Mathematica Pannonica 23/2 (2012), 187–193

FUNCTIONAL EQUATIONS ON THE SU(2)-HYPERGROUP

László Székelyhidi

Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary

László Vajday

Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary

Received: November 2011

MSC 2010: 20 N 20, 60 F 99

Keywords: Functional equation, polynomial hypergroup.

Abstract: We consider classical functional equations on a special hypergroup which is related to continuous unitary irreducible representations of the special linear group in two dimensions.

1. Introduction

Functional equations on hypergroups have been treated in [6], [7]. In this paper we study functional equations on a special hypergroup, which is related to the set of continuous unitary irreducible representations of the group G = SU(2), the *special linear group* in two dimensions. We show how to determine all exponentials, additive functions and generalized moment function sequences on this hypergroup. Moment functions on other types of hypergroups have been described in [3], [4] and [5]. The

E-mail addresses: lszekelyhidi@gmail.com, vlacika@gmail.com

definition of the underlying hypergroup is taken from [1].

If G is a compact topological group then its dual object \widehat{G} consists of equivalence classes of continuous irreducible representations of G. For any two classes U, V of this type their tensor product can be decomposed into its irreducible components U_1, U_2, \ldots, U_n with the respective multiplicities m_1, m_2, \ldots, m_n (see [2]). We define convolution on \widehat{G} by

(1.1)
$$\delta_U * \delta_V = \sum_{i=1}^n \frac{m_i d(U_i)}{d(U) d(V)} \delta_{U_i}$$

where d(U) denotes the dimension of U and δ_U is the Dirac measure concentrated at U. Then \hat{G} with this convolution and with the discrete topology is a commutative hypergroup.

In the special case of G = SU(2) the dual object \widehat{G} can be identified with the set \mathbb{N} of natural numbers as it is indicated in [1]: the set of equivalence classes of continuous unitary irreducible representations of SU(2) is given by $\{T^{(0)}, T^{(1)}, T^{(2)}, \ldots\}$, where $T^{(n)}$ has dimension n + 1, and we identify this set with \mathbb{N} .

For every m,n in $\mathbb N$ the tensor product of $T^{(m)}$ and $T^{(n)}$ is unitary equivalent to

(1.2)
$$T^{(|m-n|)} \bigoplus T^{(|m-n|+2)} \bigoplus \cdots \bigoplus T^{(m+n)}$$

The convolution is given by

(1.3)
$$\delta_m * \delta_n = \sum_{k=|m-n|}^{m+n} \frac{k+1}{(m+1)(n+1)} \delta_k,$$

where the prime denotes that every second term appears in the sum, only. With this convolution \mathbb{N} becomes a discrete commutative hypergroup, and since all the $T^{(n)}$ are self-conjugate, the hypergroup is in fact Hermitian. We call this hypergroup the SU(2)-hypergroup.

2. Exponential functions on the SU(2)-hypergroup

In this section we describe the exponential functions on the SU(2)hypergroup. We recall that the function $M : \mathbb{N} \to \mathbb{C}$ is an exponential if

188

and only if it satisfies

(2.1)
$$M(m)M(n) = M(m*n) = \sum_{k=|m-n|}^{m+n} \frac{k+1}{(m+1)(n+1)} M(k)$$

for all natural numbers m, n.

Theorem 1. The function $M : \mathbb{N} \to \mathbb{C}$ is an exponential on the SU(2)-hypergroup if and only if there exists a complex number λ such that

(2.2)
$$M(n) = \frac{\sinh[(n+1)\lambda]}{(n+1)\sinh\lambda}$$

holds for each natural number n. (Here $\lambda = 0$ corresponds to the exponential M = 1.)

Proof. Let $M : \mathbb{N} \to \mathbb{C}$ be a solution of (2.1) and let f(n) = (n+1)M(n) for each n in \mathbb{N} . Then we have

$$f(m)f(n) = \sum_{k=|m-n|}^{m+n} {}' f(k)$$

for each m, n in \mathbb{N} . With m = 1 it follows that f satisfies the following second order homogeneous linear difference equation

(2.3)
$$f(n+2) - f(1)f(n+1) + f(n) = 0$$

for each n in \mathbb{N} with f(0) = 1.

Suppose that f(1) = 2. Then from (2.3) we infer that f(n) = n + 1and M = 1 which corresponds to the case $\lambda = 0$ in (2.2). Otherwise $f(1) \neq 2$ and let $\lambda \neq 0$ be a complex number with $f(1) = 2 \cosh \lambda$. Then we have that

$$f(n) = \alpha e^{n\lambda} + \beta e^{-n\lambda}$$

holds for any n in \mathbb{N} with some complex numbers α, β satisfying $\alpha + \beta = 1$. It is easy to see that in this case

$$f(n) = \frac{\sinh[(n+1)\lambda]}{\sinh\lambda}$$

holds for each n in \mathbb{N} . Finally, we have

$$M(n) = \frac{\sinh[(n+1)\lambda]}{(n+1)\sinh\lambda} \,.$$

Conversely, it is easy to check that any function M of the given form is an exponential on the SU(2)-hypergroup, hence the theorem is proved. \diamond

3. Additive functions on the SU(2)-hypergroup

Now we describe the additive functions on the SU(2)-hypergroup. We recall that the function $A : \mathbb{N} \to \mathbb{C}$ is an additive function if and only if it satisfies

(3.1)
$$A(m) + A(n) = A(m * n) = \sum_{k=|m-n|}^{m+n} \frac{k+1}{(m+1)(n+1)} A(k)$$

for all natural numbers m, n.

Theorem 2. The function $A : \mathbb{N} \to \mathbb{C}$ is an additive function on the SU(2)-hypergroup if and only if there exists a complex number c such that

$$A(n) = \frac{c}{3}n(n+2)$$

holds for each natural number n.

Proof. Let $A : \mathbb{N} \to \mathbb{C}$ be a solution of (3.1) and let f(n) = (n+1)A(n) for each n in \mathbb{N} . Then we have

$$(n+1)f(m) + (m+1)f(n) = \sum_{k=|m-n|}^{m+n} f(k)$$

for each m, n in \mathbb{N} . With m = 1 it follows that f satisfies the following second order homogeneous linear difference equation

f(n+2) - 2f(n+1) + f(n) = 2c(n+2)

for each n in \mathbb{N} with f(0) = 0 and f(1) = 2c. As the second difference of f is linear it follows that f is a cubic polynomial and simple computation gives that A has the desired form.

Conversely, it is easy to check that any function A of the given form is an additive function on the SU(2)-hypergroup, hence the theorem is proved. \Diamond

4. Generalized moment functions on the SU(2)hypergroup

Finally we describe the generalized moment functions on the SU(2)hypergroup. Let N be a nonnegative integer. We recall that the functions

190

 $\varphi_0, \varphi_1, \ldots, \varphi_N : \mathbb{N} \to \mathbb{C}$ form a generalized moment function sequence if and only if they satisfy

(4.1)
$$\varphi_k(m*n) = \sum_{j=0}^k \binom{k}{j} \varphi_j(m) \varphi_{k-j}(n)$$

for all natural numbers m, n and for $k = 0, 1, \ldots, N$.

Making use of the results in Sec. 2 we introduce the function

(4.2)
$$\Phi(n,\lambda) = \frac{\sinh[(n+1)\lambda]}{(n+1)\sinh\lambda}$$

for each n in \mathbb{N} and $\lambda \neq 0$ in \mathbb{C} , while $\Phi(n,0) = 1$ for each n in \mathbb{N} . The function $\Phi : \mathbb{N} \times \mathbb{C} \to \mathbb{C}$ is called an *exponential family* for the SU(2)-hypergroup: each exponential on this hypergroup has the form $n \mapsto \Phi(n, \lambda)$ with some unique λ in \mathbb{C} , and, conversely, the function $n \mapsto \Phi(n, \lambda)$ is an exponential on the SU(2)-hypergroup for every complex λ .

Theorem 3. Let K denote the SU(2)-hypergroup and Φ the exponential family given by (4.2). The functions $\varphi_0, \varphi_1, ..., \varphi_N : K \to \mathbb{C}$ form a generalized moment sequence of order N on K if and only if there exist complex numbers c_j for j = 1, 2, ..., N such that

$$\varphi_k(n) = \frac{d^{\kappa}}{dt^k} \Phi(n, f(t))(0)$$

holds for each n in \mathbb{N} and for $k = 0, 1, \ldots, N$, where

(4.3)
$$f(t) = \sum_{j=0}^{N} \frac{c_j}{j!} t^j$$

for each t in \mathbb{C} .

Proof. First we note that, by (1.3), we have for $n \ge 1$

(4.4)
$$\delta_n * \delta_1 = \sum_{k=n-1}^{n+1} \frac{k+1}{2(n+1)} \delta_k = \frac{n}{2(n+1)} \delta_{n-1} + \frac{n+2}{2(n+1)} \delta_{n+1},$$

hence, by 3.2.1 Prop. in [1], K is a polynomial hypergroup, that is, there exists a sequence $(P_n)_{n \in \mathbb{N}}$ of polynomials such that deg $P_n = n$ for $n = 0, 1, \ldots$, there exists an x_0 in \mathbb{R} such that $P_n(x_0) = 1$ for $n = 0, 1, \ldots$, and

(4.5)
$$P_n(x)P_m(x) = \sum_{k=0}^{\infty} c(m, n, k)P_k(x)$$

holds for each x in \mathbb{R} and m, n in \mathbb{N} with some nonnegative numbers c(m, n, k), further we have

(4.6)
$$\delta_m * \delta_n = \sum_{k=0}^{\infty} c(m, n, k) \delta_k$$

for each m, n in \mathbb{N} . Here we shall determine this sequence of polynomials.

Our basic observation is that the function $\lambda \mapsto \Phi(n, \lambda)$ is a polynomial of $\cosh \lambda$ of degree *n* for each *n* in N. We apply mathematical induction. For n = 0 and n = 1 we have by (4.2)

$$\Phi(0,\lambda) = \frac{\sinh\lambda}{\sinh\lambda} = 1,$$
$$\Phi(1,\lambda) = \frac{\sinh(2\lambda)}{2\sinh\lambda} = \cosh\lambda.$$

Suppose that for k = 0, 1, ..., n there exists a polynomial P_k of degree k such that

(4.7)
$$\Phi(k,\lambda) = P_k(\cosh\lambda)$$

holds. Clearly $P_0(x) = 1$ and $P_1(x) = x$. Then, by eq. (4.4), we have

(4.8)
$$P_n(\cosh \lambda) \cosh \lambda = \frac{n}{2(n+1)} P_{n-1}(\cosh \lambda) + \frac{n+2}{2(n+1)} \Phi(n+1,\lambda),$$

that is

(4.9)
$$\Phi(n+1,\lambda) = \frac{2(n+1)}{n+2} P_n(\cosh\lambda) \cosh\lambda - \frac{n}{n+2} P_{n-1}(\cosh\lambda),$$

and here the right-hand side is a polynomial of degree n + 1 in $\cosh \lambda$:

$$P_{n+1}(x) = \frac{2(n+1)}{n+2} x P_n(x) - \frac{n}{n+2} P_{n-1}(x) ,$$

hence

$$\Phi(n+1,\lambda) = P_{n+1}(\cosh\lambda),$$

192

which was to be proved.

Finally, we have for all m, n in \mathbb{N} and λ in \mathbb{C}

$$P_n(\cosh \lambda)P_m(\cosh \lambda) = \Phi(n,\lambda)\Phi(m,\lambda) = \Phi(n*m,\lambda) =$$

$$=\sum_{k=|m-n|}^{m+n} \frac{k+1}{(m+1)(n+1)} \Phi(k,\lambda) = \sum_{k=|m-n|}^{m+n} \frac{k+1}{(m+1)(n+1)} P_k(\cosh\lambda),$$

which implies

$$P_n(x)P_m(x) = \sum_{k=|m-n|}^{m+n} \frac{k+1}{(m+1)(n+1)} P_k(x)$$

for each x in \mathbb{R} and m, n in \mathbb{N} . This means that K is the polynomial hypergroup associated to the sequence of polynomials $(P_n)_{n \in \mathbb{N}}$. Then, by Th. 4 in [4], our statement follows. \diamond

Acknowledgement. The research was supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. NK-81402.

References

- BLOOM, W. R. and HEYER, H.: Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics, de Gruyter, Berlin, New York, 1995.
- [2] HEWITT, E. and ROSS, K.: Abstract Harmonic Analysis. I, II, Die Grundlehren der Mathematischen Wissenschaften, vol. 115, Springer Verlag, Berlin, Göttingen, Heidelberg, 1963.
- [3] OROSZ, Á. and SZÉKELYHIDI, L.: Moment Functions on Polynomial Hypergroups in Several Variables, Publ. Math. Debrecen 65 (3-4) (2004), 429–438.
- [4] OROSZ, Á. and SZÉKELYHIDI, L.: Moment Functions on Polynomial Hypergroups, Arch. Math. 85 (2005), 141–150.
- [5] OROSZ, Á. and SZÉKELYHIDI, L.: Moment functions on Sturm-Liouville hypergroups, Ann. Univ. Sci Budapest., Sect. Comp. 29 (2008), 141–156.
- [6] SZÉKELYHIDI, L.: Functional Equations on Hypergroups, in: Functional Equations, Inequalities and Applications (Th. M. Rassias, ed.), pp. 167–181, Kluwer Academic Publishers, 2003.
- [7] SZÉKELYHIDI, L.: Functional Equations on Sturm-Liouville Hypergroups, Math. Pannonica 17 (2)(2006), 169–182.