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Abstract: In this paper, we investigate the order and the hyper-order of
solutions of the higher order linear differential equation

f (k)+Ak−1e
Pk−1(z)f (k−1)+ · · ·+A1e

P1(z)f ′+A0e
P0(z)f = 0,

where Pj(z) (j = 0, 1, · · · , k − 1) are nonconstant polynomials such that
degPj = n > 1 and Aj (z) (j = 0, 1, · · · , k − 1) are meromorphic functions
of finite order such that max {ρ(Aj) : j = 0, 1, · · · , k − 1} < n. Under some
conditions, we prove that every meromorphic solution f 6≡ 0 of the above equa-
tion is of infinite order. Then, we obtain an estimation of the hyper-order
and the exponent of convergence of zeros of the solutions. Finally, we give
an estimation of the exponent of convergence of zeros of the function f − ϕ,
where ϕ 6≡ 0 is a transcendental meromorphic function of finite order, while the
meromorphic solution f of respective differential equation is of infinite order.
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1. Introduction and statement of results

In this paper, we use the standard notations of Nevanlinna’s value
distribution theory (see [17] , [25]). In addition, we will use λ (f) to de-
note the exponent of convergence of the zero-sequence of f , ρ (f) to
denote the order of growth of f . To express the rate of growth of mero-
morphic solutions of infinite order, we recall the following concept.

Definition 1.1 [19, 28]. Let f (z) be a meromorphic function. Then the
hyper-order ρ2(f) of f (z) is defined by

ρ2(f) = lim sup
r−→+∞

log log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f.

For the second order linear differential equation

(1.1) f ′′ + e−zf ′ + A(z)f = 0,

where A (z) is an entire function of finite order, it is well-known that
each solution f of eq. (1.1) is an entire function, and that if f1, f2 are
two linearly independent solutions of (1.1) , then by [11], there is at least
one of f1, f2 must have infinite order. Hence, “most” solutions of (1.1)
will have infinite order.

A natural question arises: What conditions on A(z) will guarantee
that every solution f 6≡ 0 of (1.1) has infinite order? Several authors,
such as, Frei [12], Ozawa [26], Gundersen [14], Langley [22], Amemiya
and Ozawa [1] have studied this problem. They proved that when A(z)
is a nonconstant polynomial or A(z) is a transcendental entire function
with order ρ(A) 6= 1, then every solution f 6≡ 0 of (1.1) has infinite order.
In [8] , Chen considered eq. (1.1) in the case when ρ(A) = 1 and obtained
different results concerning the growth of its solutions.

Consider the second order linear differential equation

(1.2) f ′′ + A1 (z) e
P (z)f ′ + A0 (z) e

Q(z)f = 0,

where P (z) , Q (z) are nonconstant polynomials, A1 (z) , A0 (z) ( 6≡ 0)
are entire functions such that ρ (A1) < degP (z) , ρ (A0) < degQ (z).
Gundersen showed in [16, p. 419] that if degP (z) 6= degQ (z) , then
every nonconstant solution of (1.2) is of infinite order. If deg P (z) =
= degQ (z) , then (1.2) may have nonconstant solutions of finite order.
For instance f (z) = ez + 2 satisfies f ′′ + 1

2
ezf ′ − 1

2
ezf = 0.



Growth of solutions of higher order linear differential equations 173

Chen [9] and Kwon [19] have investigated eq. (1.2) in the case when
degP (z) = degQ(z). Later, Chen and Shon [10] , Beläıdi [3, 4], Beläıdi
and Abbas [5] extended the results of [9] and [19] for higher order linear
differential equations. After this work Xiao and Chen [27] improved the
results of [10] for a class of higher order linear differential equations and
obtained the following result.

Theorem A [27]. Let Aj (z) (j = 0, 1, · · · , k − 1) be entire functions
with ρ(Aj) < 1 (j = 0, 1, · · · , k − 1), aj (j = 0, 1, · · · , k − 1) be complex
numbers (if Aj ≡ 0 we define aj = 0, otherwise aj 6= 0). Suppose
that there exist {ai1 , ai2 , · · · , aim} ⊂ {a0, a1, · · · , ak−1} such that arg aij
(j = 1, 2, · · · , m) are different from each other. Suppose further that for
each al ∈ {a0, a1, · · · , ak−1} − {ai1, ai2 , · · · , aim} and al 6= 0, there exists

some aij ∈ {ai1 , ai2 , · · · , aim} such that al = c
(ij)
l aij , where 0 < c

(ij)
l < 1,

l ∈ {0, 1, · · · , k−1}, j = 1, 2, · · · , m. Then every transcendental solution
of the equation

(1.3) f (k) + Ak−1e
ak−1zf (k−1) + · · ·+ A1e

a1zf ′ + A0e
a0zf = 0

is of infinite order. Furthermore, if a0=aij0 or a0=c
(ij0 )
0 aij0 (0<c

(ij0 )
0 <1)

and 0 < c
(ij0 )

0 6= c
(ij0 )
s , s ∈ {1, 2, · · · , k−1}, where aij0 ∈{ai1 , ai2 , · · · , aim},

then every solution f 6≡ 0 of (1.3) is of infinite order.

The main purpose of this paper is to extend the results of Th. A
to some higher order linear differential equations. In fact, we will prove
the following results.

Theorem 1.1. Let Aj (z) (j = 0, 1, · · · , k−1) be meromorphic functions
that have finitely many poles and ρ=max{ρ(Aj) : j=0, 1, · · · , k−1} < n.
Let Pj(z) = an,jz

n + an−1,jz
n−1 + · · ·+ a1,jz + a0,j (j = 0, 1, · · · , k−1) be

polynomials, where a0,j , · · · , an,j (j = 0, 1, · · · , k − 1) are complex num-
bers (if Aj ≡ 0 we define ak,j = 0 (k = 0, 1, · · · , n), otherwise ak,j 6= 0
(k = 0, 1, · · · , n)). Suppose that there exist {an,i1, an,i2, · · · , an,im} ⊂
⊂ {an,0, an,1, · · · , an,k−1} such that arg an,ij (j = 1, 2, · · · , m) are differ-
ent from each other. Suppose further that for each
an,l ∈ {an,0, an,1, · · · , an,k−1} − {an,i1, an,i2, · · · , an,im} and an,l 6= 0,

there exists some an,ij ∈ {an,i1, an,i2, · · · , an,im} such that an,l = c
(ij)
n,l an,ij ,

where 0 < c
(ij)
n,l < 1, l ∈ {0, 1, · · · , k − 1}, j = 1, 2, · · · , m. Then, every

transcendental meromorphic solution of the equation

(1.4) f (k) + Ak−1e
Pk−1(z)f (k−1) + · · ·+ A1e

P1(z)f ′ + A0e
P0(z)f = 0



174 B. Beläıdi and M. Andasmas

is of infinite order. Furthermore, if an,0 = an,ij0 or an,0 = c
(ij0 )

n,0 an,ij0
(0 < c

(ij0 )

n,0 < 1) and 0 < c
(ij0 )

n,0 6= c
(ij0 )
n,s , s ∈ {1, 2, · · · , k−1}, where an,ij0 ∈

∈ {an,i1, an,i2 , · · · , an,im}, then every meromorphic solution f 6≡ 0 of (1.4)
is of infinite order.

Theorem 1.2. Under the hypotheses of Th. 1.1, the following statements
hold:

(i)Every transcendental meromorphic solution f of (1.4) satisfies
λ(f) > n or ρ2(f) = n.

(ii)Furthermore, if an,0 = an,ij0 or an,0 = c
(ij0 )
n,0 an,ij0 (0 < c

(ij0 )
n,0 < 1)

and 0 < c
(ij0 )

n,0 6= c
(ij0 )
n,s , s ∈ {1, 2, · · · , k − 1}, where an,ij0 ∈

∈{an,i1 , an,i2, · · · , an,im}, then every meromorphic solution f 6≡0
of (1.4) satisfies λ(f) > n or ρ2(f) = n.

Theorem 1.3. Under the hypotheses of Th. 1.1, suppose further that
ϕ(z) 6≡ 0 is a meromorphic function with finitely many poles and ρ(ϕ) <
<∞, then:

(i) If ϕ(z) is transcendental, then every transcendental meromor-
phic solution f of (1.4) satisfies λ(f − ϕ) = λ(f − ϕ) = ∞.

(ii)Furthermore, if an,0 = an,ij0 or an,0 = c
(ij0 )

n,0 an,ij0 (0 < c
(ij0 )

n,0 < 1)

and 0 < c
(ij0 )

n,0 6= c
(ij0 )
n,s , s ∈ {1, 2, · · · , k − 1} , where an,ij0 ∈

∈{an,i1 , an,i2, · · · , an,im}, then every meromorphic solution f 6≡0
of (1.4) satisfies λ(f − ϕ) = λ(f − ϕ) = ∞.

Remark 1.1. Clearly, the method used in linear differential equations
with entire coefficients can not deal with the case of meromorphic co-
efficients. The present paper may be understood as an extension and
improvement of the results of the papers of Xiao and Chen [27] , Beläıdi
[4], Beläıdi and Abbas [5] from entire solutions to meromorphic solutions.

2. Lemmas for the proof of theorems

By using the same proof as in the proof of Lemma 3.1 in [21], we
easily obtain the following lemma.

Lemma 2.1. Let f (z) be a meromorphic function having finitely many
poles all lie in {z : |z| < r0} , and suppose that

∣

∣f (k) (z)
∣

∣ is unbounded
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on a ray arg z = θ, then there exists a sequence zn = rne
iθ tending to

infinity such f (k) (zn) → ∞ and

(2.1)

∣

∣

∣

∣

f (j) (zn)

f (k) (zn)

∣

∣

∣

∣

6
1

(k − j)!
(1 + o (1)) |zn|

k−j (j = 0, · · · , k − 1) .

Lemma 2.2 [15, p. 89]. Let f (z) be a transcendental meromorphic func-
tion of finite order ρ. Let Γ = {(k1, j1) , (k2, j2) , · · · , (km, jm)} denote a
set of distinct pairs of integers satisfying ki > ji > 0 (i = 1, 2, · · · , m)
and let ε > 0 be a given constant. Then, there exists a set E1 ⊂ [0, 2π)
that has linear measure zero such that if ψ0 ∈ [0, 2π) − E1, then there
is a constant R0 = R0 (ψ0) > 1 such that for all z satisfying arg z = ψ0

and |z| > R0 and for all (k, j) ∈ Γ, we have

(2.2)

∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

6 |z|(k−j)(ρ−1+ε) .

Lemma 2.3 ([6], [24, p. 254]). Let P (z) = anz
n + · · · + a0, (an =

= α + iβ 6= 0) be a polynomial with degree n > 1 and A (z) 6≡ 0 be
a meromorphic function with ρ (A) < n. Set f(z) = A (z) eP (z), z =
= reiθ, δ (P, θ) = α cosnθ − β sinnθ. Then for any given ε > 0, there
exists a set E2 ⊂ [0, 2π) that has linear measure zero, such that if θ ∈
∈ [0, 2π)− (E2 ∪ E3) , where E3 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite
set, then for sufficiently large |z| = r, we have

(i) if δ (P, θ) > 0, then

(2.3) exp {(1− ε) δ (P, θ) rn} 6 |f (z)| 6 exp {(1 + ε) δ (P, θ) rn} ,

(ii) if δ (P, θ) < 0, then

(2.4) exp {(1 + ε) δ (P, θ) rn} 6 |f (z)| 6 exp {(1− ε) δ (P, θ) rn} .

Lemma 2.4 [10]. Let f (z) be an entire function with ρ (f) = ρ < ∞.
Suppose that there exists a set E4 ⊂ [0, 2π) that has linear measure zero,
such that for any ray arg z = θ0 ∈ [0, 2π)−E4,

∣

∣f
(

reiθ0
)
∣

∣ 6Mrk, where
M = M (θ0) > 0 is a constant and k (> 0) is a constant independent
of θ0. Then f (z) is a polynomial with deg f 6 k.

Lemma 2.5 [13, p. 30]. Let P1, P2, · · · , Pn (n > 1) be nonconstant
polynomials with the degree in order d1, d2, · · · , dn, respectively . Sup-
pose that when i 6= j, then deg(Pi − Pj) = max {di, dj}. Let A(z) =
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=
n
∑

j=1

Bj(z)e
Pj(z), where Bj(z) 6≡ 0 are meromorphic functions satisfying

ρ(Bj) < dj. Then

(2.5) ρ(A) = max
16 j6 n

{dj} .

Lemma 2.6 [17, 25]. Let f be a meromorphic function, and let k ≥ 1
be an integer. Then

(2.6) m

(

r,
f (k)

f

)

= S (r, f) ,

where S(r, f)=O (log T (r, f)+log r), possibly outside a set E5⊂ [0,+∞)
with a finite linear measure m (E5) < +∞. If f is of finite order of
growth, then

(2.7) m

(

r,
f (k)

f

)

= O (log r) .

Lemma 2.7 [7]. Let A0, A1, · · · , Ak−1, F 6≡ 0 be finite order meromor-
phic functions. If f is a meromorphic solution with ρ (f) = +∞ of the
equation

(2.8) f (k) + Ak−1f
(k−1) + · · ·+ A1 f

′ + A0f = F,

then λ (f) = λ (f) = ρ (f) = +∞.

Lemma 2.8 [23]. Suppose that k > 2 and A0, A1, · · · , Ak−1 are mero-
morphic functions that have finitely many poles. Let ρ = max{ρ(Aj) :
j = 0, 1, · · · , k − 1} and let f(z) be a transcendental meromorphic solu-
tion of the equation

(2.9) f (k) + Ak−1f
(k−1) + · · ·+ A1 f

′ + A0f = 0.

Then ρ2(f) 6 ρ.

Lemma 2.9 [18, Th. 12.4].Let f be an entire function with ρ(f) =∞.
Then f can be represented in the form f(z) = g(z)eh(z), where g(z) and
h(z) are entire functions such that

ρ2(f) = max
{

ρ2(g), ρ2(e
h)
}

,(2.10)
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ρ2(g) = lim sup
r−→+∞

log logN
(

r, 1
g

)

log r
= lim sup

r−→+∞

log logN
(

r, 1
f

)

log r
.(2.11)

Lemma 2.10 [2]. Let g : [0,+∞) → R and h : [0,+∞) → R be
monotone non-decreasing functions such that g (r) ≤ h (r) outside of an
exceptional set E6 ⊂ (0,+∞) of finite linear measure. Then for any
λ > 1, there exists r1 > 0 such that g (r) ≤ h (λr) for all r > r1.

3. Proof of Theorem 1.1

Suppose that f is a transcendental meromorphic solution of (1.4).
Then z0 is a pole of f only if z0 is a pole of one of Aj(z) (j=0, 1, · · ·, k−1).
Since Aj(z) (j = 0, 1, · · · , k − 1) have only finitely many poles, then f
has finitely many poles. We assert that any transcendental meromor-
phic solution of eq. (1.4) must have infinite order. Suppose that f is
a transcendental meromorphic solution of eq. (1.4) satisfying ρ(f) =
= α < ∞. By Lemma 2.2, there exists a subset E1 ⊂ [0, 2π) that has
linear measure zero, such that if θ ∈ [0, 2π) − E1, then there exists a
constant R0 = R0(θ) > 1 such that for all z satisfying arg z = θ and
|z| > R0, we have

(3.1)

∣

∣

∣

∣

f (j)(z)

f (i)(z)

∣

∣

∣

∣

6 |z|kα (0 6 i < j 6 k) .

We note
E2 =

{

θ ∈ [0, 2π) : δ(Pj, θ) = 0, j = 0, 1, · · · , k − 1
}

∪

∪
{

θ ∈ [0, 2π) : δ(Pij , θ) = δ(Pid, θ), 1 6 d < j 6 m
}

.

Then E2 is a finite set. By Lemma 2.3, there are exceptional sets Hj ⊂
⊂ [0, 2π) (j = 0, 1, · · · , k − 1), each of them has a linear measure zero,

such that for all z = reiθ, θ ∈ [0, 2π)− (E1 ∪ E2 ∪ E3) (E3 =
k−1
∪
j=0
Hj is a

set with linear measure zero) we have δ(Pj, θ) 6= 0 (j = 0, 1, · · · , k − 1)
and δ(Pij , θ) 6= δ(Pid, θ) (1 6 d < j 6 m). Let

δt = δ(Pit , θ) = max{δ(Pij , θ) : j = 1, 2, · · · , m}.

Then δt > 0 or δt < 0 since δ(Pj, θ) 6= 0. We consider two cases.

Case (i): δt > 0. Let δ = max
{

0, δ(Pij , θ) : j ∈ {1, 2, · · · , m} − {t}
}

.
Then 0 6 δ < δt. Set δ = c′δt. Then 0 6 c′ < 1. By Lemma 2.3, for any
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ε1(0 < ε1 <
1
2
), we have as r −→ +∞

(3.2)
∣

∣Ait(z)e
Pit

(z)
∣

∣ > exp {(1− ε1)δtr
n} .

For Ale
Pl(z) (l 6= it), we have an,l = c

(it)
n,l an,it (0 < c

(it)
n,l < 1) or an,l =

= an,ij (j 6= t) or an,l = c
(ij)
n,l aij (j 6= t) (0 < c

(ij)
n,l < 1). Hence δ(Pl, θ) =

= c
(it)
n,l δ(Pit , θ) = c

(it)
n,l δt or δ(Pl, θ) = δ(Pij , θ) 6 δ or δ(Pl, θ) =

= c
(ij)
n,l δ(Pij , θ) 6 c

(ij)
n,l δ. Let c = max

{

c
(it)
n,l , c

′, c
(ij)
n,l c

′
}

, we have 0 6 c < 1.
By Lemma 2.3, when r −→ +∞, we have

∣

∣Ale
Pl(z)

∣

∣ 6 exp
{

(1 + ε1)c
(it)
n,l δtr

n
}

,
or

∣

∣Ale
Pl(z)

∣

∣ 6 exp
{

(1 + ε1)δr
n
}

,
or

∣

∣Ale
Pl(z)

∣

∣ 6 exp
{

(1 + ε1)c
(it)
n,l δr

n
}

.

Thus

(3.3)
∣

∣Ale
Pl(z)

∣

∣ 6 exp {(1 + ε1)cδtr
n} (l ∈ {0, 1, · · · , k − 1} − {t}) .

Now we affirm that
∣

∣f (it)(z)
∣

∣ is bounded on the ray arg z = θ. If
∣

∣f (it)(z)
∣

∣ is
unbounded on the ray arg z = θ, then by Lemma 2.1, there exists an in-
finite sequence of points zq = rqe

iθ such that as q −→ +∞, we have
rq −→ +∞, f (it)(zq) −→ ∞ and

(3.4)

∣

∣

∣

∣

f (j)(zq)

f (it)(zq)

∣

∣

∣

∣

6
1

(it − j)!
|zq|

it−j (1 + o(1)) (j = 0, 1, · · · , it) .

Since f (it) 6≡ 0, by (1.4), (3.1), (3.3) and (3.4) as zq −→ ∞ we have

(3.5)
∣

∣Ait(zq)e
Pit

(zq)
∣

∣6

∣

∣

∣

∣

f (k)(zq)

f (it)(zq)

∣

∣

∣

∣

+
∣

∣Ak−1(zq)e
Pk−1(zq)

∣

∣

∣

∣

∣

∣

f (k−1)(zq)

f (it)(zq)

∣

∣

∣

∣

+ · · ·+

+
∣

∣Ait+1(zq)e
Pit+1(zq)

∣

∣

∣

∣

∣

∣

f (it+1)(zq)

f (it)(zq)

∣

∣

∣

∣

+

+
∣

∣Ait−1(zq)e
Pit−1(zq)

∣

∣

∣

∣

∣

∣

f (it−1)(zq)

f (it)(zq)

∣

∣

∣

∣

+ · · ·+

+
∣

∣A1(zq)e
P1(zq)

∣

∣

∣

∣

∣

∣

f ′(zq)

f (it)(zq)

∣

∣

∣

∣

+
∣

∣A0(zq)e
P0(zq)

∣

∣

∣

∣

∣

∣

f(zq)

f (it)(zq)

∣

∣

∣

∣

6

6r(1+α)k
q exp

{

(1 + ε1)cδtr
n
q

}

.
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We can take 0 < ε1 < min
{

1−c
1+c

, 1
2

}

, then (3.5) is a contradiction to (3.2).

Hence,
∣

∣f (it)(z)
∣

∣ 6M1 on arg z = θ. Therefore

(3.6) |f(z)| 6M1r
k

holds on arg z = θ.

Case (ii): δt < 0. Let δ = max
{

δ(Pij , θ) : j ∈ {1, 2, · · · , m} − {t}
}

. Then
δ < δt < 0. It follows that, there exists a constant c′ such that c′ > 1
and δ = c′δt. We have for all l 6= it, the following cases for δ(Pl, θ) :

δ(Pl, θ) = c
(it)
n,l δ(Pit, θ) = c

(it)
n,l δt or δ(Pl, θ) = δ(Pij , θ) 6 δ or δ(Pl, θ) =

= c
(ij)
n,l δ(Pij , θ) 6 c

(ij)
n,l δ. Set c1 = min

{

c
(it)
n,l , c

′, c
(ij)
n,l c

′, 1
}

. Then c1 > 0.

By Lemma 2.3, for any ε2 (0 < ε2 <
1
2
), when r −→ +∞ we have

∣

∣Aite
Pit

(z)
∣

∣ 6 exp {(1− ε2)δtr
n} ,

and for l 6= it,
∣

∣Ale
Pl(z)

∣

∣ 6 exp
{

(1− ε2)c
(it)
n,l δtr

n
}

,
or

∣

∣Ale
Pl(z)

∣

∣ 6 exp
{

(1− ε2)δr
n
}

,
or

∣

∣Ale
Pl(z)

∣

∣ 6 exp
{

(1− ε2)c
(ij)
n,l δr

n
}

.

Hence, for all j = 0, 1, · · · , k − 1

(3.7)
∣

∣Aj(z)e
Pj(z)

∣

∣ 6 exp
{

(1− ε2)c1δtr
n
}

.

If
∣

∣f (k)(z)
∣

∣ is unbounded on the ray arg z = θ, then by Lemma 2.1, there
exists an infinite sequence of points z′q = r′qe

iθ such that as q −→ +∞,

we have r′q −→ +∞, f (k)(z′q) −→ ∞ and

(3.8)

∣

∣

∣

∣

∣

f (j)(z′q)

f (k)(z′q)

∣

∣

∣

∣

∣

6
1

(k − j)!

∣

∣z′q
∣

∣

k−j
(1 + o(1)) (j = 0, 1, · · · , k − 1) .

Since f (k) 6≡ 0, by (1.4), (3.7) and (3.8), when r′q −→ +∞, we have

(3.9) 16
∣

∣

∣
Ak−1(z

′
q)e

Pk−1(z
′

q)
∣

∣

∣

∣

∣

∣

∣

∣

f (k−1)(z′q)

f (k)(z′q)

∣

∣

∣

∣

∣

+
∣

∣

∣
Ak−2(z

′
q)e

Pk−2(z
′

q)
∣

∣

∣

∣

∣

∣

∣

∣

f (k−2)(z′q)

f (k)(z′q)

∣

∣

∣

∣

∣

+

+ · · ·+
∣

∣

∣
A1(z

′
q)e

P1(z′q)
∣

∣

∣

∣

∣

∣

∣

f ′(z′q)

f (k)(z′q)

∣

∣

∣

∣

+
∣

∣

∣
A0(z

′
q)e

P0(z′q)
∣

∣

∣

∣

∣

∣

∣

f(z′q)

f (k)(z′q)

∣

∣

∣

∣

6

6 (r′q)
k exp

{

(1− ε2)c1δt(r
′
q)

n
}

.
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Since (r′q)
k exp

{

(1− ε2)(r
′
q)

nc1δt
}

−→ 0 as r′q −→+∞ we obtain a con-

tradiction with the left term of the inequality (3.9). Hence
∣

∣f (k)(z)
∣

∣ 6M2

on arg z = θ (M2 is a positive constant). Thus

(3.10) |f(z)| 6M2r
k.

In the both cases (3.6) and (3.10), we have

(3.11) |f(z)| 6Mrk

holds on arg z = θ. Since f(z) is a meromorphic function with finitely

many poles, then we can write f(z) on the form f(z) = g(z)
Q(z)

with

Q(z) is a polynomial and g(z) is an entire function. We know that for
all z = reiθ and r > r0, there is a natural number s (s > degQ) such
that

(3.12) |Q(z)| 6 rs.

From (3.11) and (3.12), we have |g(z)|6Mrβ (β = s + k) for all r > r0
and θ ∈ [0, 2π)− (E1 ∪ E2 ∪ E3). By applying Lemma 2.4, we find that
g(z) is a polynomial of degree deg g 6 β. Then f(z) is a rational function,
this contradicts the assumption that f(z) is a transcendental function.
Hence ρ(f) = ∞.

Furthermore, if an,ij0 = an,0 with an,ij0 ∈ {an,i1 , an,i2, · · · , an,im},
then we assume that the solution f(z) of eq. (1.4) is a rational function.
Since we have A0fe

P0 6≡ 0 and we write

(Ase
Ps(z)−an,sz

n

f (s) + Ate
Pt(z)−an,tz

n

f (t))ean,sz
n

instead of
Asf

(s)ePs + Atf
(t)ePt

when an,s = an,t (an,s, an,t ∈ {an,1, an,2, · · · , an,k−1}). Consequently we
can write eq. (1.4) in the form

(3.13) A0(z)f(z)e
P0(z) +

∑

j 6=0

Bj(z)e
an,jz

n

= 0,

where Bj(z) are meromorphic functions with finitely many poles and
of finite orders ρ(Bj) < n. We have arg an,j 6= arg an,0 or arg an,j =
= arg an,0 but |an,j| < |an,0|, and that an,j−an,i 6= 0 when i 6=j (j 6=0). By
Lemma 2.5, we find that the order of growth of the left side of eq. (3.13)
is n, this contradicts the zero order of the right side of eq. (3.13).
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Suppose that an,0 = c
(ij0 )

n,0 an,ij0 (0 < c
(ij0 )

n,0 < 1) and 0 < c
(ij0 )

n,0 6=

6= c
(ij0 )
n,s , s∈{1, 2, · · · , k−1} and an,ij0 ∈{an,i1 , an,i2, · · · , an,im}, we assume

that the solution f(z) of eq. (1.4) is a rational function. Thus, we have
A0fe

P0 6≡ 0 and eq. (3.13) also holds. From the fact arg an,j 6= arg an,0

or arg an,j = arg an,0 but 0 < c
(ij0 )

0 6= c
(ij0 )
s , s ∈ {1, 2, · · · , k − 1} which

means that |an,j| 6= |an,0| and by Lemma 2.5 the order of growth of the
left side of eq. (3.13) is n, this contradicts the zero order of the right

side of eq. (3.13). Consequently, when an,ij0 = an,0 or an,0 = c
(ij0 )
n,0 an,ij0

(0 < c
(ij0 )

n,0 < 1) and 0 < c
(ij0 )

n,0 6= c
(ij0 )
n,s , s ∈ {1, 2, · · · , k − 1} and an,ij0 ∈

∈ {an,i1, an,i2, · · · , an,im}, any meromorphic solution f 6≡ 0 of eq. (1.4) is
of infinite order.

4. Proof of Theorem 1.2

(i) Suppose that f is a transcendental meromorphic solution of
(1.4) . Since Aj(z) (j = 0, 1, · · · , k − 1) have only finitely many poles,
then f has finitely many poles. Assume that f satisfies λ(f) < n. Then,
we can write f in the form f = π

Q
eh, where π is an entire function

with λ(f) = λ(π) < n, h is a transcendental entire function and Q is a
polynomial. Put g = f ′

f
, then by using Lemma 2.6, we have

T (r, g) = T

(

r,
f ′

f

)

= m

(

r,
f ′

f

)

+N

(

r,
f ′

f

)

= O (log T (r, f)) +O (log r) +N

(

r,
f ′

f

)

holds for all r outside a set E5 ⊂ [0,+∞) with a finite linear measure
m (E5) < +∞. We know that

N(r, g) = N

(

r,
f ′

f

)

= N(r, f) +N

(

r,
1

f

)

= O(log r) +N

(

r,
1

f

)

,

hence

(4.1) T (r, g) 6 O (log T (r, f)) +O (log r) +N

(

r,
1

f

)

, r /∈ E5.

By Lemma 2.8, we have ρ2(f) 6 n. It follows from (4.1), Lemma 2.10
and the fact λ (f) < n that ρ(g) 6 n. We assert that ρ(g) = n. By
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g =
f ′

f
, we obtain (see [20, Lemma 2.3.7])

(4.2)
f (j)

f
= gj +

1

2
j(j − 1)gj−2g′ +Gj−2(g) (j = 2, 3, · · · , k),

where Gj−2(g) is a differential polynomial of the meromorphic function g
with constant coefficients and the degree no more than j−2. If ρ(g) < n,
then by (4.2) we have

ρ

(

f (j)

f

)

< n (j = 2, 3, · · · , k).

We have Aij (z)
f
(ij )

f
6≡ 0 since f is transcendental and we can write the

eq. (1.4) in the form

(4.3)

m
∑

j=1

Aij (z)
f (ij)

f
ePij

(z) +
∑

l

Bl(z)e
an,lz

n

= 0,

where Bl(z) are meromorphic functions with finitely many poles and of
finite orders ρ(Bl) < n. We have arg an,ij are different from each other in
{an,i1, an,i2, · · · , an,im} and if arg an,l = arg an,ij , then |an,l| <

∣

∣an,ij
∣

∣. By
Lemma 2.5, we find that the order of growth of the left side of eq. (4.3)
is n, this contradicts the zero order of the right side of eq. (4.3). Hence
ρ(g) = n.

Since ρ2(f) = ρ2(πe
h), then by Lemma 2.9 we have ρ2(πe

h) =

= ρ(h)6n. Suppose that ρ(h)<n. Then, it follows from
f ′

f
=
π′

π
−
Q′

Q
+h′

that

(4.4) T

(

r,
f ′

f

)

6 T

(

r,
π′

π

)

+ T

(

r,
Q′

Q

)

+ T (r, h′) +O (1) =

= m

(

r,
π′

π

)

+N

(

r,
1

π

)

+O (log r) + T (r, h′) +O (1) =

= O (log r) +N

(

r,
1

π

)

+O (log r) + T (r, h′) +O (1) =

= N

(

r,
1

π

)

+ T (r, h′) +O (log r) .
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By (4.4) and the fact λ(π) < n, we get ρ(
f ′

f
) = ρ(g) < n, a contradiction

to ρ(g) = n, hence ρ(h) = n, then ρ2(f) = n.
(ii) By Th. 1.1, every meromorphic solution f 6≡ 0 of eq. (1.4) is tran-
scendental, by using the same reasoning as in (i), we obtain λ(f) > n or
ρ2(f) = n.

5. Proof of Theorem 1.3

(i) Set Hj(z) = Aj(z)e
Pj(z) (j = 0, 1, · · · , k − 1). Assume that f

is a transcendental meromorphic solution of eq. (1.4) and suppose that
ϕ(z) 6≡ 0 is a transcendental meromorphic function with finitely many
poles and ρ(ϕ) <∞. By Th. 1.1, we have ρ(f) = ∞. Set g = f−ϕ, then
ρ(g) = ∞, substituing f = g + ϕ into eq. (1.4) yields

(5.1) g(k) +Hk−1g
(k−1) + · · ·+H1g

′ +H0g =

= −
(

ϕ(k) +Hk−1ϕ
(k−1) + · · ·+H1ϕ

′ +H0ϕ
)

.

We assert that
ϕ(k) +Hk−1ϕ

(k−1) + · · ·+H1ϕ
′ +H0ϕ 6≡ 0

because if ϕ(k)+Hk−1ϕ
(k−1)+ · · ·+H1ϕ

′+H0ϕ = 0, then ϕ is a transcen-
dental meromorphic solution of eq. (1.4), by Th. 1.1 we have ρ(ϕ) = ∞
and this contradicts the fact ρ(ϕ) <∞. Hence

(5.2) −
(

ϕ(k) +Hk−1ϕ
(k−1) + · · ·+H1ϕ

′ +H0ϕ
)

6≡ 0.

By (5.1) , (5.2) and Lemma 2.7, we obtain λ (g) = λ (g) = ρ(g) = ∞.
Therefore λ(f − ϕ) = λ(f − ϕ) = ∞.

(ii) We have by Th. 1.1, every meromorphic solution f 6≡ 0 of
eq. (1.4) is transcendental, by using the same reasoning as in (i), we
obtain λ(f − ϕ) = λ(f − ϕ) = ∞.
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