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Abstract: Associated with a near-ring polynomial is the usual polynomial
function obtained by substitution. Some rules and properties for this substitu-
tion are established and the question for which near-rings the only self-maps
are polynomial functions is investigated.

1. Introduction

The study of polynomial near-rings has been rekindled by a model
proposed by Andries van der Walt. This model is based on a functional
approach to near-ring polynomials and is much more tractable than the
traditional universal algebraic approach. Here we continue these investi-
gations; firstly to set the scene for substitutions into near-ring polynomi-
als and secondly, to the subsequent problem of the relationship between
all the self-maps on a near-ring and the polynomial maps. It will be seen
that in many cases the situation here is quite different from that of rings.
We start with a brief recollection of the required notions.

Near-rings of polynomials should not be confused with polynomial
near-rings. The former is a set of polynomials over a ring (typically,
commutative with identity) which is a near-ring with respect to the usual
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addition and composition of polynomials. These near-rings have been
studied extensively and their theory and applications can be found in
the books by Pilz [13] and Clay [4].

A polynomial near-ring, on the other hand, is a near-ring of polyno-
mials with coefficients from a near-ring in the universal algebraic sense,
see for example Lausch and Nöbauer [8], where the coefficients are from
a near-ring. These polynomials are much more awkward to deal with
and apart from the more general universal algebraic considerations, not
much work has been done in this area. We will study near-ring poly-
nomials using the model proposed by Andries van der Walt and which
was motivated by the functional approach to matrix near-rings [12] and
group near-rings [11]. The initial investigations were done by Bagley [1,
2] and taken further by Farag [5, 6], Lee [9], Lee and Groenewald [10]
and Veldsman [14, 15, 16]. In this model, polynomials are regarded as
functions and the indeterminate, which is also a function, is a commut-
ing indeterminate. The polynomial near-rings in this sense are thus more
restricted but much better behaved and easier to deal with than those
prescribed by the universal algebraic approach mentioned above.

2. Definitions

All near-rings, usually denoted by N, will be right distributive, 0-
symmetric and with identity 1. As usual, A � N means A is an ideal of
the near-ring N . Let (G, +) be a group. G is called an N −N − bigroup
if there are mappings N × G → G and G × N → G such that, if we
write the images by juxtaposition, then (n+m)g = ng +mg, (g +h)n =
= gn + hn, (nm)g = n(mg), g(nm) = (gn)m and (ng)m = n(gm) for
all g, h ∈ G and n, m ∈ N . We suppose that all actions are unital and
that G is left-faithful, i.e. (0 : G)N := {n ∈ N | nG = 0} = 0. The
set MN(G) := {f ∈ M0(G) | f(gn) = f(g)n for all g ∈ G, n ∈ N}
is a subnear-ring of M0(G) where M0(G) denotes the near-ring of all 0
preserving functions from G to G with respect to pointwise addition and
composition. By the left-faithfulness, N can be embedded in MN(G) via
η : N → MN(G) defined by η(a) := ηa, ηa(g) := ag for all g ∈ G. We
identify a ∈ N with ηa in MN (G) and note that the identity map on G
is then the identity of N .

We work mostly with the following bigroup: Let N be a 0-symmetric
near-ring with identity and let G := Nk be the direct sum of k copies
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of (N, +) where k ∈ N, N is the set of positive integers, or k = ω, the
first limit ordinal. By πi : Nk → N we will denote the i-th projection
map. With respect to the usual left and right scalar multiplication, Nk

is a unital left-faithful N − N -bigroup.
Any u ∈ MN (G)−N will be called an indeterminate. A commuting

indeterminate is an indeterminate which is an N − N -homomorphism,
i.e. u(ng) = nu(g), u(gn) = u(g)n and u(g + h) = u(g) + u(h) for all
g, h ∈ G and n ∈ N . For an indeterminate u, let [N, G, u] be the subnear-
ring of MN (G) generated by N ∪{u}. If u is a commuting indeterminate,
then it can be shown that u commutes with all the elements in [N, G, u]
(and is hence a distributive element of [N, G, u]). More properties of
indeterminates can be found in [14]; we recall only the following:

Proposition 2.1. Let u ∈ MN(G) be a commuting indeterminate. Then

[N, G, u] =
+∞
⋃

n=1

An where A1 = {aun | a ∈ N, n ≥ 0} and

An+1 =

{ m
∑

i=1

aiwi | m ≥ 1, ai ∈ N, wi ∈ An

}

for n ≥ 1.

The elements of [N, G, u] will usually be denoted by small letters
f, g, h, ... without any reference to the indeterminate u. Any element of
[N, G, u] is in one of the An’s and we will always write an element from
[N, G, u] in the form as specified for An’s elements as above. This will be
our canonical representation of the elements of [N, G, u]; but note that
this representation of an element in [N, G, u] need not be unique.

The mapping x : Nω → Nω defined by
x(α1, α2, α3, ...) = (α2, α3, α4, α5, ...)

is called the left shift function. It is a commuting indeterminate in
MN (Nω). The polynomial near-ring N [x] is defined as [N, Nω, x]. Note
that x commutes with all the elements of N [x] and is thus a distribu-
tive element of N [x]. By definition, N [x] is always 0-symmetric. Origi-
nally a polynomial near-ring was defined by using the right shift function
x∗ : Nω → Nω given by x∗(α1, α2, α3, ...) = (0, α1, α2, α3, α4, ...). This
does not really matter, since in [15] it was shown that [N, Nω, x] ∼=
∼= [N, Nω, x∗].

In proving statements about elements of [N, G, u] for u a commuting
indeterminate, we usually use one of the following two inductive argu-
ments. Firstly, show that any aun, a ∈ N, n ≥ 0, has the desired property.
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Then suppose that both f, g ∈ [N, G, u] have the property and show that
f + g and fg also satisfy the property. One may then conclude that
all the elements of [N, G, u] have this property. The second argument is
based on Prop. 2.1. Any f ∈ [N, G, u] is in one of the classes An; the
level of f is the smallest n ≥ 1 for which f ∈ An. The proof that the
elements of [N, G, u] have a certain property is then by induction on the
level of f .

From [15, 16] we recall: Because x is a commuting indetermi-
nate, xf = fx for all f ∈ N [x]. This means that if f(α1, α2, α3, ...) =
= (β1, β2, β3, ...), then f(α2, α3, α4, ...)=(β2, β3, β4, ...). With any f ∈N [x]
we associate a function F : Nω → N defined by F (α1, α2, α3, . . . ) =
= π1(f(α1, α2, α3, ...)) for all (α1, α2, α3, ...) ∈ Nω. This function F is
uniquely determined by f and it completely describes the polynomial f
since for every i ≥ 1 and α = (α1, α2, α3, ...) ∈ Nω, F (αi, αi+1, αi+2, ...) =
= πi(f(α1, α2, α3, ...)). Furthermore, there exists an integer k ≥ 1 such
that for all α = (α1, α2, α3, ...) ∈ Nω,

π1(f(α1, α2, α3, ...)) = π1(f(α1, α2, α3, ..., αk, 0, 0, 0, ...)).

Let kf be the minimum amongst all such k. This kf is uniquely deter-
mined by f and is independent of the representation chosen for f . The
height of f is then defined as follows: If f =0, let the height of f be −∞
and if f 6=0, define the height of f to be kf−1. For f, g∈N [x], it has been
shown that height(f +g) ≤ max{height(f), height(g)} and height(fg) ≤
≤ height(f) + height(g). If f ∈ N [x] with height(f) = 0, then f = b
for some b ∈ N . Indeed, let F be the function associated with f and let
b=F (1, 0, 0, ...). Then F (α1, α2, α3, ...)=F (α1, 0, 0, ...)=F (1, 0, 0, ...)α1=
= bα1 and for any i ≥ 1, πi(f(α1, α2, α3, ...)) = F (αi, αi+1, αi+2, ...) =
= F (αi, 0, 0, ...) = bαi. Thus f = b ∈ N . The following, from [16], will
be useful:

Lemma 2.2. Let f ∈ N [x] with associated function F . If there is a
k ≥ 0 such that

(i) F (α1, α2, α3, ...)=F (α1, α2, ..., αk+1, 0, 0, ...) for all (α1, α2, α3, ...)∈Nω

and

(ii) there are γk+1, γk+2, γk+3, ... ∈ Nω such that

F (0, ..., 0, γk+1, γk+2, γk+3, ...) 6= 0 with γk+1 in position k + 1,

then height(f) = k.
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It can easily be verified that if f ∈ N [x] with height(f) = k, then
height(fx) = k+1 and height(af) = k where a ∈ N is not a zero-divisor
in N .

For k, m ∈ N ∪ {ω}, let MN (Nk, Nm) := {g | g : Nk → Nm is a
function such that for all a ∈ N and α ∈ Nk, g(αa) = g(α)a}. With
respect to pointwise addition and the canonical product (ag)(t) = ag(t),
MN (Nk, Nm) is an N -group. However, there is not a canonical way to
turn it into a near-ring (of course, for certain choices of k and m there
are). The next result, which was proved in [16], shows that MN (Nω, N)
can be made into a near-ring with respect to a certain multiplication that
contains an isomorphic copy of N [x]. But note that MN (Nω, N) can be
a near-ring with respect to other (non-trivial) multiplications as well.

Proposition 2.3. MN (Nω, N) is a near-ring with respect to point-
wise addition and for F, G ∈ MN (Nω, N), the product FG is defined
by (FG)(α) := F (G(α1, α2, α3, ...), G(α2, α3, α4, ...), G(α3, α4, α5, ...), ...)
for all α = (α1, α2, α3, ...) ∈ Nω. The mapping γ : N [x] → MN (Nω, N)
defined by γ(f) = F is an injective homomorphism.

If f, g ∈ N [x] with associated functions F and G respectively, then
we need to know the associated functions of f + g and fg in terms
of F and G. For f + g it is F + G. For any α = (α1, α2, α3, ...) ∈
∈ Nω, suppose g(α1, α2, α3, ...) = (β1, β2, β3, ...). Then βi = πi(g(α)) =
= G(αi, αi+1, αi+2, ...) and the associated function of fg is FG where

(FG)(α) = F (G(α1, α2, α3, ...), G(α2, α3, α4, ...), G(α3, α4, α5, ...), ...) =

= F (π1(g(α)), π2(g(α)), π3(g(α)), ...) =

= F (β1, β2, β3, ...).

We will also need substitution in near-ring polynomials. This is
addressed in the next section.

3. Substitutions

Whenever one leaves a comforting commutative environment, sub-
stitutions in polynomials need due care. Near-ring polynomials are no
exception in this regard and will present many unexpected twists and
turns.

For k, m, n, l ∈ N ∪ {ω} and F ∈ MN (Nk, N), choose k elements
u1, u2, u3, ...∈MN (Nm, Nn). Define a function F (u1, u2, u3, ...) :Nm→Nn

as follows: For any α ∈ Nm and i = 1, 2, 3, ..., n, πi(F (u1, u2, u3, ...)(α)) =
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= F (πi(u1(α)), πi(u2(α)), πi(u3(α)), ...). The following property will of-
ten be used, mostly without any further recall.

Lemma 3.1. For k, m, n, l ∈ N ∪ {ω} and F ∈ MN(Nk, N), choose k
elements u1, u2, u3, ... ∈ MN (Nm, Nn) and let g ∈ MN (N l, Nm).

Then F (u1g, u2g, u3g, ...) = F (u1, u2, u3, ...)g.

Proof. Let α ∈ N l. For any i = 1, 2, 3, ..., n,

πi(F (u1g, u2g, u3g, ...)(α)) =

= F (πi(u1(g(α))), πi(u2((g(α))), πi(u3((g(α))), ...) =

= πi(F (u1, u2, u3, ...)(g(α))). ♦

Let f ∈ N [x] with associated function F . Let u ∈ MN (Nn, Nm),
n, m ∈ N ∪ {ω}. Define f(u) ∈MN (Nn, Nm) by f(u)=F (1, u, u2, u3, ...)
where F (1, u, u2, u3, ...) : Nn → Nm is the function as defined above.
Note that for f ∈ N [x] with associated function F , f = F (1, x, x2, x3, ...).
Indeed, for any α = (α1, α2, α3, ...) ∈ Nω and i ≥ 1,

πi(F (1, x, x2, x3, ...)(α1, α2, α3, ...)) = F (πi(α), πi(x(α)), πi(x
2(α)), ...) =

= F (αi, αi+1, αi+2, ...) = πi(f(α1, α2, α3, ...)).

Substitution is well-defined and it does not depend on any particu-
lar representation of the polynomial. In the passing it may be mentioned
that this functional approach to polynomials over near-rings with iden-
tity can be applied to rings which lends itself to a well-defined theory of
substitution in polynomials over not necessarily commutative rings.

A particular substitution which will be of importance here is the
following. For F ∈ MN (Nk, N) and a ∈ N , (1, a, a2, a3, ...) ∈ Nω and
F (1, a, a2, a3, ...) ∈ N is well-defined. On the other hand, any a ∈ N is
identified with the function a : Nω → Nω defined by a(α1, α2, α3, ...) =
=(aα1, aα2, aα3, ...) in N [x]. Thus, F (1, a, a2, a3, ...) : Nω →Nω is given
by

πi(F (1, a, a2, a3, ...)(α)) = F (πi(α), πi(a(α)), πi(a
2(α)), ...) =

= F (αi, aαi, a
2αi, ...) = F (1, a, a2, a3, ...)αi for all i.

This means F (1, a, a2, a3, ...) is a constant, i.e. an element from N in
N [x] which is in perfect harmony with the former meaning. Let f ∈
∈ N [x] with associated function F and let a ∈ N . Define f(a) by f(a) =
= F (1, a, a2, a3, ...). Note that

f(a) = F (1, a, a2, a3, ...) = π1(f(1, a, a2, a3, ...)) = β1

where f(1, a, a2, a3, ...) = (β1, β2, β3, ...). Thus βi = πi(f(1, a, a2, a3, ...)) =
= F (ai−1, ai, ai+1, ...) = F (1, a, a2, a3, ...)ai−1 = β1a

i−1. We conclude that
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f(1, a, a2, a3, ...) = (β1, β2, β3, ...) = (β1, β1a, β1a
2, β1a

3, ...) =

= (f(a), f(a)a, f(a)a2, f(a)a3, ...).

Remember that N [x] is 0-symmetric (i.e. for all f ∈ N [x], f0 = 0),
but note that f(0)=F (1, 0, 0, ...) need not be 0. However, F (0, 0, 0, ...)=0
and if f has height k,

f = 0 (zero function) ⇔

⇔ f(α1, α2, α3, ...) = 0 (zero in Nω) for all α1, α2, α3, ... ∈ N ⇔

⇔ F (α1, α2, ..., αk+1, 0, 0, ...) = 0

(zero in N) for all α1, α2, ..., αk+1 ∈ N =⇒

=⇒ f(a) = 0 for all a ∈ N.

The converse of this last implication does not hold in general: Consider
f = x + x2 ∈ Z2[x]. Clearly f 6= 0 (for example, f(1, 1, 0, 0, 0, ...) =
= (1, 0, 0, 0, ...) 6= 0) but f(0) = 0 = f(1).

The substitution f(a) gives rise to a function σa : N [x] → N defined
by σa(f) = f(a) for all f ∈ N [x]. Both N [x] and N are (left) N -groups
and it can be shown that σa is a surjective N -group homomorphism which
is the identity on N . In general σa(fg) and σa(fb) need not coincide with
σa(f)σa(g) and σa(f)b respectively for f, g ∈ N [x] and b ∈ N . What all
this means is that (f + g)(a) = f(a)+g(a) and bf (a) = bf(a) but (fg)(a)
need not coincide with f(a)g(a) and (fb)(a) need not coincide with f(a)b
for b ∈ N . We need to know what (fg)(a) is. By definition,

(fg)(a)=(FG)(1, a, a2, a3, ...) =

=F (G(1, a, a2, a3, ...), G(a, a2, a3, ...), G(a2, a3, ...), ...) =

=F (G(1, a, a2, a3, ...), G(1, a, a2, a3, ...)a, G(1, a, a2, a3, ...)a2, ...)=

=F (g(a), g(a)a, g(a)a2, ...).

If g(a)a = ag(a), then

(fg)(a) = F (g(a), g(a)a, g(a)a2, ...) =

= F (g(a), ag(a), a2g(a), ...) =

= F (1, a, a2, a3, ...)g(a) =

= f(a)g(a)

but in general it need not be the case.
The composition of two near-ring polynomials will be required.

This, to be defined below, may well be somewhat confusing. Recall
that N ∪ {x} ⊆ N [x] = [N, Nω, x] and the latter is the subnear-ring of
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MN (Nω) generated by N∪{x}. The near-ring multiplication in the near-
ring MN(Nω) is the composition of mappings, i.e. if f, g ∈ MN (Nω), then
fg is actually the usual composition of f and g, i.e. (fg)(α) = f(g(α)).
For example, if f, g ∈ N [x], say f = a(b + cx) + dx3 and g = r + sx2,
then the product of f and g in N [x] is the composition of the two func-
tions f and g in MN(Nω) which gives fg = (a(b + cx) + dx3)(r + sx2) =
= a(b(r + sx2) + c(rx + sx3)) + d(rx3 + sx5). That this look just like
the product of polynomials of rings, is due to the magic of the mapping
x. What will be meant by the composition of two near-ring polynomials,
will be a binary operation that looks like the composition of two polyno-
mials (by substitution) and should not be confused with the product in
MN (Nω) (and N [x]).

For f, g ∈ N [x], define f ◦ g by f ◦ g := F (1, g, g2, ...) where F
is the associated function of f, i.e f ◦ g = f(g). This is a well-defined
operation and the result is again a polynomial in N [x]. For example, for
f = a(b + cx) + dx3 and g = r + sx2 as above,

f ◦ g = a(b + c(r + sx2)) + d[r{r(r + sx2) + s(rx2 + sx6)}+

+ s{r(rx2 + sx4) + s(rx4 + sx6)}].

Again we need to know the associated function of f ◦ g in terms of
the functions F and G and we need to know (fog)(a). For the latter, we
know that in general it will not be f(g(a)). Let h = f ◦g with associated
function H . For any α ∈ Nω,

H(α)= π1(f ◦ g(α)) = π1(F (1, g, g2, ...)(α)) =

= F (π1(α), π1(g(α)), π1(g
2(α)), ...)=F (α1, G(α), G2(α), G3(α), ...).

Thus H = F (G0, G, G2, G3, ...) if we use the analogy Gn(α) = π1(g
n(α))

for n ≥ 0 with g0 = 1. The powers of G can be expressed as follows:

G2(α) = G(G(α1, α2, α3, ...), G(α2, α3, α4, ...), G(α3, α4, α5, ...), ...) =

= G(G(α), G(x(α)), G(x2(α)), ...), i.e. G2 = G(G, Gx, Gx2, ...).

In general, Gn+1 = G(Gn, Gnx, Gnx2, ...). For a ∈ N, we get

(fog)(a)= H(1, a, a2, a3, ...) =

= F (1, G(1, a, a2, a3, ...), G2(1, a, a2, a3, ...), G3(1, a, a2, a3, ...), ...)=

= F (1, g(a), G(g(a), g(a)a, g(a)a2, g(a)a3, ...), ...),

where the last dots do not indicate a necessarily repeating patern; these
powers Gn(1, a, a2, a3, ...) will each have to be calculated.
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We will not pursue this matter here, but the algebraic structure
of (N [x], +, ·, ◦) can be investigated as a natural near-ring analogue of a
composition ring (R[x], +, ·, ◦).

To see the properties of substitution in near-ring polynomials in
context, we recall a few of the salient properties of polynomials over
commutative rings:

(1) For a ring polynomial f, we have: f(a) = 0 if and only if x − a
is a factor of f .

(2) If R is an integral domain, then any polynomial of degree n over
R can have at most n roots in R. If we discard commutativity and let D
be a division ring, it is known that any polynomial of degree n over D
can have either one zero from each of at most n conjugacy classes in D
or it will have an infinite number of zeros.

A few examples will indicate some of the exceptional behaviour of
substitution in near-ring polynomials. Let f = (x−a)(x− b) = x2− bx−
−a(x− b) ∈ N [x], take N to be any near-field. To find a t ∈ N for which
f(t) = 0, the first reaction is to argue that f(t) = 0 ⇔ (t− a)(t− b) = 0
from which t = a or t = b follows since N is a near-field. This is of course
not the case - f(t) = F (1, t, t2, t3, ...) = t2 − bt− a(t− b) which is 0 when
t = b, but when t = a, this need not be the case (even if N is a non-
commutative ring). Another example to highlight the unusual behavior
of near-ring polynomials is the following: Let f = d(x − a) − d(b − a)+
+d(b − x) ∈ N [x]. Here we take arbitrary distinct elements a, b, d from
a near-field N ; just ensure that d does not distributive over b − a. Then
f is a non-zero near-ring polynomial of height 1 and it has at least two
arbitrary distinct zeros a and b. Moreover, even a simple linear equation
like a(b + x) = c + dx over a near-field N may not have a solution in
N (see Example 4.7 below). It was already mentioned that fg(a) need
not coincide with f(a)g(a); neither does f(a) = 0 imply fg(a) = 0 and
f ◦ g(t) and f(g(t)) are in general different. Even though substitution is
not well-behaved with respect to products and composition of near-ring
polynomials, there are some special cases which do facilitate matters. We
give some of these and start with:

Proposition 3.2. Let f ∈ N [x] with height m and associated function F .
Let g ∈ N [x] and a ∈ N . Then:

(i) fg = F (g, gx, gx2, ...) and

(ii) fg(a) = F (g(a), g(a)a, g(a)a2, ...).
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Proof. By Lemma 3.1 and the commutativity of x, we get

fg = F (1, x, x2, x3, ...)g = F (g, gx, gx2, ...).

The second statement has already been verified above. ♦

A number of applications of this result are worth recording:

Corollary 3.3. Let f, g ∈ N [x] with a ∈ N such that g(a) = 0. Then
fg(a) = 0 and gn(a) = 0 for all n ≥ 1.

Corollary 3.4. For f ∈ N [x] and a ∈ N, fx(a) = f(a)a.

Proof. For x, the associated function X is given by X(α1, α2, α3, ...) =
= α2. Thus x(a) = X(1, a, a2, a3, ...) = a and

fx(a) = F (x(a), x(a)a, x(a)a2, ...) =

= F (a, a2, a3, ...) = F (1, a, a2, a3, ...)a = f(a)a. ♦

Another application is the following: Let e∈N be a central idempo-
tent, i.e. e2 =e and ae=ea for all a∈N . Define γe : N [x]→N by γe(f)=
=f(e) for all f ∈N [x]. Clearly γe preserves addition and for f, g∈N [x],
γe(fg) = F (g(e), g(e)e, ..., g(e)em) = F (1, e, e2, ..., em)g(e) = f(e)g(e) =
= γe(f)γe(g). Thus γe is a near-ring homomorphism and it is surjec-
tive. Two special cases are for e = 0 and e = 1 which gives respectively
N [x]
ker γ0

∼= N ∼=
N [x]
ker γ1

; note ker γ0 = {f ∈ N [x] | f(0) = F (1, 0, 0, ...)=0}.

Proposition 3.5. Let f, g ∈ N [x]. If f has height k ≤ 1, then f ◦ g(a) =
= f(g(a)) for all a ∈ N .

Proof. Let f, g ∈ N [x] with h = f ◦ g and associated functions F, G and
H . For any α ∈ Nω,

H(α) = F (α1, G(α), G2(α), G3(α), ...) = F (α1, G(α), 0, 0, ...)

since f has height ≤ 1. Thus

(f ◦ g)(a) = H(1, a, a2, a3, ...) = F (1, g(a), 0, 0, ...) =

= F (1, g(a), (g(a))2, (g(a))3, ...) = f(g(a)). ♦

Proposition 3.6. Let f, g ∈ N [x] with f(0) = 0 and for some a ∈ N,
g(a) = 0. Then f ◦ g(a) = 0.

Proof. Let f, g ∈ N [x] with f(0) = 0 and g(a) = 0 for some a ∈ N . As
seen earlier,

(fog)(a)= H(1, a, a2, a3, ...) =

= F (1, G(1, a, a2, a3, ...), G2(1, a, a2, a3, ...), G3(1, a, a2, a3, ...), ...),

G(1, a, a2, a3, ...) = g(a) = 0 and

G2(1, a, a2, a3, ...) = G(g(a), g(a)a, g(a)a2, g(a)a3, ...) = 0.
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Thus Gn(1, a, a2, a3, ...)=0 for all n≥1; so (fog)(a)=H(1, a, a2, a3, ...) =
= F (1, 0, 0, ...) = f(0) = 0. ♦

For a near-ring S and u ∈ S, we will use 〈u] (resp. 〈u〉) to denote
the left ideal (resp. ideal) of S generated by u. It can be shown that

〈u] =
+∞
⋃

n=0

Ln where L0 = {u} and for n ≥ 0, if L0,L1, ...,L2n have been

defined, let L2n+1 = {a(w + b) − ab | a, b ∈ S, w ∈ L2n} and L2n+2 =

=

{

finite
∑

i

(ai ± w − ai | ai ∈ S, w ∈ L2n+1

}

. For near-ring polynomials we

have a weak form of the Division Algorithm [16]:

Proposition 3.7. Suppose h ∈ N [x] has the form h = xk−p where k ≥ 2
and p ∈ N [x] has height ≤ k − 1. Then for any f ∈ N [x], f = h1 + r
where h1 ∈ 〈h] and r ∈ N [x] with r = 0 or r has height ≤ k − 1.

Proposition 3.8. Let f ∈ N [x] and let g ∈ 〈f ]. If a ∈ N and f(a) = 0,
then g(a) = 0.

Proof. Let f, g and a be as in the statement. We know g ∈ Ln for some

n ≥ 0 where 〈f ] =
+∞
⋃

n=0

Ln as defined above. We proceed by induction on

n. If n = 0, then g = f and we are done. If n = 1, g = h(f +w)−hw for
some h, w ∈ N [x]. Let G, H, F and W be the functions associated with
g, h, f and w respectively. Now

g(a) = H(F (1, a, a2, a3, ...) + W (1, a, a2, a3, ...),

F (a, a2, a3, ...) + W (a, a2, a3, ...), F (a2, a3, ...) + W (a2, a3, ...), ...)−

− H(W (1, a, a2, a3, ...), W (a, a2, a3, ...), F (a2, a3, ...), ...) = 0

since
F (ai, ai+1, ai+2, ai+3, ...) = F (1, a, a2, a3, ...)ai = f(a)ai = 0

for i = 0, 1, 2, .... For n = 2, we know g is of the form g =
finite
∑

i

(hi±fi−hi)

where hi ∈ N [x] and fi ∈ L1. By the previous step we know that

f i(a) = 0 for all i and so g(a) =
finite
∑

i

(hi(a) ± fi(a) − hi(a)) = 0. For the

inductive step, we may proceed as above and show that if the statement
is true for all g ∈ L2n, then it is also true for g ∈ L2n+1 and g ∈ L2n+2.
We thus conclude that for any g ∈ 〈f ] , g(a) = 0. ♦

Corollary 3.9. Let f ∈ N [x]. If f(a) = 0 for some a ∈ N, then
〈f ] ∩ N = 0.
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Proof. Let g ∈ 〈f ] ∩ N, say g = b where b ∈ N and f(a) = 0 for some
a ∈ N . By the previous proposition, b = g(a) = 0. ♦

Proposition 3.10. Let f ∈ N [x] and let a ∈ N . Then f(a) = 0 if and
only if f ∈ 〈x − a] where 〈x − a] denotes the left ideal in N [x] generated
by x − a.

Proof. If f ∈ 〈x − a] , then f(a) = 0 follows from Prop. 3.7. Suppose
thus f(a) = 0. By the Division Algorithm (3.7), f = h + r where
h ∈ 〈x − a] and r ∈ N [x] with r = 0 or r has height < 1. This means
r ∈ N and 0 = f(a) = h(a) + r = r. Hence f = h ∈ 〈x − a]. ♦

Corollary 3.11. Let f ∈ N [x] and let a ∈ N . Then f −f(a) ∈ 〈x − a].

As for rings, when f ∈ N [x] is divided by h = x − a, a ∈ N, then
the remainder is f(a). Indeed, by the Division Algorithm, f = g + r for
some g, r ∈ N [x] with g ∈ 〈h] and r = 0 or 0 6= r ∈ N . Since g ∈ 〈h] ,
we have f(a) = g(a) + r = r.

Any f ∈N [x] determines a function f : N →N defined by a 7→ f(a).
As is to be expected from the theory of polynomials in general, these
maps are compatible (cf. 7.121 in Pilz [13]):

Proposition 3.12. Let I � N, f ∈ N [x] and a, b ∈ N . If a− b ∈ I, then
f(a) − f(b) ∈ I.

Proof. Note firstly that for a − b ∈ I, c ∈ N and any n ≥ 1, always
can − cbn ∈ I. This follows by an inductive argument since can − cbn =
= can−1((a− b) + b) − can−1b + (can−1 − cbn−1)b. The proof can then be
completed by induction on the level of f . ♦

Likewise, by using induction, it can be proved that

Proposition 3.13. Let I be a left ideal of N and let f ∈ N [x]. If a ∈ I,
then f(a) − f(0) ∈ I.

Because of the way substitution with near-ring polynomials over
a commuting indeterminate x is defined here, the next result is slightly
different from its universal algebraic counterpart (see Pilz [13], 7.123).

Proposition 3.14. For any a ∈ N, 〈a] = {f(a) | f ∈ N [x], f(0) = 0}.

Proof. Let B = {f(a) | f ∈ N [x], f (0) = 0}. We show that B is
a left ideal of N for which a ∈ B ⊆ 〈a]. Firstly, a = g(a) for g =
= x ∈ N [x] and if f ∈ N [x] with f(0) = 0 we have f(a) ∈ 〈a]. For
f, g ∈ N [x], f (a)− g(a) = (f − g)(a) ∈ B and for any b ∈ N , b + f − b ∈
∈ N [x] and b + f(a) − b = (b + f − b)(a) ∈ B. Lastly, for b, c ∈ N,
b(f(a) + c) − bc = (b(f + c) − bc)(a) ∈ B. ♦
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This result is useful in that it connects elements of a near-ring with
left ideals via polynomials. What this means is that if some property of
elements in a near-ring can be defined in terms of polynomials, it pro-
vides a way to connect this to ideals; a connection that is often quite
elusive in near-ring theory. We give one example. A nonzero element b
in a near-ring N is called a generalized unit if there is a g ∈ N [x] such
that g(b) = 1 and g(0) = 0. If N is a ring, then b is a generalized unit if
and only if b has a left inverse. Thus, a ring R is a division ring if and
only if R has an identity and every nonzero element is a generalized unit.
Using the proposition above, it can be shown that a near-ring N has no
non-trivial left ideals if and only if every nonzero element of N is a gener-
alized unit. It can also be mentioned that the g ∈ N [x] which makes b a
generalized unit can be chosen, without any loss of generality, of height 1.
Indeed, if g has height m ≥ 2 and associated function G, we may regard
G as a function G : Nm+1 → N . Let f be the polynomial defined by
f := G(1, x, bx, b2x, ..., bm−1x). Then f ∈ N [x], f(0) = G(1, 0, 0, ..., 0) =
= g(0) = 0 and f(b) = G(1, b, b2, b3, ..., bm) = g(b) = 1. We show f
has height 1. Let F be the function associated with f . For any α =
= (α1, α2, α3, ...) ∈ Nω, F (α1, α2, α3, ...) = π1(G(1, b, b2, b3, ..., bm)(α)) =
= G(α1, α2, bα2, b

2α2, ..., b
m−1α2) = F (α1, α2, 0, 0, ...). Thus f has height

≤ 1. If its height is 0, then f = a ∈ N for some a 6= 0. Then
a = π1(a(1, 0, 0, ...)) = π1(f(1, 0, 0, ...)) = F (1, 0, 0, ...) = f(0) = 0; a
contradiction. Thus height(f) = 1.

4. Polynomial functions

Any f ∈ N [x] determines a function f : N → N defined by
a 7→ f(a). This function is called a polynomial function and the set
of all polynomial functions of N will be denoted by P(N). It is clearly
contained in the set M(N) of all functions from N to N and it is of some
importance to know if or when the equality will hold. For a commutative
ring R with identity, we know P(R) = M(R) if and only if R is a finite
field. For arbitrary rings R, not necessarily commutative and not neces-
sarily with identity, it is known that the set of all polynomial functions
on R coincides with M(R) if and only if R is either the trivial ring of
order 1 or 2, or for some n and some finite field F, R = Mn(F ), cf. [3].
It should be mentioned that in this result, polynomial means generalized
polynomial in the sense that the indeterminate is not commuting and
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one has to cater for different terms like ax and xa. We will show that for
a 0-symmetric near-ring N, P(N) = M(N) if and only if N is a finite
near-field.

For universal algebras, it is known that if the set of polynomial
functions coincides with the set of all functions, then the algebra must
necessarily be simple and finite [8]. The near-ring polynomial functions
considered here are more restrictive since we are dealing with a commut-
ing indeterminate and we cannot directly use this result.

We start by discussing some other ways in which near-ring polyno-
mial functions can be viewed and also look at a few related issues. The
set M(N) is a near-ring with respect to pointwise addition and composi-
tion and is different to and should not be confused with the near-ring NN

which denotes the direct sum of |N | copies of N . Both these near-rings
contains N as a subnear-ring: in M(N) an element a ∈ N is regarded
as the function a : N → N defined by a(t) = at for all t ∈ N and in
NN , a : N → N is the constant function a(t) = a for all t ∈ N . The
underlying groups of these two near-rings coincide and can be turned
into an N -group with respect to the canonical product provided by the
mentioned embeddings. In both cases, this lead to af : N → N defined
by (af)(t) = af(t) for all t, a ∈ N and f ∈ (M(N), +) = (NN , +);
hence as N -groups we also have (M(N), +) = (NN , +). For n ≥ 1,
let un : N → N denote the function un(t) = tn for all t ∈ N . Let
B = {un | n ≥ 1} ∪N and let B be the N -subgroup of NN generated by
B. It can then be shown that B ⊆ P(N) ⊆ B. Indeed, un coincides with
the polynomial function f for f = xn ∈ N [x]. The second inclusion can
easily be shown by induction on the level of the polynomials f ∈ N [x].
Since P(N) is an N -subgroup of NN , we conclude that P(N) = B.

Let PUA(N) denote the polynomial functions on the near-ring N in
the universal algebraic sense. This means PUA(N) is the subnear-ring of
the near-ring NN generated by N ∪{1N} where 1N : N → N denotes the
identity function on N . In the canonical way, PUA(N) is an N -subgroup
of NN which contains B. Hence P(N) = B ⊆ PUA(N) follows and in
general the latter inclusion is strict as was mentioned above.

For the near-ring N, let Ω = ΩN := {ηa | a ∈ N} where ηa : N → N
is the function ηa(t) = at for all t ∈ N . Every ηa can be regarded
as a unary operation on N and NΩ := (N, +, Ω) is an Ω-group. Let
PΩ(NΩ) denote the polynomial functions of NΩ in the universal algebraic
sense (i.e. the Ω-subgroup of (NΩ)NΩ

generated by N ∪ {1NΩ}). Since
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N ∪ {1NΩ} ⊆ P(N) and P(N) is an Ω-subgroup of (NΩ)NΩ

, PΩ(NΩ) ⊆
⊆ P(N) follows.

Substitution in polynomials, as was defined in the previous section,
can be looked at differently as we now describe: Let k ≥ 1 and let
G = NNk

. Embed N in G by treating a ∈ N as a constant function. With
Ω as above, GΩ := (G, +, Ω) is an Ω-group where the unary operation
ηa : G → G is defined by (ηag)(α) = ag(α) for g ∈ G and α ∈ Nk.
Let Pk(N) be the Ω-subgroup of GΩ generated by N ∪ {π1, π2, ..., πk}
where πi : Nk → N is the i-th projection. This means Pk(N) consists
of all the k-place polynomial functions in the universal algebraic sense.
For f ∈ N [x] with associated polynomial function f, we show there is
a k ≥ 1 and p ∈ Pk(N) such that f(t) = p(t, t2, ..., tk) for all t ∈ N .
Let k be the height of 0 6= f ∈ N [x]. Thus k + 1 = min{n | n ≥ 1 and
F (α) = π1(f(α1, α2, ..., αn, 0, 0, 0, ...) for all α = (α1, α2, α3, ...) ∈ Nω}. If
F is the associated function of the polynomial f, we may thus regard F
as a function F : Nk+1 → N since F (α1, α2, α3, ..., αk, αk+1, αk+2, ...) =
= F (α1, α2, α3, ..., αk, αk+1, βk+2, βk+3, ...) for allα = (α1, α2, α3, ...) ∈Nω

and βk+2, βk+3, ... ∈ N . If we let p : Nk → N be defined by
p(α1, α2, α3, ..., αk) := F (1, α1, α2, α3, ..., αk)

for all (α1, α2, α3, ..., αk) ∈ Nk, it can be shown that f(t) = p(t, t2, ..., tk)
for all t ∈ N and p ∈ Pk(N). The latter membership follows by an
inductive argument on the level of the polynomial f .

Proposition 4.1. Let N be a 0-symmetric near-ring with identity. Then
P(N) = M(N) if and only if N is a finite near-field.

Proof. Suppose P(N) = M(N). If PUA(N) denotes the set of all poly-
nomial functions over the near-ring N in the universal algebraic sense,
then |PUA(N)| ≥ |P(N)| = |M(N)| (cf. [8],§11.3). Thus N must be fi-
nite and simple. Next we show that N has no nonzero proper left ideals.
If I is a nonzero proper left ideal of N, choose 0 6= a ∈ I and b ∈ N − I.
Define the function g : N → N by

g(t) =

{

b if t 6= 0
0 if t = 0.

Then g(a) − g(0) = b /∈ I and by Prop. 3.12 g cannot be a polynomial
function. Hence N has no non-trivial left ideals and thus also no nonzero
left zero divisors (since for any c ∈ N, the left annihilator (0 : c)N :=
:= {n ∈ N | nc = 0} is a left ideal of N). Because N is finite, this means
every nonzero element has a left inverse and so N is a finite near-field.
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For the converse, suppose N is a finite (0-symmetric) near-field.
If N happens to be a field, we are done. Suppose thus N is a proper
near-field; say a(b + c) 6= ab + ac for some a, b, c ∈ N . Let Ω =
= {ηd | d ∈ N} be as above. Then the Ω-group NΩ = (N, +, Ω) is
simple. Now p := ηax = ax is a unary polynomial over NΩ with p(0) = 0
but p is not a group homomorphism (p(b+ c) 6= p(b)+ p(c)). This means
the Ω-group NΩ is polynomially complete, i.e. PΩ(NΩ) = NN (see, for
example, [7]). Since PΩ(NΩ) ⊆ P(N) ⊆ NN , we may conclude that
P(N) = M(N). ♦

Next we describe a method of constructing a polynomial over a
near-field with (at least) a given number of zeros. For a near-field N and
bi ∈ N, i ≥ 0, define a sequence v(b1, b0), v(b2, b1, b0), v(b3, b2, b1, b0), ... of
elements in N by:

v(b1, b0) =

{

(b1 − b0)b1(b1 − b0)
−1 if b1 6= b0

b1 otherwise

and if v(bn, bn−1, ..., b1, b0) has been defined for any n + 1 arguments
bn, bn−1, ..., b1, b0 ∈ N, n ≥ 1, let

v(bn+1, bn, ..., b1, b0) = v(v(bn+1, bn−1, ..., b1, b0), v(bn, bn−1, ..., b1, b0)).

By abuse of notation, we also write v(x, b) = (x − b)x(x − b)−1 (and
as above also for v(x, bn, ..., b1, b0)), but it should be emphasized that
this is just a convenient notation and these expressions are certainly not
polynomials. When N is commutative, then v(bn, bn−1, ..., b1, b0) = bn for
any n ≥ 1.

In the proof below, we often use Cor. 3.3 to facilitate the substitu-
tion.

Proposition 4.2. Let N be a near-field and let a0, a1, a2, ..., an be ele-
ments from N . Then

g : = (v(x, an−1, ..., a1, a0) − v(an, an−1, ..., a1, a0))(v(x, an−2, ..., a1, a0)−

− v(an−1, ..., a1, a0))...(v(x, a0) − v(a1, a0))(x − a0)

is a near-ring polynomial of height n + 1 over N . For any b ∈ N,

g(b) = (v(b, an−1, ..., a1, a0) − v(an, an−1, ..., a1, a0))(v(b, an−2, ..., a1, a0)−

− v(an−1, ..., a1, a0))...(v(b, a0) − v(a1, a0))(b − a0).

Moreover, g(b) = 0 if and only if x = a0 or v(b, a0) = v(a1, a0) or ... or
v(b, an−1, ..., a1, a0) = v(an, an−1, ..., a1, a0).

Proof (by induction on n ≥ 0). Clearly g0 := x − a0 is a near-ring
polynomial of height 1, g0(b) = b − a0 and g0 has unique zero a0. Note
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that v(x, a0)g0 = g0x and for any b ∈ N, v(b, a0)g0(b) = g0(b)b. Let
g1 := (v(x, a0) − v(a1, a0))g0. Then g1 = g0x − v(a1, a0)g0 is a near-
ring polynomial of height 2 over N and g1(b) = g0(b)b − v(a1, a0)g0(b) =
= (v(b, a0)−v(a1, a0))g0(b)=(v(b, a0)−v(a1, a0))(b− a0). Thus g1(b)=0 if
and only if v(b, a0) = v(a1, a0) or b = a0. Note that v(x, a1, a0)g1 = g1x
and for each b ∈ N, v(b, a1, a0)g1(b) = g1(b)b. Suppose the near-ring
polynomials g0, g1, ..., gn−1 have been defined where:

(i) gi has height i + 1 for i = 0, 1, 2, ..., n − 1.
(ii) for each b ∈ N ,

gn−1(b) = (v(b, an−2, ..., a1, a0) − v(an−1, an−2, ..., a1, a0))

(v(b, an−3, ..., a1, a0) − v(an−2, ..., a1, a0))...(v(b, a0) − v(a1, a0))(b − a0),

(iii) gn−1(b) = 0 if and only if

v(b, an−2, ..., a1, a0) = v(an−1, an−2, ..., a1, a0) or

v(b, an−3, ..., a1, a0) = v(an−2, ..., a1, a0) or ... or

v(b, a0) = v(a1, a0) or b = a0,

(iv) v(x, an−1, an−2, ..., a1, a0)gn−1 = gn−1x and
(v) v(b, an−1, an−2, ..., a1, a0)gn−1(b) = gn−1(b)b.
Let gn := (v(x, an−1, ..., a1, a0) − v(an, an−1, ..., a1, a0))gn−1. Then

gn = v(x, an−1, ..., a1, a0)gn−1 − v(an, an−1, ..., a1, a0)gn−1 =

= gn−1x − v(an, an−1, ..., a1, a0)gn−1.

For any b ∈ N,

gn(b) = gn−1(b)b − v(an, an−1, ..., a1, a0)gn−1(b) =

= (v(b, an−1, ..., a1, a0) − v(an, an−1, ..., a1, a0))gn−1(b)

as required. Also, gn has height n + 1 the last statement about the zeros
of the polynomial gn follows since N has no nonzero zero-divisors. ♦

The result above ensures that g has zeros a0, a1, a2, ..., an, but they
need not be the only ones. For example, v(b, a0) = v(a1, a0) may hold
for b other than b = a1 as can be seen in Example 4.5 below. When N is
a field, the polynomial g above reduces to the familiar

g := (x − an)(x − an−1)...(x − a1)(x − a0).

The next result is striking in its simplicity and is hardly worth
singling out, but this belies its significance. It shows that if there are
enough non-distributivity in a near-ring, near-ring polynomials of height
1 and any finite number of zeros can be constructed (even over a near-
field).
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Lemma 4.3. Let N be a near-ring with f, g ∈ N [x], both of height ≤ k
for some k ≥ 1. Suppose f and g have zeros a1, a2, ..., an and b1, b2, ..., bm

in N respectively. If there is d ∈ N such that d does not distribute over
f + g, then h := df − d(g + f)+ dg is a non-zero near-ring polynomial of
height ≤ k over N . Each of a1, a2, ..., an, b1, b2, ..., bm is a zero for h (and
there could be other zeroes as well).

The last result, before we conclude with an example, has an exact
counterpart for rings (see [17]). The proof below uses the same idea, but
is slightly more involved.

Proposition 4.4. Let N be a 0-symmetric near-ring with identity. Sup-
pose every nonzero f ∈ N [x] has at most a finite number of zeros in N .
Then N is finite or N has no nonzero zero-divisors.

Proof. If N is finite, we are done; suppose N is infinite. Choose a, b ∈ N
with ba = 0 and both a and b nonzero. Let θ : N → N be the group
homomorphism defined by θ(t) = tb for all t ∈ N . Since N is infinite,
either ker θ or Im θ must be infinite.

Suppose ker θ is infinite. Then there is an infinite sequence t1, t2, t3, ...
of distinct elements of N such that tib = 0 for all i. If the sequence
bt1, bt2, bt3, ... has infinitely many distinct terms, then f := x2 is a nonzero
polynomial in N [x] with an infinite number of zeros in N ; a contradic-
tion. Thus there is some k ≥ 1 such that btk = btk+1 = btk+2 = .... Let
f := btk −bx. Then f ∈ N [x] and it is not zero. Indeed, if it is zero, then
for all a1, a2, a3, ... ∈ N, 0 = f(a1, a2, a3, ...) = (btka1−ba2, btka2−ba3, ...).
For a1 = 0 and a2 = 1 we get the contradiction b = 0. Hence f is nonzero
and it has infinitely many distinct zeros tk, tk+1, tk+2, ...; again a contra-
diction.

Suppose thus Im θ = Nb is infinite, say t1b, t2b, t3b, ... is an infinite
sequence of distinct elements from Nb. If the sequence at1b, at2b, at3b, ...
has infinitely many distinct terms, the nonzero polynomial f := x2 has
infinitely many distinct zeros. If not, there is some k ≥ 1 with atkb =
= atk+1b = atk+2b = .... Since a 6= 0, it can be shown that f :=
:= atkb− ax is a non-zero polynomial with infinitely many distinct zeros
tkb, tk+1b, tk+2b, ... which again contradicts our assumption. We conclude
that a = 0 or b = 0. ♦

Example 4.5. Let N be the Dickson near-field on GF (32). This means
N = {a + bt | a, b = 0, 1, 2} with addition (a + bt) + (c + dt) =
= (a + c) + (b + d)t (modulo 3). The multiplication is given in the
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table below in which all the products s0 = 0 = u0 for all s, u ∈ N have
been omitted:

1 2 t 2t 1 + t 1 + 2t 2 + t 2 + 2t
1 1 2 t 2t 1 + t 1 + 2t 2 + t 2 + 2t
2 2 1 2t t 2 + 2t 2 + t 1 + 2t 1 + t
t t 2t 2 1 1 + 2t 2 + 2t 1 + t 2 + t
2t 2t t 1 2 2 + t 1 + t 2 + 2t 1 + 2t

1 + t 1 + t 2 + 2t 2 + t 1 + 2t 2 t 2t 1
1 + 2t 1 + 2t 2 + t 1 + t 2 + 2t 2t 2 1 t
2 + t 2 + t 1 + 2t 2 + 2t 1 + t t 1 2 2t
2 + 2t 2 + 2t 1 + t 1 + 2t 2 + t 1 2t t 2

The following can be verified:
(1) v(1 + 2t, t) = 2 + t = v(2 + t, t) but 1 + 2t 6= 2 + t.
(2) The polynomial h = t(1 + t + x) + t + (1 + t)x has no zeros in N.
(3) Using Lemma 4.3 (repeatedly), we will construct a non-zero poly-

nomial f of height 1 over N which has as zeros all the elements of N
except 2 + 2t.

f1 := t(1 + 2x) + 2t + tx is a non-zero polynomial (f1(t) = 1 + t) of
height 1 and has zeros 0, 1 and 2.

f2 := t(2t+2x)+1+ t(x+2t) is a non-zero polynomial (f2(1) = 2)
of height 1 and has zeros 0, t and 2t.

Thus, f3 := tf1 + 2t(f1 + f2) + tf2 is a non-zero polynomial
(f3(1 + t) = t) of height 1 and with zeros 0, 1, 2, t and 2t.

f4 := t(x + 2 + 2t) + 2t + t(2 + t + 2x) is a non-zero polynomial
(f4(0) = t) of height 1 and with zeros 0, 1 + t and 2 + t.

f5 := tf4 +2t(f4 +x+2+ t)+ t(x+2+ t) is a non-zero polynomial
(f5(0) = 1) of height 1 and with zeros 1 + t, 2 + t and 1 + 2t.

Thus, f := tf3 + 2t(f3 + f5) + tf5 is a polynomial of height 1 with
all elements of N as zeros except 2 + 2t since f(2 + 2t) = 2 6= 0.
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