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Abstract: B. H. Neumann has shown that every infinite subset of a group
G contains a pair of commuting elements if and only if G is finite modulo its
centre. Here we consider, analogously, the rings in which each infinite subset
contains distinct elements x, y with xy = 0 = yx. We show that the rings
in question are those which are finite modulo their annihilators provided that
they also satisfy the identity x2 ≈ 0, which many (and perhaps all) do.

1. Introduction

We consider the following property for rings. (Except in Sec. 4, we
mean associative rings.)

(∗) In every infinite subset there exist distinct a, b with ab = 0.
Neumann [2] characterized the groups with the property

(∗)g In every infinite subset there are two commuting elements.
Though Bell, Klein and Kappe [1] have characterized the rings with the
property

(∗)c In each infinite subset contains a pair of commuting elements,
it seems that in view of the close parallels between parts of ring theory
and parts of group theory based on the product and the commutator,
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there is merit in an investigation of (∗).
The groups satisfying (∗)g are the centre by finite ones. One might

therefore expect a connection between rings with (∗) and rings which
are finite modulo their annihilators. These properties do indeed coincide
for rings satisfying x2 ≈ 0 and the presence of this identity permits a
reasonably straightforward adaptation of the group argument. On the
other hand we are able to show that rings A with (∗) do satisfy x2 ≈ 0
except when A = Tp1

(A)⊕Tp2
(A)⊕· · ·⊕Tpk

(A), where p1, p2, · · · , pk are
primes, each Tpi

(A) is the maximum pi-ideal, only one Tpi
(A) is infinite

and that is not an algebra over an infinite field. This case remains open.
Rings with (∗) are nil, and by using the circle operation we can

deduce our result from that of Neumann in the case of 2-torsion-free
rings. In the final section we briefly consider non-associative rings and
deduce the characterisation of rings with (∗)c [1] from our results.

Our condition (∗) has a formulation in terms of graphs. We define
a directed graph on a ring by taking all its elements as vertices and
defining an edge from a to b if and only if ab 6= 0. For rings in which
ab = 0 implies ba = 0 we can treat this as an undirected graph and
then (∗) is equivalent to the statement that the graph of the ring has no
infinite complete subgraph (i.e. no infinite subgraph in which every two
vertices are joined by an edge). In the group case the graph, being based
on commutation, is undirected and the graph version of (∗)g provided the
motivation for Erdős, who posed the question answered in [2]. (Graphs
play no real part in our results, being mentioned only in connection
with Ramsey’s Theorem in the proof of 2.1.) We attempt an argument
by analogy with that in [2] to characterize the rings with (∗), but get
diverted to a different, related question.

While in groups we always have [x, x] = e, the analogous ring con-
dition x2 ≈ 0, which would allow a relatively straightforward translation
of the argument in [2], is of course rather restrictive. Nevertheless, we
find that in many cases (∗) requires x2 ≈ 0. (If this identity is satisfied,
then 0 = (a + b)2 = a2 + ab + ba + b2 = ab + ba so ab = −ba for all
a, b and thus ab = 0 implies ba = 0 so as noted above we can deal with
undirected graphs.)
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2. Imitating the group argument

It may seem strange, but we prefer to mimic the group argument
first, with the (extravagant) assumption of the identity x2 ≈ 0, and use
the conclusions reached as motivation for exploring the extent to which
x2 ≈ 0 is valid in the rings in which we are interested. Until further
notice, R is always an infinite (associative) ring satisfying the
identity x2 ≈ 0.

We denote by (0 : a), (0 : S) the (two-sided) annihilator of an
element a or a subset S, respectively, of a ring, and note that under our
current assumptions these coincide with the one-sided versions.

Proposition 2.1. (Cf. [2], Lemma 1.) If R satisfies (∗), then Ra is
finite for all a ∈ R.

Proof. Suppose Ra is infinite for some a ∈ R. Then R/(0 : a) ∼= Ra
(module isomorphism). Let T be a set of representatives of the cosets
of (0 : a). Then T is infinite and for t, s ∈ T , we have ta = sa if and
only if t = s. The subgraph of the graph of R with vertex set T has
no infinite complete subgraph (as the whole graph has none). But then
by Ramsey’s Theorem (see, for example, [3], Th. A, with r = 2 = µ,
C1 the set of two-element sets {x, y} with xy = 0, C2 the set of {x, y}
with xy 6= 0 ) the graph of T has an infinite independent subset, i.e.
an infinite set U of vertices of which no two are joined by an edge. this
means that uv = 0(= vu) for all distinct u, v ∈ U . Now {a + u : u ∈ U}
is an infinite subset of R but for all distinct u, v ∈ U we have

(a + u)(a + v) = a2 + av + ua + uv = av − au 6= 0.

This contradicts (∗). ♦

Since (here we mean the additive subgroup index) [R : (0 : a)] =
= |R/(0 : a)| = |Ra|, we see that Ra is finite for all a ∈ R if and only
if each (0 : a) has finite index and this in turn is equivalent to (0 : S)
having finite index for each finite subset S of R.

Proposition 2.2. (Cf. [2], Lemma 2.) If Ra is finite for every a ∈ R,
and if R has a subring A with A2 = 0 and [R : A] finite, then [R : (0 : R)]
is finite.

Proof. Let b1, b2, . . . , bn be representatives of the (group) cosets of A in
R. Then

R = (b1 + A)∪̇(b2 + A)∪̇ . . . ∪̇(bn + A)
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so R is generated (additively) by A ∪ {b1, b2, . . . , bn} and thus (0 : R) =
= (0 : A) ∩ (0 : {b1, b2, . . . , bn}). Since A2 = 0 we have A ⊆ (0 : A). As
[R : A] is finite, so therefore is [R : (0 : A)]. By our remark above,

[R : (0 : {b1, b2, . . . , bn})]

is finite too, whence [R : (0 : R)] is finite. ♦

It is worthwhile to note explicitly that 2.2 gives us

Proposition 2.3. If Ra is finite for all a ∈ R and (0 : R) has infinite
index in R, then if a subring A has finite index in R we have A2 6= 0.

Proposition 2.4. (Cf. [2], Cor. 5.) If Ra is finite for all a ∈ R and
[R : (0 : R)] is infinite, then R does not satisfy (∗).

Proof. Since (0 : R) has infinite index in R, certainly R2 6=0. Let c, d∈R
be such that cd 6= 0. Suppose, for some k, there exist a1, a2, ..., ak, b1, b2, ...
. . . , bk ∈ R such that

(i) aiaj 6= 0 for i 6= j,
(ii) aibj = 0 for i 6= j,
(iii) aibi 6= 0 for all i and
(iv) bibj = 0 for all i, j.

Note that c, d ensure that the conditions are met for k = 1.
Let A = (0 : {a1, a2, . . . , ak, b1, b2, . . . , bk}). Then [R : A] is finite so

by 2.3, A2 6= 0. Let a, b ∈ A be such that ab 6= 0 Then let
ak+1 = a + b1 + b2 + · · · + bk, bk+1 = b.

We shall prove that a1, a2, . . . , ak, ak+1, b1, b2, . . . , bk, bk+1 satisfy (i)–(iv).
For i = 1, 2, . . . , k we have
aiak+1 = aia + aib1 + aib2 + · · · + aibk = 0 + aibi = aibi 6= 0,

so ak+1ai 6= 0. (Anticommutativity and aai = 0 give us aia = 0 and then
aiak+1 6= 0 implies ak+1ai 6= 0.) For i = 1, 2, . . . , k, aibk+1 = aib = 0 (as
b ∈ A) and ak+1bi = abi + b1bi + b2bi + · · · + bkbi = abi + 0 = 0. This
gives us (i) and (ii). Since ak+1bk+1 = ab + b1b + b2b + · · ·+ bkb = ab 6= 0,
we have (iii), and finally, bk+1bi = bbi = 0(= bibk+1) for i = 1, 2, . . . , k, so
(iv) holds too.

By induction there is an infinite set {an : n = 1, 2, 3, . . .} for which
aiaj 6= 0 whenever i 6= j. Thus R does not satisfy (∗). ♦

This gives us the main result.

Proposition 2.5. (Cf. [2], Th. 6.) Let R be a ring satisfying the identity
x2 ≈ 0. Then R has (∗) if and only if [R : (0 : R)] is finite.

Proof. If R satisfies (∗), then by 2.1 and 2.4, [R : (0 : R)] is finite.
Conversely, if [R : (0 : R)] is finite and S is an infinite subset of R,
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then there exist distinct c, d ∈ S with c + (0 : R) = d + (0 : R), i.e.
c − d ∈ (0 : R). Then we have 0 = (c − d)d = cd − d2 = cd. ♦

We now drop the assumption that our rings satisfy the
identity x2 ≈ 0. Both the identity and finiteness of R/(0 : R) are very
restrictive.

Proposition 2.6. If R/(0 : R) is finite and R is either
(i) additively torsion-free or
(ii) an algebra over an infinite field K,

then R2 = 0.

Proof. (i) If n ∈ Z and na ∈ (0 : R) then for all b ∈ R we have
n(ab) = (na)b = 0 and n(ba) = b(na) = 0 so ab = ba = 0 and thus
a ∈ (0 : R). It follows that R/(0 : R) is torsion-free and hence zero.

(ii) If a ∈ (0 : R), α ∈ K, then for every b ∈ R we have (αa)b =
= α(ab) = 0 and b(αa) = α(ba) = 0. This means that (0 : R) is a
K-ideal, whence R/(0 : R) is a finite K-algebra and therefore zero. ♦

Corollary 2.7. If R/(0 : R) is finite and R is additively torsion-free or
an algebra over an infinite field, then R satisfies both (∗) and the identity
x2 ≈ 0.

From the above discussion we see that for an infinite ring R, (∗) and
x2 ≈ 0 jointly imply that R/(0 : R) is finite, while x2 ≈ 0 and finiteness
of R/(0 : R) give (∗). The following result completes the pattern.

Proposition 2.8. If R satisfies (∗) and (0 : R) is infinite then R satisfies
the identity x2 ≈ 0.

Proof. For each a ∈ R the coset a+(0 : R) is infinite, so there are distinct
elements x, y of (0 : R) such that 0 = (a+x)(a+y) = a2 +ay+xa+xy =
= a2. ♦

Generally speaking, the identity x2 ≈ 0 is very restrictive, but how
much of a restriction is it as far as rings with (∗) are concerned? We
shall examine this question in the next section.

3. Does (∗) imply x
2

≈ 0 for infinite rings?

In this section, unless otherwise indicated, all rings are
(associative and) infinite.

Proposition 3.1. (i) If A has (∗) and I ⊳ A, then A/I has (∗).
(ii) If A has (∗), then so does every subring.
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Proof. If S = {aλ + I : λ ∈ Λ} is infinite, then so is {aλ : λ ∈ Λ}, so
aλaµ = 0 for some λ, µ. But then (aλ + I)(aµ + I) = 0. ♦

Proposition 3.2. If A has (∗) and I is an infinite ideal of A, then
a2 ∈ I for every a ∈ A (so A/I satisfies x2 ≈ 0).

Proof. For a ∈ A, a + I is infinite, so there exist i, j ∈ I such that
0 = (a + i)(a + j) = a2 + aj + ia + ij, whence a2 = −aj − ia− ij ∈ I. ♦

We denote the (additive) order of a ring element a by 0(a).

Proposition 3.3. If A has (∗), a ∈ A and 0(a) is infinite, then a2 = 0.

Proof. Let p, q be distinct primes,S = {pna : n∈Z
+},T ={qna :n∈Z

+}.
Then S and T are infinite so there exist m, n, k, l ∈ Z

+ such that
pm+na2 = pma · pna = 0 = qka · qla = qk+la2. But then there are integers
r, s for which rpm+n +sqk+l = 1 and we have a2 = rpm+na2 +sqk+la2 = 0.

♦

Proposition 3.4. If A has (∗) and is additively torsion-free, then A2 =0.

Proof. Let a, b be in A. If m and n are distinct integers, then mb 6= nb,
so a + mb 6= a + nb. Thus {a + nb : n ∈ Z} is infinite, so there exist m, n
with (a + mb)(a + nb) = 0. Thus we have

0 = (a + mb)(a + nb) = a2 + nab + mba + mnb2 = nab + mba

by 3.3. But also by 3.3 we have

0 = (a + b)2 = a2 + ab + ba + b2 = ab + ba,

so 0 = nab + mba = nab − mab = (n − m)ab and then ab = 0. ♦

We denote the torsion ideal of a ring A by T (A), i.e. T (A) =
= {a ∈ A : 0(a) < ∞}.

Proposition 3.5. If A has (∗) then every element of A2 has finite order.

Proof. By 3.1 A/T (A) has (∗) so by 3.4 (A/T )2 = 0, i.e. A2 ⊆ T (A).
♦

Proposition 3.6. If A has (∗) then A is nil.

Proof. First consider a primitive ring B, which we can suppose is a
dense ring of linear transformations of a vector space V over a division
ring ∆. If V has an infinite linearly independent set {e1, e2, . . . , en, . . . },
then for each n there is an fn ∈ B with

fn(e1) = e1; fn(e2) = en.

Thus {fn : n = 1, 2, . . .} is infinite, but for all m, n we have fnfm(e1) =
= fn(e1) = e1 so fnfm 6= 0, so B does not have (∗). We conclude that
any primitive ring with (∗) must be a matrix ring over a division ring.
Now we go back to the ring A with (∗). By the above argument (and
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3.1) any primitive homomorphic image of A must be a full matrix ring
Mk(∆) over a division ring ∆. By 3.1, ∆ also has (∗) so clearly ∆ is
finite, whence Mk(∆) is too. Since then every primitive homomorphic
image of A is finite, every primitive ideal is infinite. By 3.2 it follows
that a2 ∈ J(A), the Jacobson radical of A, for all a ∈ A.

Let us suppose A contains a non-nilpotent element a. Then 0 /∈
/∈ {an : n = 1, 2, . . .} so amal 6= 0 for all m, l and thus {an : n = 1, 2, . . .}
is finite. Hence am = am+t for some m, t. Then am = am+t = amat =
= am+tat = ama2t. Now −a2t = −(a2)t ∈ J(A), so there exists c in J(A)
such that c − a2t − ca2t = 0. But then cam − a2t+m − ca2t+m = 0, i.e.
cam − am − cam = 0, so am = 0, a contradiction. ♦

We now examine elements of finite order. We adapt some termi-
nology from abelian groups to rings. For a prime p, a ring is a p-ring if
each of its elements has p power order. For a ring A, Tp(A) denotes the
ideal {a ∈ A : 0(a) is a power of p}.

Proposition 3.7. If A has (∗) and is an algebra over an infinite field
K of prime characteristic p, then A satisfies x2 ≈ 0.

(Note that the case of characteristic 0 is covered by 3.4.)

Proof. For a ∈ A, a 6= 0, the set (K \ {0})a is infinite so for some
u, v ∈ K \ {0} we have uva2 = ua · va = 0 so a2 = 0. ♦

Proposition 3.8. If A has (∗) and Tp(A), Tq(A) are infinite for two
distinct primes p, q, then A satisfies x2 ≈ 0.

Proof. By 3.2 a2 ∈ Tp(A) ∩ Tq(A) = 0 for each a ∈ A. ♦

Proposition 3.9. If A has (∗) and Tp(A) 6= 0 for infinitely many primes
p, then A satisfies x2 ≈ 0.

Proof. Let Tpi
(A) 6= 0 for i = 1, 2, . . . . If a ∈ Tp1

(A), then as
⊕

i>1

Tpi
(A)

is an infinite ideal, 3.2 says that a2 ∈ Tp1
(A) ∩

⊕

i>1

Tpi
(A) = 0. Similarly

a2 = 0 if a is in any Tpi
(A). A typical element of T (A) has the form

∑

bi, bi ∈ Tpi
(A) and

(
∑

bi

)2
=

∑

bibj =
∑

bi
2 = 0. If a has infinite

order, then a2 = 0 by 3.3. ♦

We call a p-ring A bounded if pnA = 0 for some n, otherwise we say
the ring is unbounded. (This is derived from abelian group theory too.)

Proposition 3.10. If A has (∗), A 6= T (A) and Tp(A) is bounded and
infinite for some prime p, then A satisfies x2 ≈ 0.

Proof. By 3.8 and 3.9 we can assume that apart from p there are
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only finitely many primes p1, p2, . . . , pn for which Tpi
(A) 6= 0 and that

each such pi, Tpi
(A) is finite, and hence bounded. But then there exists

an integer m such that mT (A) = 0. Since T (A) ∩ mA = mT (A) = 0
and T (A) and mA are infinite ideals, 3.2 implies that a2 = 0 for every
a∈A. ♦

The following result establishes a sort of leading role for p-rings.

Proposition 3.11. Let A be a ring with (∗). If there is a prime p such
that Tp(A) is infinite, then A satisfies x2 ≈ 0 if and only if Tp(A) satisfies
x2 ≈ 0.

Proof. Suppose Tp(A) satisfies x2 ≈ 0. If 0(a) is finite, then a has the
form b + a1 + a2 + · · · + an, where b ∈ Tp(A) and ai ∈ Tpi

(A) for each i.
Now a2 = b2 +

∑

ai
2. By 3.2, each ai

2 is in Tp(A) as well as Tpi
(A), so

each ai
2 is zero. But b2 = 0 so a2 = 0. If a has infinite order then a2 = 0

by 3.3. The converse is clear. ♦

Proposition 3.12. If A is an unbounded p-ring with (∗), then A satisfies
x2 ≈ 0.

Proof. For each n ∈ Z+, pnA is unbounded and therefore infinite.
Let a be in A and let 0(a) = pn1 . Then there exists b1 ∈ pn1A with
b1 6= a. Let pn2 = max{pn1 , 0(b1)} = max{0(a), 0(b1)}. Then there
exists b2 ∈ pn2A \ {a, b1}. Let pn3 = max{0(a), 0(b1), 0(b2)}. Then
there exists b3 ∈ pn3A \ {a, b1, b2}. If b1, b2, . . . .bm are chosen, all dis-
tinct from each other and from a, with each bi ∈ pniA, where pni =
= max{0(a), 0(b1), 0(b2), . . . , 0(bi−1)}, we can still choose bm+1 ∈
∈ pnm+1A \ {a, b1, b2, . . . , bm}, where

pnm+1 = max{0(a), 0(b1), 0(b2), . . . , 0(bm)}.

In this way we get an infinite set {b1, b2, b3, . . . }. If r < s, then br ∈
= pnrA ⊆ pn1A so bra = 0 = abr (as 0(a) = pn1), and similarly
bsa = 0 = abs. Also pnsbr = 0 so bsbr = 0 = brbs. Then (a+ bs)(a+ br) =
= a2 + abr + bsa + bsbr = a2. But {a + bn : n = 1, 2, 3, . . .} is infinite so
for some r, s we have a2 = (a + bs)(a + br) = 0. ♦

We can now prove a result which really puts the spotlight on p-rings.

Proposition 3.13. If A has (∗) and is not a torsion ring, then it satisfies
x2 ≈ 0.

Proof. By 3.8, 3.9 and 3.10, we only need to consider the case where
there is a prime p for which Tp(A) is unbounded, there are finitely many
primes p1, p2, . . . , pn with each Tpi

(A) finite and non-zero and Tq(A) = 0
for every other prime q. Let A be such a ring, a ∈ A. If 0(a) is infinite,
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then a2 = 0 by 3.3. If a has finite order, then a = b +
∑

ai, where
b ∈ Tp(A) and ai ∈ Tpi

(A) for each i. Then a2 = b2 +
∑

ai
2. By 3.2 each

ai
2 ∈ Tp(A), so ai

2 = 0. Thus a2 = b2. But by 3.12 (and 3.1) b2 = 0. ♦

Thus the only remaining open case, i.e. the only case where a ring
A satisfies (∗) but for which the status of x2 ≈ 0 is uncertain, is where
A = Tp

1
(A) ⊕ Tp

2
⊕ . . . ⊕ Tp

k
(A) for finitely many primes p

1
, p

2
, . . . , p

k

where only one Tp
i
(A) is infinite and that is (bounded and) not an algebra

over an infinite field.
We note further that if A is an infinite bounded p-ring satisfying

(∗) then its socle Soc(A) is an infinite ideal and so by 3.2 a2 ∈ Soc(A)
for all a ∈ A so that A satisfies px2 ≈ 0 and hence pA satisfies x2 ≈ 0.

By 3.6 every ring with (∗) is a group with respect to ◦, where
a◦ b = a+ b+ab. If the ring also satisfies x2 ≈ 0 and is 2-torsion-free, we
have an alternative way of getting 2.5, by using rather than imitating
the theorem of Neumann.

Lemma 3.14. Let A be a 2-torsion-free ring satisfying the identity
x2≈0. The following conditions are equivalent for a, b ∈ A.

(i) ab = 0;
(ii) ab = 0 = ba;
(iii) a ◦ b = b ◦ a.

Proof. If ab = 0 then ba = −ab = 0 and if both these are true then
a ◦ b = a + b + ab = a + b = b + a = b + a + ba = b ◦ a. If a ◦ b = b ◦ a
then ab = a ◦ b − (a + b) = b ◦ a − (b + a) = ba = −ab so 2ab = 0 and
thus ab = 0. ♦

If A is not 2-torsion-free, in particular if 2A = 0, then from a ◦ b =
= b ◦ a we can only conclude that 2ab = 0.

Proposition 3.15. (⊂ 2.5) Let A be a 2-torsion-free ring satisfying the
identity x2 ≈ 0. Then A has (∗) if and only if [A : (0 : A)] is finite.

Proof. By 3.14 A satisfies (∗) if and only if (A, ◦) satisfies (∗)g. By Th. 6
of [2], the latter is equivalent to the finiteness of [(A, ◦) : (Z((A, ◦))], and
by 3.14 again this is equal to [A : (0 : A)]. ♦

4. Non-associative rings

Associativity of multiplication is not needed in Sec. 2 (nor, apart
from 3.6 and 3.7, in Sec. 3) though as we can’t assume that annihila-
tors are anything more than subrings, we can only treat R/(0 : R) etc.
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as factor groups. Much of the time we can just count cosets instead of
mentioning factor structures at all. We have already expressed the sum-
marizing 2.5 in terms of an index rather than a factor ring, while in
(i) and (ii) of 2.6 we only need to observe that, respectively, (0 : R) is
additively a pure subgroup which therefore produces a torsion-free factor
group, and a K-subspace which therefore produces a factor space.

If we are dealing with rings which satisfy x2 ≈ 0 (e.g. Lie, Mal’tsev)
then of course there is “no Sec. 3” and we have the following definitive
result.

Theorem 4.1. In a variety of (not necessarily associative) rings satis-
fying the identity x2 ≈ 0, every infinite subset of a ring R contains two
distinct elements with zero product if and only if [R : (0 : R)] is finite.

Every ring R is also a ring, which we’ll call R♭, with respect to its
original addition and the multiplicative commutator 〈, 〉: 〈a, b〉 = ab− ba
(this notation being used to avoid confusion with the group commutator).
Moreover, R♭ satisfies x2 ≈ 0. Since ab = ba if and only if 〈a, b〉 = 0, so
that in particular Z(R) (ring centre) = (0 : R♭), 4.1 has the following
consequence (cf. 3.15.)

Corollary 4.2. Every infinite subring of a (not necessarily associative)
ring R contains a pair of commuting elements if and only if [R : Z(R)]
is finite.

This is Th. 2.1 of [1] without the assumption of associativity; the
proof in [1] works for non-associative rings though.
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