G_x \cup N_x$, where $G_x \in \tau$ and N_x is nowhere dense in (X, τ) [7, Th. 7]. So, it means that

$$R = (G_0 \cup N_0) \cap \bigcap_{x \in A} (G_x \cup N_x).$$

The proof is complete. \Diamond

Lemma 5. Let (X, τ) be any topological space. Let $\hat{\tau}_w$ denote the family of all subsets of X of the form $X \setminus \bigcap_{\alpha \in A} (G_\alpha \cup N_\alpha)$, where A is arbitrary, $G_\alpha \in \tau$ for each $\alpha \in A$, and each N_α is nowhere dense in (X, τ) . Then $\hat{\tau}_w$ is a basis for a certain topology, designed as τ_w , on X.

Proof. One easily checks that $\emptyset, X \in \hat{\tau}_w$. Consider arbitrary $V_1 = X \setminus \bigcap_{\alpha \in A_1} (G_\alpha \cup N_\alpha) \in \hat{\tau}_w$ and $V_2 = X \setminus \bigcap_{\beta \in A_2} (G_\beta \cup N_\beta) \in \hat{\tau}_w$. We have (use [4, Th. 4.2(1)])

$$V_1 \cap V_2 = X \setminus \left[\left(\bigcap_{\alpha \in A_1} (G_\alpha \cup N_\alpha) \right) \cup \left(\bigcap_{\beta \in A_2} (G_\beta \cup N_\beta) \right) \right] =$$

198

Semi-open, semi-closed sets and semi-continuity of functions

$$= X \setminus \bigcap_{(\alpha,\beta) \in A_1 \times A_2} [(G_\alpha \cup G_\beta) \cup (N_\alpha \cup N_\beta)].$$

Thus $V_1 \cap V_2 \in \hat{\tau}_w$.

Theorem 2. Let (X, τ) be any topological space and let (Y, σ) be a \mathcal{T}_1 -space. If $f, g: (X, \tau) \to (Y, \sigma)$ are both semi-continuous, then

- (1) The set $\{x \in X : f(x) = g(x)\}$ is closed in (X, τ_w) .
- (2) If $D \subset X$ is dense in (X, τ_w) and $f \upharpoonright D = g \upharpoonright D$, then f = g on X.

Proof. (1) follows from Lemma 4. To prove (2) apply (1) together with [4, Th. 4.13]. \diamond

Recall that a subset A of a space (X, τ) is called *simply open* [1] if $A = G \cup N$, where $G \in \tau$ and N is nowhere dense.

Lemma 6. Let (X, τ) be any topological space. Then, each simply open subset of (X, τ) is τ_w -clopen.

Proof. Let $A = O \cup N$ for a certain $O \in \tau$ and nowhere dense N. Hence $X \setminus A = (X \setminus O) \cap (X \setminus N) = (\operatorname{int} (X \setminus O) \cup \operatorname{Fr} (X \setminus O)) \cap (G \cup M)$, where $G \in \tau$ and $M \subset \operatorname{Fr} (G)$ (each nowhere dense set is semi-closed and hence the complement to X of it is semi-open). Thus $X \setminus A =$ = $\operatorname{int} ((X \setminus O) \cap G) \cup L$ for a certain nowhere dense L (in (X, τ)). So, $X \setminus A \in \operatorname{c}(\tau_w)$. Finally, A is τ_w -open. \diamond

The following statement is now obvious.

Corollary 2. Each semi-closed (or semi-open) subset of (X, τ) is τ_w -open.

Theorem 3. Let (X, τ) be extremally disconnected and (Y, σ) be Hausdorff. If both $f, g: (X, \tau) \to (Y, \sigma)$ are semi-continuous, then

- (1) $\{x \in X : f(x) = g(x)\} \in SC(X, \tau);$
- (2) if $D \subset X$ is dense in (X, τ) and $f \upharpoonright D = g \upharpoonright D$ then f = g on X.

Proof. (1). The proof is analogous to the classical one. We use the fact that in extremally disconnected space $(X, \tau), V_1 \cap V_2 \in \text{SO}(X, \tau)$ for any $V_1, V_2 \in \text{SO}(X, \tau)$ [6, Prop. and Rem.].

(2). Use [5, Th. 2.4]. \diamond

References

[1] BISWAS, N.: On some mappings in topological spaces, Thesis for Ph. D. Arts Degree, Univ. of Calcutta, 1970.

199

- [2] CROSSLEY, C. G. and HILDEBRAND, S. K.: Semi-closure, Texas J. Sci. 22 (2-3) (1971), 99–112.
- [3] DLASKA, K., ERGUN, N. and GANSTER, M.: On the topology generated by semi-regular sets, *Indian J. Pure Appl. Math.* 25 (11) (1994), 1163–1170.
- [4] DUGUNDJI, J. Topology, Allyn & Bacon, Inc., Boston, 1966.
- [5] HAMLETT, T. R.: Semi-continuous functions, Math. Chronicle 4 (1976), 101– 107.
- [6] JANKOVIĆ, D. S.: A note on semihomeomorphism between semi- \mathcal{T}_D spaces, Mat. Vesnik 6 (19) (34) (1982), 379–381.
- [7] LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [8] NOIRI, T.: On semi-continuous mapping, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 54 (1973), 210–214.