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Abstract: We consider linear recurrence relations associated with the sum of
elements lying on a finite ray crossing a multinomial Pascal triangle. In the
classical Pascal’s triangle the recurrence relations associated with the sum of
diagonal elements lying along a finite ray have already been described. We also
discuss an extended Lagrange’s identity.

1. Introduction

In [1, 2] we described the recurrence relations associated with the
sum of diagonal elements lying along a finite ray crossing Pascal’s trian-
gle. We shall consider similar linear recurrence relations in a more general
triangle. We associate the elements

(

n

k

)

s
(n = 0, 1, 2, . . . ; 0 ≤ k ≤ sn)

of the s-multinomial (or Generalized) Pascal triangle with points of the
lattice Z×Z by the map (n, k) →

(

n

k

)

s
. Here,

(

n

k

)

s
are the coefficients ap-

pearing in the multinomial (1+x+x2+· · ·+xs−1)n. In the s-multinomial
(or Generalized) Pascal triangle

(1.1)

(

n

k

)

s

=

(

n − 1

k − s

)

s

+

(

n − 1

k − s + 1

)

s

+ · · ·+
(

n − 1

k

)

s
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with the convention
(

n

k

)

s
= 0 for k > sn or k < 0 and

(1.2)

sn
∑

k=0

(

n

k

)

s

= sn

hold (see also [3, 4, 10]). If s = 2, the triangle is reduced to Pascal’s
triangle with binomial coefficients

(

n

k

)

=
(

n

k

)

2
. If s = 3, the triangle is

called Trinomial triangle ([5, Ch. 29], [9, A027907], [4]) with Trinomial
coefficients

(

n

k

)

3
1, illustrated as follows.

1
1 1 1
1 2 3 2 1
1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1
1 5 15 30 45 51 45 30 15 5 1
1 6 21 50 90 126 141 126 90 50 21 . . .

1 7 28 77 161 266 357 393 357 266 161 . . .

1 8 36 112 266 504 784 1016 1107 1016 784 . . .

1 9 45 . . .

1 10 55 . . .

1 11 . . .

. . .

Figure 1. Trinomial triangle

Let r, q and p be integers with r > 0, r + q > 0 and 1 ≤ p ≤ r − 1.
Set

T
(r,q,p)
n+1 :=

⌊ sn−p

r+sq
⌋

∑

k=0

T (r,q,p)(n, k)

with

T (r,q,p)(n, k) =

(

n − qk

p + rk

)

s

asn−p−(sq+r)kbp+rk .

The pair (r, q) stands for r steps east and q steps north and describes
the direction of a diagonal ray in a multinomial Pascal triangle. The
variable p defines the order in the intermediate ray, which is the ray be-
tween two rays of the direction (r, q) if such a ray exists. The variables
a and b play the role to weigh the sums: a is the weight in the vertical

1In some literature,
(

n

k

)

=
(

n

k

)

1
denotes binomial coefficients,

(

n

k

)

2
trinomial coef-

ficients,
(

n

k

)

3
quadrinomial coefficients and so on.
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direction and b is in the horizontal direction. The case s = 1 is defined
in [1, 2]. The same quantitiesT

(r,q,p)
n with p = 0 and a = b = 1 are con-

sidered and analyzed in [4]. For instance, the sequence {T (1,3,0)
n }n≥1 =

= 1, 1, 1, 1, 2, 3, 4, 6, 9, 13, 18, 26, 38, . . . corresponding to the rays with
direction (r, q) = (1, 3) can be obtained by following the arrows in the
trinomial triangle as represented in Fig. 2. Then, we can find that

Tn+1 := T
(1,3,0)
n+1 =

∑⌊ 2n

7 ⌋
k=0

(

n−3k

k

)

2
a2n−7kbk satisfies the relation Tn =

= a2Tn−1 +abTn−4 + b2Tn−7 (n ≥ 2) with T1 =1, T0 =T−1 = · · ·=T−5 = 0.
The example depicted in Fig. 2 is the case where a = b = 1.

In this paper, we describe a general recurrence relation, which is

satisfied by T
(r,q,p)
n+1 with r = 1 and p = 0 in the multinomial Pascal

triangle.
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Figure 2. The sequence {T (1,3,0)
n }n≥1 with a = b = 1 in the trinomial triangle
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2. Main result

The main theorem states a more general situation in the multino-
mial (s-nomial) Pascal triangle.

Theorem 1. Let s ≥ 1. Then for q ≥ 1

Tn+1 := T
(1,q,0)
n+1 =

⌊ sn

sq+1⌋
∑

k=0

(

n − qk

k

)

s

asn−(sq+1)kbk

satisfies the relation

Tn+1 = asTn + as−1bTn−q + · · ·+ abs−1Tn−(s−1)q + bsTn−sq (n ≥ 1)

with
T1 = 1 and T0 = T−1 = · · · = T1−sq = 0 .

Example. If q = 1, the sequence {Tn}n≥1 means the weighted sum of
(r, q) = (1, 1) direction:

T1 = 1, T5 = a8 + 3a5b + 3a2b2,

T2 = a2, T6 = a10 + 4a7b + 6a4b2 + 2ab3,

T3 = a4 + ab, T7 = a12 + 5a9b + 10a6b2 + 7a3b3 + b4.

T4 = a6 + 2a3b + b2,

Tn+1 := T
(1,1,0)
n+1 (n, k) =

⌊ 2n

3 ⌋
∑

k=0

(

n − k

k

)

2

a2n−3kbk

satisfies the relation
Tn+1 = a2Tn+abTn−1+b2Tn−2 (n ≥ 1) with T1 = 1, T0 = T−1 = 0 .

Remark. If q = 1 and s = 1, we have the nice well-known identity

Fn+1 =

⌊n

2 ⌋
∑

k=0

(

n − k

k

)

for Fibonacci numbers Fn ([9, A000045]). If q = 1 and s = 2, then we
have the identity for Tribonacci numbers, satisfying Tn = Tn−1 + Tn−2+
+Tn−3 (n ≥ 4) with T1 = T2 = T3 = 1 ([4] [9, A000073]). If q = 2 and
s = 2, then Tn corresponds to the number of ordered partitions of n into
1’s, 3’s and 5’s ([9, A060961]).
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Figure 3. The sequence {T (1,1,0)
n }n≥1 in the trinomial triangle
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Proof of Theorem 1.

asTn + as−1bTn−q + · · · + abs−1Tn−(s−1)q + bsTn−sq =

=

⌊ s(n−1)
sq+1 ⌋
∑

k=0

(

n − qk − 1

k

)

s

asn−(sq+1)kbk+

+

⌊ s(n−q−1)
sq+1 ⌋
∑

k=0

(

n−q(k + 1)−1

k

)

s

asn−(sq+1)(k+1)bk+1+

+ · · ·+

+

⌊ s(n−(s−1)q−1)
sq+1 ⌋
∑

k=0

(

n − q(k + s − 1) − 1

k

)

s

asn−(sq+1)(k+s−1)bk+s−1+

+

⌊ s(n−sq−1)
sq+1 ⌋
∑

k=0

(

n − q(k + s) − 1

k

)

s

asn−(sq+1)(k+s)bk+s =

=

⌊ sn−s

sq+1 ⌋
∑

k=0

(

n−qk−1

k

)

s

asn−(sq+1)kbk +

⌊ sn−s+1
sq+1 ⌋
∑

k=1

(

n−qk−1

k − 1

)

s

asn−(sq+1)kbk+

+ · · ·+

+

⌊ sn−1
sq+1 ⌋
∑

k=s−1

(

n−qk−1

k − s + 1

)

s

asn−(sq+1)kbk +

⌊ sn

sq+1⌋
∑

k=s

(

n−qk−1

k − s

)

s

asn−(sq+1)kbk.

Notice that
(

n − 1

0

)

s

= 1 =

(

n

0

)

s

for k = 0 ,

(

n − q − 1

0

)

s

+

(

n − q − 1

1

)

s

=

(

n − q

1

)

s

for k = 1 ,

. . .
(

n−q(s−1)−1

0

)

s

+

(

n−q(s−1)− 1

1

)

s

+ · · ·+
(

n−q(s−1)− 1

s − 1

)

s

=

=

(

n − q(s − 1)

s − 1

)

s

for k = s − 1 ,

and for s ≤ k ≤
⌊

sn−s
sq+1

⌋
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(

n−qk−1

k − s

)

s

+

(

n−qk−1

k − s + 1

)

s

+ · · ·+
(

n−qk−1

k − 1

)

s

+

(

n−qk−1

k

)

s

=

=

(

n − qk

k

)

s

.

In addition, if
⌊

sn − i − 1

sq + 1

⌋

<

⌊

sn − i

sq + 1

⌋

or
sn − i − 1

sq + 1
<

⌊

sn − i − 1

sq + 1

⌋

+ 1 ≤
⌊

sn − s + 1

sq + 1

⌋

for some integer i with 0 ≤ i ≤ s − 1, then by

s

(

n − q

⌊

sn − i

sq + 1

⌋

− 1

)

<

⌊

sn − i

sq + 1

⌋

we have
(n − q

⌊

sn−i
sq+1

⌋

− 1
⌊

sn−i
sq+1

⌋

)

s

= · · · =

( n − q
⌊

sn−i
sq+1

⌋

− 1
⌊

sn−i
sq+1

⌋

− s + i + 1

)

s

= 0 ,

so,

(n − q
⌊

sn−i
sq+1

⌋

− 1
⌊

sn−i
sq+1

⌋

− s

)

s

+

(n − q
⌊

sn−i
sq+1

⌋

− 1
⌊

sn−i
sq+1

⌋

− s + 1

)

s

+· · ·+
(n − q

⌊

sn−i
sq+1

⌋

− 1
⌊

sn−i
sq+1

⌋

− s + i

)

s

=

=

(n − q
⌊

sn−i
sq+1

⌋

⌊

sn−i
sq+1

⌋

)

s

.

Therefore,

asTn + as−1bTn−q + · · ·+ abs−1Tn−(s−1)q + bsTn−sq =

=

⌊ sn

sq+1⌋
∑

k=0

(

n − qk

k

)

s

asn−(sq+1)kbk = Tn+1 . ♦

The case q = 0 corresponds to horizontal lines in the triangle. This
case can be stated as follows.
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Corollary 1.

Tn+1 := T
(1,0,0)
n+1 =

sn
∑

k=0

(

n

k

)

s

asn−kbk (n ≥ 0)

is equivalent to

Tn = (as + as−1b + · · ·+ abs−1 + bs)n−1 (n ≥ 1) .

Remark. If a = b = 1 in Cor. 1, this case is reduced to (1.2).

3. An extended Lagrange’s identity

Suppose that each element in multinomial Pascal’s triangle is re-
placed by the square of the corresponding element. Then the n-th row
sum of the resulting triangle is

(

2n

sn

)

s

(n = 0, 1, 2, . . . ) .

This is a special case of the following theorem.

Theorem 2. For 0 ≤ l ≤ 2sn
(

2n

l

)

s

=

l
∑

i=0

(

n

i

)

s

(

n

l − i

)

s

=

l
∑

i=0

(

n

i

)

s

(

n

sn − l + i

)

s

.

Proof. By the definition of the coefficients in generalized Pascal’s trian-
gles,

(1 + x + x2 + · · ·+ xs)n =

sn
∑

i=0

(

n

i

)

s

xi .

Hence,

(1 + x + x2 + · · ·+ xs)2n =
2sn
∑

l=0

(

2n

l

)

s

xl .

On the other hand,

(1+x+x2+ · · · +xs)2n = (1+x+x2+ · · ·+xs)n(1+x+x2+ · · · +xs)n =

=
sn

∑

i=0

sn
∑

j=0

(

n

i

)

s

(

n

j

)

s

xi+j =

=
2sn
∑

l=0

l
∑

i=0

(

n

i

)

s

(

n

l − i

)

s

xl .

Equating the coefficients of xl, we have the desired identity. ♦
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By putting l = sn in above theorem, we have

Corollary 2.
(

2n

sn

)

s

=

sn
∑

i=0

((

n

i

)

s

)2

.

Remark. If s = 1, then
(

2n

n

)

s

=

n
∑

i=0

(

n

i

)2

,

which is Lagrange’s identity ([5, Th. 5.1 and p. 130–131]). If s = 2, then
we have the identity in the trinomial triangle:

(

2n

2n

)

2

=

2n
∑

i=0

((

n

i

)

s

)2

.

4. Riordan arrays

As stated in [7] a Riordan array is a pair (d(t), h(t)) where d and
h are analytic functions and d(0) 6= 0. This pair then defines an infinite
lower triangular array {dn,k}, where

∞
∑

n=0

dn,kt
n = d(t)(t · h(t))k .

From this definition, d(t)(t ·h(t))k is the generating function of column k
in the array. It is known that Pascal triangle {Pn,k}n,k≥0 is represented
by a Riordan array:

∞
∑

n=0

Pn,kt
n =

1

1 − t

(

t

1 − t

)k

(k ≥ 0)

(e.g. [6, 11]). However, for the coefficients {dn,k} of some s-multinomial
triangle, there are no two analytic functions d(t) and h(t), satisfying
∑∞

n=0 dn,kt
n = d(t)(t · h(t))k. For example, in the case of the trinomial

triangle {dn,k}n,k≥0, we have dn,0 = 1 (n ≥ 0). Hence, d(t) = 1/(1 − t)
because d(t) is the generating function of column 0. So, there exists a
function f(t), satisfying

∞
∑

n=0

dn,kt
n =

1

1 − t
(f(t))k (k ≥ 0) .

By the second column with dn,1 = n (n ≥ 0), we have



144 T. Komatsu

1

1 − t
f(t) = t + 2t2 + 3t3 + 4t4 + 5t5 + · · · =

t

(1 − t)2
.

Thus,

f(t) =
t

1 − t
.

But, by the third column with dn,2 = n(n + 1)/2 (n ≥ 0), we have
1

1 − t
(f(t))2 = t + 3t2 + 6t3 + 10t4 + 15t5 + · · · =

t

(1 − t)3
.

Thus,

f(t) =

√
t

1 − t
.

Furthermore, the relation

1

1 − t
(f(t))3 =

∞
∑

n=0

(n − 1)n(n + 4)

2
tn

gives a still different function f(t).
We may also use the following result ([7, Th. 2.1], [8]) to see the

non-existence of Riordan array.

Lemma 1. An array {dn,k}n,k≥0 is a Riordan array with d(0) 6= 0 and

h(0) 6= 0 if and only if there exists a sequence A = {ai}i≥0 with a0 6= 0
such that every element dn+1,k+1 (n, k ≥ 0) can be expressed as a linear

combination with coefficients in A of the elements in the preceding row,

starting from the preceding column on, namely
dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · .

In the case of the trinomial triangle {dn,k}n,k≥0, only the relation
dn+1,k+1 = 1 · dn,k−1 + 1 · dn,k + 1 · dn,k+1

holds. So, there does not exist such a sequence A.

5. Future works

More general rays where r 6= 1 and/or p 6= 0 may be treated simi-
larly. For the moment, we have only a very special result, where r = 2
with q = 1, p = 0 and a = b = 1. Namely,

Tn+1 := T
(2,1,0)
n+1 =

⌊ 2n

4 ⌋
∑

k=0

(

n − k

2k

)

s

satisfies the relation
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Tn+1 = Tn + 2Tn−1 + Tn−2 − 1 (n ≥ 2)

with
T1 = T2 = 1 and T0 = 0 .

A general result in the cases r ≥ 2 will be considered in the future
works.
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