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Abstract: This paper deals with inequalities for the Gauss lemniscate func-
tions arcsl and arcslh and also with inequalities for another pair of lemniscate
functions arctl and arctlh which have been introduced by the author in [6].
Simple computable lower and upper bounds for the quadruple of lemniscate
functions are also obtained.

1. Introduction

Gauss’ arc lemniscate sine and the hyperbolic arc lemniscate sine
are defined, respectively, as follows

arcsl x =

∫ x

0

dt√
1 − t4

(|x| ≤ 1) and

arcslh x =

∫ x

0

dt√
1 + t4

(x ∈ R) (see [2, (2.5)–(2.6)], [1, p. 259], [12, Ch. 1]). It is well known
that the arc length s measured from the origin to a point with polar
coordinates on the Bernoulli lemniscate r2 = cos 2θ is s = arcsl r.
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Both lemniscate functions are elliptic integrals. It follows from [13,
19.14.4 and 19.14.7] that

arcsl x =
1√
2
F

(

φ,
1√
2

)

,

where F (φ, k) is the Legendre incomplete elliptic integral of the first kind
and cos2 φ = 1−x2

1+x2 . Similarly, for |x| ≤ 1

arcslh x =
sign x

2
F

(

φ,
1√
2

)

,

where now cos φ = 1−x2

1+x2 (see [13, 19.14.3]).
This paper is a continuation of our earlier work [6] and is organized

as follows. In Sec. 2 we recall definitions of another pair of lemniscate
functions arctl and arctlh . Definitions of three R-hypergeometric func-
tions are also included there. In the next section we provide information
about several bivariate means which play an important role in the sub-
sequent parts of this paper. The main results of this paper are presented
in the remaining sections. In Sec. 4 we give several inequalities involving
four functions under discussion. Computable lower and upper bounds for
four lemniscate functions are obtained in the last section of this paper.

2. Lemniscate functions arctl and arctlh

To facilitate presentation we recall definitions of three R-hyperbolic
functions RB, RF and RC . Following [2, (3.14)]

(2.1) RB(x, y) =
1

4

∫

∞

0

(t + x)−3/4(t + y)−1/2 dt

(x > 0, y ≥ 0). Also, we will need a completely symmetric elliptic
integral of the first kind

(2.2) RF (x, y, z) =
1

2

∫

∞

0

[

(t + x)(t + y)(t + z)
]

−1/2
dt,

where at most one of the nonnegative variablesx, y, z is 0 (see [3, (9.2-1)]).
Third R-hypergeometric function RC is the degenerate case of RF :

(2.3) RC(x, y) = RF (x, y, y).

Bounds for RF expressed in terms of RC are obtained in [4] and [5].
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Four lemniscate functions arcsl , arcslh , arctl , and arctlh admit
representations in terms of RB. B.C. Carlson [2, (4.1)] has shown that

(2.4) arcsl x = xRB(1, 1 − x4)

(|x| ≤ 1) and

(2.5) arcslh x = xRB(1, 1 + x4)

(x ∈ R). In [6] the author defined functions arctl and arctlh as follows

(2.6) arctl x = xRB(1 + x4, 1)

(x ∈ R) and

(2.7) arctlh x = xRB(1 − x4, 1)

(|x| ≤ 1).
For later use let us recall that the inverse circular and inverse hy-

perbolic functions can be represented in terms of RC [3, Ex. 6.9-16]:

arcsin x = xRC(1 − x2, 1), arcsinh x = xRC(1 + x2, 1),(2.8)

arctanx = xRC(1, 1 + x2), arctanh x = xRC(1, 1 − x2).(2.9)

These formulas will be utilized in Sec. 4.

3. Bivariate means used in this paper

In this section we recall definitions of several bivariate means of
nonnegative numbers x and y of which at most one is 0. Tactically we
will assume that x 6= y.

The letters G, A, and Q will stand for the geometric, arithmetic,
and the root-mean-square means of x and y, i.e.,

G =
√

xy, A =
x + y

2
, Q =

√

x2 + y2

2
.

Other means employed in this paper include

(3.1)
L = A

z

arctanh z
, P = A

z

arcsin z
,

T = A
z

arctan z
, M = A

z

arcsinh z
,
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where

(3.2) z =
x − y

x + y
.

Here L is the logarithmic mean of positive numbers x and y, P and T
are the first and second Seiffert mean (see [10, 11]), and the mean M was
introduced in [8].

Another mean which plays a crucial role in this paper is the lem-
niscate mean LM(x, y)≡LM (x>0, y≥0). It is an iterative mean, i.e.,

LM = lim
n→∞

xn = lim
n→∞

yn ,

where

x0 = x, y0 = y, xn+1 =
xn + yn

2
, yn+1 = (xn+1xn)1/2

(n = 0, 1, . . .) (see [2] and [1]). For more properties of this mean the
interested reader is referred to [6]. The lemniscatic mean can be expressed
in terms of four lemniscate functions as follows

(3.3) LM(x, y) =

√

x2 − y2

(arcsl 4

√

1 − (y/x)2)2
=

√

x2 − y2

(arctl 4

√

(x/y)2 − 1)2

(0 ≤ y < x) and

(3.4) LM(x, y) =

√

y2 − x2

(arcslh 4

√

(y/x)2 − 1)2
=

√

y2 − x2

(arctlh 4

√

1 − (x/y)2)2

(x < y). See [6, (6.1)–(6.2)].
It is worth mentioning that

(3.5) LM(x, y) = [RB(x2, y2)]−2

(see [2, (3.10) and (3.14)]).
Another quadruple of bivariate means was introduced in [6, (6.4)].

They are defined as follows
(3.6)
U = LM(G, A), V = LM(A, G), R = LM(A, Q), S = LM(Q, A).

It has been demonstrated that [6, (6.6)–(6.7)]

(3.7)

U = A

( √
z

arctlh
√

z

)2

, V = A

( √
z

arcsl
√

z

)2

,

R = A

( √
z

arcslh
√

z

)2

, S = A

( √
z

arctl
√

z

)2

,

where z is defined in (3.2).
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4. Inequalities involving lemniscate functions

In this section we give several inequalities involving lemniscate func-
tions defined in the first two sections of this paper.

Our first result reads as follows.

Theorem 4.1. Let 0 < |x| < 1 and let t = x2. Then

(4.1)

arctan t

t
<

(

arctl x

x

)2

<

(

arcslh x

x

)2

<
arcsinh t

t
< 1 <

<
arcsin t

t
<

(

arcsl x

x

)2

<

(

arctlh x

x

)2

<
arctanh t

t
.

Proof. In order to establish (4.1) we shall utilize a long inequality
L < U < V < P < A < M < R < S < T

(see [6, (6.10)]). Using (3.1) and (3.4) with x := 1 + x2, y := 1 − x2 we
obtain the assertion because z=x2 (see (3.2)). The proof is complete. ♦

For later use, let us record four formulas for the lemniscatic mean
of some pairs of functions.

It follows from (3.3) and (3.4) that

(4.2) LM(1,
√

1 − x4) =
( x

arcsl x

)2

(|x| ≤ 1) and

(4.3) LM(
√

1 − x4, 1) =
( x

arctlh x

)2

(|x| < 1). Using again (3.4) and (3.5) we obtain

(4.4) LM(
√

1 + x4, 1) =
( x

arctl x

)2

and

(4.5) LM(1,
√

1 + x4) =
( x

arcslh x

)2

.

We are in a position to prove the following.

Theorem 4.2. Let 0 < |x| < 1. Then

(4.6)

(

arcsl x

x

)4

<
arctlh x

x 4
√

1 − x4
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and

(4.7)

(

arctlh x

x

)4

<
arcsl x

x
√

1 − x4
.

If x 6= 0, then

(4.8)

(

arcslh x

x

)4

<
arctl x

x 4
√

1 + x4

and

(4.9)

(

arctl x

x

)4

<
arcslh x

x
√

1 + x4
.

Proof. Inequalities (4.6)–(4.9) are the special cases of the following one

(4.10) x2yLM(y, x) < [LM(x, y)]4

(x > 0, y > 0, x 6= y) which has been established in [6, (5.12)]. Inequality
(4.6) is obtained using (4.10) with x = 1 and y =

√
1 − x4 followed by

application of (4.2). The remaining inequalities (4.7)–(4.9) can be proven
in an analogous manner. For instance, letting in (4.10) x :=

√
1 − x4,

y = 1 and using (4.3), we obtain (4.7). For the proof of (4.8)–(4.9) we
let in (4.10) x = 1, y =

√
1 + x4 and x :=

√
1 + x4, y = 1, respectively,

followed by application of (4.4) and (4.5), respectively. This completes
the proof. ♦

Inequalities (4.6)–(4.7) can be regarded as the lemniscate coun-
terparts of the two-sided inequality (2.1) in [7]. Similarly, inequalities
(4.8)–(4.9) are the lemniscate counterparts of (2.2) in [7].

The last theorem of this section reads as follows.

Theorem 4.3. Let |x| < 1. Then

(

arcsl x

x

)2

<
arctan x

x

arctanh x

x
,(4.11)

1 <
arcsl x

x

arcslh x

x
,(4.12)

1 <
arctl x

x

arctlh x

x
,(4.13)

arcsl x

x

arctlh x

x
< (1 − x4)−1/4(4.14)
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arctl x

x

arcslh x

x
< (1 + x4)−1/4.(4.15)

Proof. In order to establish the inequality (4.11) we use the following
formula

arcsl x = xRF (1 − x2, 1 + x2, 1)

(see [3, Ex. 8.3-7]) together with the inequality

RF (x, y, z) <
[

RC(z, x)RC(z, y)
]1/2

(see [4, Thm. 3.3]) to obtain
(

arcsl x

x

)2

< RC(1, 1 − x2)RC(1, 1 + x2).

Application of (2.9) to the right side of the last inequality gives the
desired result (4.11). We shall establish now inequalities (4.12) and (4.13)
using strict logarithmic convexity of the RB function in its variables (see
[9, Prop. 2.1]). In particular, one has

RB(p, u)RB(p, v) >

[

RB

(

p,
u + v

2

)]2

(p > 0, u ≥ 0, v ≥ 0, u 6= v). Letting above p = 1, u = 1−x4, v = 1+x4

and next using (2.4) and (2.5) we obtain
arcsl x

x

arcslh x

x
= RB(1, 1 − x4)RB(1, 1 + x4) >

[

RB(1, 1)
]2

= 1.

Inequality (4.13) can be established in an analogous manner using strict
logarithmic convexity of RB in its first variable

RB(u, p)RB(v, p) >

[

RB

(

u + v

2
, p

)]2

.

Letting above u = 1+x4, v = 1−x4, p = 1 and next using formulas (2.6)
and (2.7) we obtain the desired result. Inequalities (4.14) and (4.15) can
be obtained using, respectively, the following ones

(4.16) AG < UV

and

(4.17) AQ < RS.

We shall establish the last two inequalities at the end of the proof of
this theorem. In order to demonstrate that (4.16) implies (4.14) we let
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x := 1 + x2 and y := 1 − x2 (0 < x2 < 1). Then G = (1 − x4)1/2, A = 1,
Q = (1 + x4)1/2 and z = x2. Making use of (4.16) and (3.7) we obtain

(1 − x4)1/2 <
( x

arctlh x

x

arcsl x

)2

.

Hence (4.14) follows. Similarly, using (4.17) and (3.7) we obtain the
assertion (4.15). In the proofs of the inequalities (4.16) and (4.17) we
shall utilize the left inequality in

(4.18) (x3y2)1/3 < LM(x, y) <
3x + 2y

5

(see [6, Lemma 4.1]). Using the first formula in (3.6) we have

(G3A2)1/5 < U.

The second formula in (3.6) together with (4.18) gives

(A3G2)1/5 < V.

Multiplying the corresponding sides of the last two inequalities we obtain
(4.16). Inequality (4.17) can be established in a similar manner. We omit
further details. The proof is complete. ♦

5. Computable bounds for lemniscate functions

Simple lower and upper bounds for the lemniscate functions are
obtained in the following.

Theorem 5.1. Let 0 < |x| < 1. Then

(

5

3 + 2(1 − x4)1/2

)1/2

<
arcsl x

x
< (1 − x4)−1/10,(5.1)

(

5

3 + 2(1 + x4)1/2

)1/2

<
arcslh x

x
< (1 + x4)−1/10,(5.2)

(

5

3(1 − x4)1/2 + 2

)1/2

<
arctlh x

x
< (1 − x4)−3/20,(5.3)

(

5

3(1 + x4)1/2 + 2

)1/2

<
arctl x

x
< (1 + x4)−3/20.(5.4)

Proof. In order to obtain the two-sided inequality (5.1) we utilize (4.18)
with x = 1 and y = (1−x4)1/2 followed by use of (4.2). The remaining in-
equalities (5.2)–(5.4) can be established in a similar way. This completes
the proof. ♦
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We close this section with the remark that the tighter and more
complicated bounds for the lemniscate functions can be obtained using
the two-sided inequality [6, (4.4)]

(xA4)1/5 < LM(x, y) <

(

3A2 + 2xA

5

)1/2

,

where A is the arithmetic mean of x and y.
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