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Abstract: We consider linear recurrence relations associated with the sum of
elements lying on a finite ray crossing a multinomial Pascal triangle. In the
classical Pascal’s triangle the recurrence relations associated with the sum of
diagonal elements lying along a finite ray have already been described. We also
discuss an extended Lagrange’s identity.

1. Introduction

In [1, 2] we described the recurrence relations associated with the
sum of diagonal elements lying along a finite ray crossing Pascal’s trian-
gle. We shall consider similar linear recurrence relations in a more general
triangle. We associate the elements (Z)s (n=20,1,2,...; 0 < k < sn)
of the s-multinomial (or Generalized) Pascal triangle with points of the
lattice Z x Z by the map (n, k) — (Z)S Here, (Z)S are the coefficients ap-
pearing in the multinomial (14+z+2%+---+2*!)". In the s-multinomial

(or Generalized) Pascal triangle

wo (D) =) () e ()
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with the convention (Z)s =0for k > snor k <0 and

(0,

k=0

hold (see also [3, 4, 10]). If s = 2, the triangle is reduced to Pascal’s
triangle with binomial coefficients (Z) = (Z)2 If s = 3, the triangle is
called Trinomial triangle ([5, Ch. 29], [9, A027907], [4]) with Trinomial

coefficients (Z)g ! illustrated as follows.
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1 4 10 16 19 16 10 4 1

1 5 15 30 45 51 45 30 15 5 1

16 21 50 90 126 141 126 90 50 21
1 7 28 77 161 266 357 393 357 266 161
1 8 36 112 266 504 784 1016 1107 1016 784
1 9 45

1 10 55

1 11

Figure 1. Trinomial triangle

Let r, ¢ and p be integers with r > 0, r+¢>0and 1 <p <r—1.

Set
=
TP = > T (n k)
k=0
with

TUaP) (k) = (n - qk) @S (satr)kpptrk
p+rk),

The pair (r,q) stands for r steps east and ¢ steps north and describes

the direction of a diagonal ray in a multinomial Pascal triangle. The

variable p defines the order in the intermediate ray, which is the ray be-

tween two rays of the direction (7, q) if such a ray exists. The variables

a and b play the role to weigh the sums: a is the weight in the vertical

'In some literature, (Z) = (Z)l denotes binomial coefficients, (2)2 trinomial coef-
ficients, (2)3 quadrinomial coefficients and so on.
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direction and b is in the horizontal direction. The case s =1 is defined
in[1, 2. The same quantities T,"*" with p =0 and a = b =1 are con-
sidered and analyzed in [4]. For instance, the sequence {7, ,§1’3’°>}n21 =
= 1,1,1,1,2,3,4,6,9,13, 18,26, 38, ... corresponding to the rays with
direction (r,¢) = (1,3) can be obtained by following the arrows in the
trinomial triangle as represented in Fig. 2. Then, we can find that

2n
Toi1 = T,Ei’?l”o) = Z,CL:%J (";3k)2a2"_7kbk satisfies the relation T, =
= T,y +abTy_y + T,y (n > 2) with Ty =1, Ty=T_, =---=T_5 = 0.

The example depicted in Fig. 2 is the case where a = b = 1.

In this paper, we describe a general recurrence relation, which is
satisfied by 779" with » = 1 and p = 0 in the multinomial Pascal
triangle.
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1/3 6 7 6 3 1

1 4 10 16 19 16 10 4 1
1 5 15 30 45 51 45 30 15
1 6 21 50 90 126 141 126 90
1 7 28 " 161 266 357 393 357
1 8 36 112 266 504 784 1016 1107
1 9 45

1 10 55

1 11

1 12

Figure 2. The sequence {Tf(Ll’&O)}nZl with @ = b =1 in the trinomial triangle
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2. Main result

The main theorem states a more general situation in the multino-
mial (s-nomial) Pascal triangle.

Theorem 1. Let s > 1. Then for g > 1
Lsszlj n— ]{7
Toy1 = T,Sf{’o) = Z ( kq ) g (satDkphk

k=0

satisfies the relation
Tn+1 = CLSTn + as—len_q + -+ abs_lTn—(s—l)q + bSTn—sq (n > 1)
with
T1:1 and T():T_lz"':Tl_Sq:O.

Example. If ¢ = 1, the sequence {7}, },>1 means the weighted sum of
(r,q) = (1,1) direction:

T, =1, Ts = a® + 3a°b + 3,
Ty = a?, Ts = a'® + 4a"b + 6a*b* + 2ab?,
Ty = a* + ab, Ty = a*? + 5a°b 4+ 10ab* + 7ab® + b?.

Ty = a® + 2a°b + 12,

7

(n ; k) o 2n—3kpk
k=0 2
satisfies the relation

Thi = a*T,+abT 1 +0*T, 5 (n>1) with Ty=1, To=T_,=0.

Remark. If ¢ =1 and s = 1, we have the nice well-known identity

5]

Fn+1 = Z (n k k)

k=0
for Fibonacci numbers F,, ([9, A000045]). If ¢ = 1 and s = 2, then we
have the identity for Tribonacci numbers, satisfying T,, = T},_1 + T,,_o+
+T,-3 (n >4) with T} = Ty, = T3 = 1 ([4] [9, A000073]). If ¢ = 2 and
s = 2, then T, corresponds to the number of ordered partitions of n into
1’s, 3’s and 5’s ([9, A060961]).

ﬁ
ol
—

Ty = Trgﬁ?o) (n, k)
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Figure 3. The sequence {T,gl’l’o)}nzl in the trinomial triangle
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Proof of Theorem 1.
asTn _|_ as_len_q _|_ e + abs_lTn_(S_l)q + bsTn—sq —

) LSEZZJ)J (

k=0

| S ]

n-— (.Z{: - 1) asn—(sq—l—l)kbk_'_

<”_Q(k + 1)_1) @D () 1

k=0 k
+ -+
| 2n=e=Da=1) |
1 Z (n —q(k +]: —-1) - 1) qsn—(sa+1)(kts—1)pkts—1_4
k=0 s
[ ] L |
4 n— q( + S) - asn—(sq—l—l)(k—l—s)bk—l—s _
k=0 k s
bl L=z
B n—qk—l sn—(sq+1)k1k n_qk_]- sn—(sq+1)kk
_ ( ] ) a AR D B b+
k=0 S k=1 s
4+t
e el
n—gk—1 —(sq+1)kpk n—qk—1 —(sq+Dkpk
sn S b sn sq b .
* Z(k—8+1)sa * kZ:; k—s sa

k=s—1
Notice that

(”_1) :1:(“) for k=0,

O S 08

n—q-—1 n—qg—1\ [(n—q B
() ) (), e

() () e ()

— n—q(s—1) for k=s—1
s—1 . ’

and for s < b < | 255 |
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n—qk—1 n—qk—1 n—qk—1 n—qk—1\

( k—s )S+(k—s+1)s+ +< k—1 5+ k .
_[(n—qk
= h K

In addition, if

or

sn—1—1 sn—1—1 sn—s+1
< +1< | —
sq+1 sq+1 sq+1

for some integer ¢ with 0 <1i¢ < s — 1, then by

sn—1 1) < sn —1
s|ln— —
1 sq+1 sqg+1

we have
(n—qﬁﬁd—l)__ B 7%*ﬂ§ﬁJ—1) 0
= ] s ried/,
SO,

(ﬁqﬁﬂ—3+c—ﬂ$ﬂ—j++(%qﬁﬂ—j_
IR = EEE || s +4
n—a| 2|

sn—1i
sq+1

s

Therefore,

a* Ty, +a* g+ + ab’ T so1yg + 0 Thsg =
Er=d n— gk
= 5 () et =t o

k=0

The case ¢ = 0 corresponds to horizontal lines in the triangle. This
case can be stated as follows.
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Corollary 1.
Tn+1 = Téig’o) = (n) asn—kbk (n > 0)
-0 s
18 equivalent to
T,=(*+a 0+ +ab* 4+ 0" (n>1).
Remark. If a = b =1 in Cor. 1, this case is reduced to (1.2).

3. An extended Lagrange’s identity

Suppose that each element in multinomial Pascal’s triangle is re-
placed by the square of the corresponding element. Then the n-th row
sum of the resulting triangle is

2n
=0,1,2,...).
() =02

This is a special case of the following theorem.
Theorem 2. For (0 <[ < 2sn

()20, 20) (),

Proof. By the definition of the coefficients in generalized Pascal’s trian-

gles,
sn n ]
1 2 s\n __ i
(I4+z+224-- +2° ;(Z)x

Hence,

2sn
2
(I+ax+a®+-+2°)" = (n) o'
1=0 s

On the other hand,
(I+z+a’+ - 42°)*" = (I+z+a’+ - +2°) " (I+z+a”+ - +2°)" =

SE().0)-

i=0 j=0

202

1=0 i=0
Equating the coefficients of z!, we have the desired identity. ¢
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By putting [ = sn in above theorem, we have

().~ (())

Remark. If s = 1, then

().-%0)

nj)g o = 1

which is Lagrange’s identity ([5, Th. 5.1 and p. 130-131]). If s = 2, then
we have the identity in the trinomial triangle:

)= (())

4. Riordan arrays

Corollary 2.

As stated in [7] a Riordan array is a pair (d(t), h(t)) where d and
h are analytic functions and d(0) # 0. This pair then defines an infinite
lower triangular array {d, }, where

i dpit™ = d(t)(t - h(t))".

From this definition, d(¢)(t- h(t))* is the generating function of column &
in the array. It is known that Pascal triangle {P, j}, x>0 is represented
by a Riordan array:

Pyt = —— | —— k>
; * 1—t<1—t) (k2 0)

(e.g. [6, 11]). However, for the coefficients {d, ;} of some s-multinomial
triangle, there are no two analytic functions d(¢) and h(t), satisfying
S o dut™ = d(t)(t - h(t))*. For example, in the case of the trinomial
triangle {d, k }n x>0, we have d, o =1 (n > 0). Hence, d(t) = 1/(1 — )
because d(t) is the generating function of column 0. So, there exists a
function f(t), satisfying

S dust” = T () (> 0).

By the second column with d,,; =n (n > 0), we have
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1 t
—f) =t 2+ P A 5+ = .
T f () =427 4 38+ 4t 4 587 L
Thus,
t
t) = ——.

But, by the third column with d,,» = n(n +1)/2 (n > 0), we have
1 t
——(f() =t + 3>+ 6t + 10t* + 156° + - - = :
1_t(f()) + 3t° + 6t° + 10" + 15t° + EE

Thus,

t
F(t) L

gives a still different function f(t).

We may also use the following result ([7, Th. 2.1}, [8]) to see the
non-existence of Riordan array.
Lemma 1. An array {d, ;}ni>0 is a Riordan array with d(0) # 0 and
h(0) # 0 if and only if there exists a sequence A = {a;}i>o with ag # 0
such that every element dy41 41 (n,k > 0) can be expressed as a linear
combination with coefficients in A of the elements in the preceding row,
starting from the preceding column on, namely

Apt1 k11 = @odp jp + a1y gs1 + Qodp gro + - - .
In the case of the trinomial triangle {d,, j }» x>0, only the relation
dpsrjprr =1 dpp—1+1-dpp+1-dppr

holds. So, there does not exist such a sequence A.

5. Future works

More general rays where r # 1 and/or p # 0 may be treated simi-
larly. For the moment, we have only a very special result, where r = 2
with ¢ =1, p =0 and a = b = 1. Namely,

P
Tot1:= Tﬁ_&’o) _ Z <n2k )
k=0 s
satisfies the relation
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T =T, +2T, 1 +T, 2—1 (n>2)
with
Ti,=T,=1 and T, =0.
A general result in the cases r > 2 will be considered in the future
works.
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