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Abstract: The discrete Laguerre-functions play an important role in system
identification. In this paper we investigate the Fourier coefficients of the matrix
function F (z) = (I − zA)−1 with respect to the discrete Lagueerre system.
Among others an explicit form is given for the Laguerre Fourier coefficients of
F . With the help of this formula we introduce a map QA which can be used to
compute the eigenvalues of the matrix A. The domain of the transformation
in question can be defined in the term of hyperbolic distance.

1. Blaschke functions and the discrete Laguerre system

Let D := {z ∈ C | |z| < 1} be the unit disc on the complex plain C

and denote T := {z ∈ C | |z| = 1} the torus and D := {z ∈ C | |z| ≤ 1}
the closed unit disc.

E-mail addresses: schipp@numanal.inf.elte.hu, soumelidis@sztaki.hu



148 F. Schipp and A. Soumelidis

The Blaschke functions are defined as

(1.1) Ba(z) :=
z − a

1 − āz
(z ∈ C, a ∈ D).

It can be proved that the map

(1.2) ρ(z1, z2) :=
|z1 − z2|

|1 − z1 z2|
= |Bz1

(z2)| (z1, z2 ∈ D)

is a metric on D. Moreover the Blaschke functions Ba (a ∈ D) are
isometries with respect to this metric [5, 8], i.e.

ρ(Ba(z1), Ba(z2)) = ρ(z1, z2) (a ∈ D, z1, z2 ∈ D).

The maps ǫBa ((ǫ, a) ∈ T × D) are 1-1 on T and D, respectively. More-
over they form a group with respect to composition of functions. This
group can be considered as the transformation group of congruence in
the Poincaré model of the hyperbolic plain [5].

For any k ∈ N and any a ∈ D we denote by Lk,a the discrete
Laguerre functions defined by

(1.3) Lk,a(z) :=

√

1 − |a|2

1 − az
Bk

a(z) (z ∈ D, a ∈ D, k ∈ N)

(see [1], [4], [6]). It is known that the system (Lk,a, k ∈ N) is orthonormal
and complete in H2(T) with respect to the scalar product

(1.4) 〈f, g〉 :=
1

2π

∫ π

−π

f(eit)g(eit) dt (f, g ∈ H2(T)).

We denote by R the set of rational functions analytic in the closed
disc D. The rational functions of the form

(1.3) rj,a(z) :=
zj

(1 − az)j+1
(z ∈ D, a ∈ D, j ∈ N)

generates the set R (see e.g. [6]). Namely every function f ∈ R can be
written in the form

f(z) =

N
∑

i=1

mi−1
∑

j=0

ci,j zj

(1 − aiz)j+1
,

where a∗
i := 1/ai (i = 1, 2, . . . , N) are the poles of f with the multiplicity

mi and the ci,j’s are complex numbers and ci,mi−1 6= 0.
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To get the Fourier coefficients of f with respect to the discrete
Laguerre system we shall use the next statement (see [6]).

Lemma 1. For every function G ∈ R

(1.5) 〈G, rj,a〉 =
G(j)(a)

j!
(j ∈ N, a ∈ D).

The derivative of Lk,a can be expressed of the form

(1.6) L′
k,a = αaLk,a + kβaLk−1,a (k ∈ N, a ∈ D),

where

αa(z) :=
a

1 − az
, βa(z) := B′

a(z) (z ∈ D, a ∈ D, k ∈ N).

For the second derivative we get

L′′
k,a = α′

aLk,a + kβ ′
aLk−1,a+

+ αa(αaLk,a + kβaLk−1,a) + kβa(αaLk−1,a + (k − 1)βaLk−2,a) =

= (α′
a + α2

a)Lk,a +

(

k

1

)

(β ′
a + 2αaβa)Lk−1,a + 2

(

k

2

)

β2
aLk−2,a.

It was shown in [6] that for the derivative of higher order the following
recursion holds.

Lemma 2. For any j, k ∈ N

(1.7) L
(j)
k,a =

j
∑

ℓ=0

γj,ℓ,a

(

k

ℓ

)

Lk−ℓ,a,

where the functions γj,ℓ,a : D → C (0 ≤ ℓ ≤ j, j ∈ N∗) do not depend on
k and can be computed by the equations

γ1,0,a = αa, γ1,1,a = βa,

γj+1,ℓ,a = αaγj,ℓ,a + γ′
j,k,a + ℓβaγj,ℓ−1,a (ℓ = 0, 1, . . . , j),

γj+1,j+1,a = (j + 1)βaγj,j,a (j ∈ N).
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2. The transfer function of matrices

Let A ∈ C
n×n be complex matrix and suppose that the eigenvalues

λ1, λ2, . . . , λn of A are in D. In this case there exist a norm ‖ · ‖ in Cn

such that the matrix norm induced by this vector norm satisfies ‖A‖ < 1.
Starting with an arbitrary vector x0 ∈ Cn we introduce the sequence
(xk ∈ Cn, k ∈ N) by

(2.1) xk+1 = Axk (k ∈ N).

Recursion (2.1) is called von Mises iteration and can be considered as
a special linear time-invariant system (see [2], [3], [7]). The transfer
function of this system is defined by

(2.2) F (z) :=

∞
∑

k=0

xkz
k (z ∈ D).

On the basis of the relations ‖xk‖ ≤ ‖A‖k‖x0‖(k ∈ N) it follows that the
series (2.2) converges on the disc DR := {z ∈ C | |z| < R := 1/‖A‖} and
the function F : DR → Cn is analytic. From (2.2) we get

F (z) − x0 =

∞
∑

k=0

xk+1z
k+1 = zA

(

∞
∑

k=0

xkz
k

)

= zAF (z),

and consequently F satisfies
(I − zA)F (z) = x0 (z ∈ D),

where I ∈ Cn×n is the unit matrix. Hence for F we get

(2.3) F (z) = (I − zA)−1x0 (z ∈ D).

Using the minimal polynomial P of the matrix A the matrix func-
tion (I − zA)−1 can be written in an explicit form. Namely let

P (λ) =

s
∏

j=1

(λ − λj)
mj (λ ∈ C, λi 6= λj if i 6= j)

and denote by m := m1 + · · · + ms ≤ n the degree of P . We intro-
duce the basic polynomials of Hermite interpolation process generated
by the system of roots (λj , mj) (j = 1, 2, . . . , s). The polynomials hij

(j = 1, 2, . . . , mi, i = 1, 2, . . . , s) with degree less then m, are defined by
the conditions
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(2.4)

h
(j1−1)
ij (λi1) = δi,i1δj,j1 (1≤j≤mi, 1≤ i≤s, 1≤j1≤mi1 , 1≤ i1≤s).

Using the notation g(w) := (1 − zw)−1 the matrix function in question
can be written in the form

g(A) = (I − zA)−1 =
s
∑

i=1

mi−1
∑

j=0

zj

(1 − λiz)j+1
hij(A) (z ∈ D).

This implies that the scalar product of F (z) and the vector y0 ∈ Cn is
equal to

(2.5) f(z) := [F (z), y0] =
s
∑

i=1

mi−1
∑

j=0

zj

(1 − λiz)j+1
[hij(A)x0, y0] (z ∈ D).

Denote by

(2.6) fk(a) := 〈Lk,a, f〉 (k ∈ N, a ∈ D)

the conjugate of the discrete Laguerre–Fourier coefficients of f . Then by
Lemma 1 and (2.5)

(2.7) fk(a) =
s
∑

i=1

mi−1
∑

j=0

cij〈Lk,a, rj,λi
〉 =

s
∑

i=1

mi−1
∑

j=0

cij

j!
L

(j)
k,a(λi),

where
cij := [y0, hij(A)x0].

Using Lemma 2 we get

fk(a) =
s
∑

i=1

mi−1
∑

j=0

cij

j!

j
∑

ℓ=0

(

k

ℓ

)

γj,ℓ,a(λi)Lk−ℓ,a(λi) =

=
s
∑

i=1

mi−1
∑

ℓ=0

Lk−ℓ,a(λi)

(

k

ℓ

)mi−1
∑

j=ℓ

cij

j!
γj,ℓ,a(λi) =

=
s
∑

i=1

mi−1
∑

ℓ=0

biℓ(a)

(

k

ℓ

)

Lk−ℓ,a(λi),

where

biℓ(a) =

mi−1
∑

j=ℓ

cij

j!
γj,ℓ,a(λi).
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For every k ≥ max{m1, . . . , ms} the coefficients fk(a) can be writ-
ten in the form (see (1,3))

(2.8) fk(a) =

s
∑

i=1

Bk−mi

a (λi)

mi−1
∑

ℓ=0

biℓ(a)Lmi−ℓ,a(λi)

(

k

ℓ

)

=

=

s
∑

i=1

Bk−mi

a (λi)Pi,a(k),

where the function

(2.9) Pi,a(k) :=

mi−1
∑

ℓ=0

biℓ(a)Lmi−ℓ,a(λi)

(

k

ℓ

)

is a polynomial of degree (mi − 1) of the variable k, with coefficients,
depending on the parameter a.

In the next section we show that (2.8) can be used to compute the
eigenvalues of A.

3. Algorithm to compute eigenvalues

Let us fix the eigenvalues λ1, λ2, . . . , λs of A and set a1 := λ1,
a2 := λ2, . . . , as := λs. Depending on this set of eigenvalues and using
the hyperbolic distance ρ defined in (1.2) for i = 1, 2, . . . , s we introduce
the following domains of D:

(3.1)

Dij : = {a ∈ D : ρ(a, ai) > ρ(a, aj)}, Di :=
⋂

1≤j≤s,i6=j

Dij

D0 : =

s
⋃

i=1

Di.

Obviously on the set Di

(3.2) qi(a) := max
j 6=i

ρ(aj , a)

ρ(ai, a)
< 1 (a ∈ Di)

is satisfied.
We show that on set D0 the limit
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(3.3) (QA)(a) := lim
k→∞

fk+1(a)

fk(a)
(a ∈ D0)

exists and the function QA can be used to compute the eigenvalues of A.

Theorem. Suppose that the eigenvalues of the matrix A ∈ Cn×n belong
to D and the polynomial Pi,a in (2.9) is not identically zero. Then the
limit in (3.3) exists and

(3.4) (QA)(a) = Ba(λi), if a ∈ Di (i = 1, 2, . . . , s).

Proof. According to the condition we take the following decomposition:
fk+1(a)

fk(a)
=

= Ba(λi)
Pi,a(k + 1) +

∑s

j=1,j 6=i Pj,a(k + 1)B
k+1−mj
a (λj)/B

k+1−mi
a (λi)

Pi,a(k) +
∑s

j=1,j 6=i Pj,a(k)B
k−mj

a (λj)/B
k−mi
a (λi)

.

Applying

|Pj,a(k + 1)Bk+1−mj

a (λj)/B
k+1−mi

a (λi)| = |Pj,a(k + 1)|
ρ(a, λj)

k+1−mj

ρ(a, λi)k+1−mi

=

= O(|Pj,a(k + 1)||qi(a)|k) → 0 (k → ∞),

we get

lim
k→∞

fk+1(a)

fk(a)
= lim

k→∞
Ba(λi)

Pi,a(k + 1)

Pi,a(k)
= Ba(λi)

and Theorem is proved. ♦

It is easy to see that the inverse of the map Ba is B−a and conse-
quently we get

Corollary 1. For any matrix A ∈ Cn×n with eigenvalues in D in the
case a ∈ Di with Pi,a 6= 0 we have

B−a((QA)(a)) = λi.

To check the condition Pi,a 6= 0 in general case is not so easy. In
the special case m1 = m2 = · · · = ms = 1 by (2.8) we have

fk(a) =
s
∑

i=1

ciLk,a(λi), Pi,a = ci := [y0, hi1(A)x0] (i = 1, . . . , s),

where

hi1(z) :=
s
∏

j=1,j 6=i

z − λj

λi − λj

(z ∈ C, i = 1, 2, . . . , s)
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are the Lagrange interpolation polynomials. In this case ci 6= 0, a 6= λi

implies

(3.5)
fk+1(a)

fk(a)
= Ba(λi)

ci +
∑s

j=1,j 6=i cjLk+1,a(λj)/B
k+1
a (λi)

ci +
∑s

j=1,j 6=i cjLk,a(λj)/Bk
a(λi)

=

= Ba(λi)
1 + ǫk+1,i

1 + ǫk,i

,

where

ǫk,i :=
1

ci

s
∑

j=1,j 6=i

cjLk,a(λj)/B
k
a(λi).

By (3.3) for a ∈ Di we have
∣

∣

∣

∣

Lk,a(λj)

Bk
a(λi)

∣

∣

∣

∣

=

√

1 − |a|2

|1 − aλj |

ρk(a, λj)

ρk(a, λi)
≤

√

1 − |a|2

|1 − aλj |
qk
i (a),

and consequently

(3.6) |ǫk,i| ≤ κiq
k
i (a),

where

κi :=

√

1 − |a|2

|ci|

∑

j=1,j 6=i

|cj|

|1 − aλj|
.

Thus by (3.5) and (3.6) we get
∣

∣

∣

∣

fk+1(a)

fk(a)
− Ba(λi)

∣

∣

∣

∣

= |Ba(λi)|

∣

∣

∣

∣

1 −
1 + ǫk + 1, i

1 + ǫk,i

∣

∣

∣

∣

≤

≤
|ǫk+1,i| + |ǫk,i|

1 − |ǫk,i|
≤

2κi

1 − κiqk
i (a)

qk
i (a)

that concludes in an estimation of the the convergence rate as it is stated
in the corollary as follows:

Corollary 2. If the multiplicity of every eigenvalue is 1 then in the case
if a ∈ Di and ci 6= 0 we have

∣

∣

∣

∣

fk+1(a)

fk(a)
− Ba(λi)

∣

∣

∣

∣

= O(qk
i (a)) (k → ∞).
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