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Abstract: We state a condition under which the well-known Levine’s Th. 15
of [7] is reversible. A topology τw determined by a given topology τ on X is
introduced in order to generalize the Hamlett’s main result of [5].

1. Preliminaries

Throughout the present paper (X, τ), (Y, σ), and (Z, γ) mean topo-
logical spaces on which no separation axioms are assumed unless explic-
itly stated. The closure and the interior of a subset S in (X, τ) are
denoted by cl (S) and int (S) respectively. A subset S of (X, τ) is said
to be semi-open [7] (resp. semi-closed [2, Th. 1.1]) if there exists an
open set O with O ⊂ S ⊂ cl (O) (resp. if there exists a closed F with
int (F ) ⊂ S ⊂ F ). The family of all semi-open (resp. semi-closed; closed)
subsets of (X, τ) is denoted as SO (X, τ) (resp. SC (X, τ); c(τ)). Obvi-
ously, F ∈ SC (X, τ) if and only if X \F ∈ SO (X, τ). It is well-known [7]
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that
⋃

t∈T St ∈ SO (X, τ) for every collection
{

St : t ∈ T
}

⊂ SO (X, τ).
In [7, Th. 7] Levine proved that if A ∈ SO (X, τ), then A = G ∪N for a
certainG ∈ τ and a certain nowhere denseN . Dlaska et al. made a deeper
remark [3, Sec.1, p.1163]: A ∈ SO (X, τ) if and only if A = GA∪NA with
GA being a suitable open set and a nowhere dense NA ⊂ Fr (GA) (Fr (S)
stands for the boundary of S).

A space (X, τ) is said to be extremally disconnected if cl (S) ∈ τ

for every S ∈ τ .

2. Two semi-continuous functions

In 1963 Levine has shown [7, Th. 15], that if h : (X, τ) → (Y, σ)×
×(Z, γ) defined by h(x) = (f(x), g(x)), where f : (X, τ) → (Y, σ) and
g : (X, τ) → (Z, γ), is semi-continuous, then also f and g are both semi-
continuous. [7, Ex. 10] shows that the converse to this theorem fails to
be true in general. In our note we propose a condition under which the
converse holds.

The remark of Dlaska et al. [3] concerning representation of semi-
open sets is reformulated as follows.

Lemma 1. Let (X, τ) be a topological space. Then, A ∈ SO (X, τ) if

and only if A = int (A) ∪N for a certain N ⊂ Fr (int (A)).

Proof. Obvious. ♦

Lemma 2. Let (X, τ) be a topological space. For each S ⊂ X and G ∈ τ

we have
G ∩ Fr (S) ⊂ Fr (G ∩ S).

Proof. We calculate as follows:

G ∩ Fr (S) =
(

G ∩ cl (S)
)

\ (G ∩ int (S)) ⊂

⊂ cl (G ∩ S) \ int (G ∩ S) = Fr (G ∩ S). ♦

Theorem 1. Let f : (X, τ) → (Y, σ), g : (X, τ) → (Z, γ) be both semi-

continuous on (X, τ). If for each U ∈ σ and V ∈ γ we have

Fr
(

int
(

f−1(U)
))

∩ Fr
(

int
(

g−1(V )
))

= ∅,

then the function h : (X, τ) → (Y×Z, σ×γ) defined as h(x) = (f(x), g(x))
for x ∈ X, is semi-continuous on (X, τ).

Proof. Let U×V be any basic open subset of the product (Y ×Z, σ×γ).
By semi-continuity of f and g we infer that f−1(U) = int

(

f−1(U)
)

∪NU
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and g−1(V ) = int
(

g−1(V )
)

∪ NV , where NU ⊂ Fr
(

int
(

f−1(U)
))

,
NV ⊂ Fr

(

int
(

g−1(V )
))

(see Lemma 1). Clearly, we have

h−1(U×V )= f−1(U) ∩ g−1(V ) =

= int
(

f−1(U) ∩ g−1(V )
)

∪
(

int
(

f−1(U)
)

∩NV

)

∪

∪
(

int
(

g−1(V )
)

∩NU

)

∪(NU ∩NV )⊂ int
(

f−1(U)∩g−1(V )
)

∪

∪ Fr
(

int
(

f−1(U) ∩ g−1(V )
))

∪ (NU ∩NV )

by Lemma 2. Thus with the assumption one gets

h−1(U × V ) ⊂ int
(

f−1(U) ∩ g−1(V )
)

∪ Fr
(

int
(

f−1(U) ∩ g−1(V )
))

=

= cl
(

int
(

f−1(U) ∩ g−1(V )
))

= cl
(

int
(

h−1(U × V )
))

,

whence h is semi-continuous. ♦

With the aid of Lemma 1 one can easily obtain the following corol-
lary.

Corollary 1. Let f : (X, τ) → (Y, σ) and g : (X, τ) → (Z, γ) be any

functions. Then, h = (f, g) is semi-continuous if and only if for each

U ∈ σ and V ∈ γ we have h−1(U × V ) = int
(

f−1(U) ∩ g−1(V )
)

∪NU,V ,

where NU,V ⊂ Fr
(

int
(

f−1(U) ∩ g−1(V )
))

.

A classical theorem concerning continuous functions (see for in-
stance [4, Th. 1.5]), was generalized by Hamlett [5] as follows: Let (X, τ)
be arbitrary, (Y, σ) be Hausdorff, and f, g : (X, τ) → (Y, σ), where f is

continuous and g is semi-continuous. Then

(1) {x ∈ X : f(x) = g(x)} ∈ SC (X, τ),
(2) if D ⊂ X is dense and f ↾ D = g ↾ D, then f = g on X.

[5, Ex. 2.2] shows that for the case ’f and g are both semi-continuous’,
(1) and (2) do not hold, in general.

The reader is advised to compare the following lemma to Lemma 1.

Lemma 3. For any space (X, τ), B ∈ SC (X, τ) if and only if there exist

F ∈ c(τ) and M ⊂ X with

(1) B = int (F ) ∪M and

(2) M ⊂ Fr (F ).

Proof. (⇒). Let B ∈ SC (X, τ). Then int (F ) ⊂ B ⊂ F for a certain
set F ∈ c(τ). Clearly, B = int (F ) ∪M and M = B \ int (F ) ⊂ Fr (F ),
where Fr (F ) is a nowhere dense subset of X .

(⇐). Obvious. ♦
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Remark 1. It should be noticed that the boundary of each semi-open
and each semi-closed subset S of (X, τ), is nowhere dense in (X, τ).
Indeed, by [8, Lemma 2] and its dual we have

int
[

cl
(

cl (int (S)) \ int (S)
)]

= int
[

cl
(

cl (S) \ int (cl (S))
)]

= ∅.

Lemma 4. Let (X, τ) be any topological space and (Y, σ) be a T1-space.

Let f, g : (X, τ) → (Y, σ) be both semi-continuous. Then the set {x ∈
∈ X : f(x) = g(x)} is of the form

⋂

α(Gα ∪Nα), where {Gα}α ⊂ τ and

each Nα is a certain nowhere dense subset of (X, τ).

Proof. Consider the set A = X\{x ∈ X : f(x) = g(x)} and an arbitrary
x ∈ A. We have f(x) 6= g(x). Since (Y, σ) is T1, then {f(x)}, {g(x)} ∈
∈ c(σ). By hypothesis we obtain

f−1
(

{f(x)}
)

, g−1
(

{g(x)}
)

∈ SC (X, τ).

Let for each x ∈ A, Ux = f−1
(

{f(x)}
)

∩g−1
(

{g(x)}
)

. Obviously, for each
z ∈ Ux we have f(z) 6= g(z), thus z ∈ A. Consequently

⋃

x∈A Ux = A.
We calculate now as follows:

R = {x ∈ X : f(x) = g(x)} = X\A = X\
⋃

x∈A

Ux = X\

(

⋃

x∈A

Ax ∪
⋃

x∈A

Lx

)

,

where for each x ∈ A, Ux = Ax ∪ Lx with Ax ∈ τ , Lx is nowhere
dense in (X, τ), since Ux ∈ SC (X, τ) (see Lemma 3). We have (denote
A′ =

⋃

x∈AAx) that R = (X \ A′) ∩
⋂

x∈A(X \ Lx), where X \ A′ ∈ c(τ)
and X \ Lx ∈ SO (X, τ) for each x ∈ A (since Lx ∈ SC (X, τ); see [2,
Th. 1.3]). Clearly X \ A′ = G0 ∪N0 for a certain G0 ∈ τ and a nowhere
dense N0 ⊂ X . Similarly, for each x ∈ A, X \ Lx = Gx ∪ Nx, where
Gx ∈ τ and Nx is nowhere dense in (X, τ) [7, Th. 7]. So, it means that

R = (G0 ∪N0) ∩
⋂

x∈A

(Gx ∪Nx).

The proof is complete. ♦

Lemma 5. Let (X, τ) be any topological space. Let τ̂w denote the family

of all subsets of X of the form X \
⋂

α∈A(Gα∪Nα), where A is arbitrary,

Gα ∈ τ for each α ∈ A, and each Nα is nowhere dense in (X, τ). Then

τ̂w is a basis for a certain topology, designed as τw, on X.

Proof. One easily checks that ∅, X ∈ τ̂w. Consider arbitrary V1 =
= X \

⋂

α∈A1
(Gα ∪ Nα) ∈ τ̂w and V2 = X \

⋂

β∈A2
(Gβ ∪ Nβ) ∈ τ̂w. We

have (use [4, Th. 4.2(1)])

V1 ∩ V2 = X \

[(

⋂

α∈A1

(Gα ∪Nα)

)

∪

(

⋂

β∈A2

(Gβ ∪Nβ)

)]

=
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= X \
⋂

(α,β)∈A1×A2

[(Gα ∪Gβ) ∪ (Nα ∪Nβ)].

Thus V1 ∩ V2 ∈ τ̂w. ♦

Theorem 2. Let (X, τ) be any topological space and let (Y, σ) be a T1-

space. If f, g : (X, τ) → (Y, σ) are both semi-continuous, then

(1) The set {x ∈ X : f(x) = g(x)} is closed in (X, τw).
(2) If D ⊂ X is dense in (X, τw) and f ↾ D = g ↾ D, then f = g

on X.

Proof. (1) follows from Lemma 4. To prove (2) apply (1) together with
[4, Th. 4.13]. ♦

Recall that a subset A of a space (X, τ) is called simply open [1]
if A = G ∪N , where G ∈ τ and N is nowhere dense.

Lemma 6. Let (X, τ) be any topological space. Then, each simply open

subset of (X, τ) is τw-clopen.

Proof. Let A = O∪N for a certain O ∈ τ and nowhere dense N . Hence
X \ A = (X \ O) ∩ (X \ N) =

(

int (X \O) ∪ Fr (X \O)
)

∩ (G ∪ M),
where G ∈ τ and M ⊂ Fr (G) (each nowhere dense set is semi-closed
and hence the complement to X of it is semi-open). Thus X \ A =
= int

(

(X \O) ∩G
)

∪ L for a certain nowhere dense L (in (X, τ)). So,
X \ A ∈ c(τw). Finally, A is τw-open. ♦

The following statement is now obvious.

Corollary 2. Each semi-closed (or semi-open) subset of (X, τ) is τw-

open.

Theorem 3. Let (X, τ) be extremally disconnected and (Y, σ) be Haus-

dorff. If both f, g : (X, τ) → (Y, σ) are semi-continuous, then

(1) {x ∈ X : f(x) = g(x)} ∈ SC (X, τ);
(2) if D ⊂ X is dense in (X, τ) and f ↾ D = g ↾ D then f = g

on X.

Proof. (1). The proof is analogous to the classical one. We use the fact
that in extremally disconnected space (X, τ), V1∩V2 ∈ SO (X, τ) for any
V1, V2 ∈ SO (X, τ) [6, Prop. and Rem.].

(2). Use [5, Th. 2.4]. ♦
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