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Abstract: The paper answers a particular case of an open problem which
attempts to extend Rédei’s theorem on decomposing a finite abelian group
into a direct product of its subsets.

1. Introduction

Let G be a finite abelian group written multiplicatively. Let A1,..., An

be subsets of G. The product A1 · · ·An is defined to be the set
{a1 · · ·an : a1 ∈ A1, . . . , an ∈ An}.

The product A1 · · ·An is called direct if
a1 · · ·an = a′

1 · · ·a
′

n, a1, a
′

1 ∈ A1, . . . , an, a′

n ∈ An

imply that a1 = a′

1, . . . , an = a′

n. If the product A1 · · ·An is direct and
is equal to G, then we say that the equation G = A1 · · ·An is a factor-
ization of G into the subsets A1, . . . , An. A subset A of G is called nor-
malized if e ∈ A, where e is the identity element of G. The factorization
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G = A1 · · ·An is termed normalized if each of its factors is a normalized
subset of G.

A subset A of G is defined to be periodic if there is an element
g ∈ G \ {e} such that gA = A. We call the element g a period of A. A
factorization G = A1 · · ·An is called periodic if at least one of its factors
is a periodic subset of G.

Let a be an element of G and let r be an integer such that 2 ≤
≤ |a| ≤ r. Here |a| stands for the order of the element a. We will call
the set of elements C in the form

e, a, a2, . . . , ar−1

a cyclic subset of G. Clearly, C is a subgroup of G if and only if ar = e.
The element ar is called the terminating element of the cyclic subset C.
In order to solve a long standing open geometry problem, G. Hajós [4]
proved the following theorem in 1941.

Theorem 1. If G = A1 · · ·An is a factorization of the finite abelian

group G, where each Ai is a cyclic subset, then the factorization is peri-

odic.

Further investigations reveal that Hajós’s theorem is equivalent to
its special case when each cyclic factor has a prime cardinality. This is
why the next result of L. Rédei [5] can be considered as a generalization
of Hajós’s theorem.

Theorem 2. Let G = A1 · · ·An be a normalized factorization of the finite

abelian group G such that each |Ai| is a prime, then the factorization is

periodic.

Let H = {h1, h2, . . . , hs} be a subgroup of G with h1 = e, s ≥ 3. A
subset A of G in form

A = {h1, h2, . . . , hs−1, hsd}
is called a simulated subset, where d is an element of G such that hsd 6∈
/∈ {h1, h2, . . . , hs−1}. In Hajós’s theorem simulated subsets may appear
beside the cyclic subsets. The following theorem was proved in [11].

Theorem 3. If G = A1 · · ·An is a factorization of the finite abelian

group G, where each Ai is a cyclic subset or a simulated subset, then the

factorization is periodic.

For cyclic groups a more general result than Rédei’s theorem holds
as it was shown by A. D. Sands [8] in 2004.

Theorem 4. If G = A1 · · ·An is a factorization of the finite cyclic group

G such that each |Ai| is a prime power or a product of two primes, then

the factorization is periodic.
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Hajós’s theorem admits a similar generalization. Namely, in 2008
A. D. Sands [9] proved the following theorem.

Theorem 5. Let G = BA1 · · ·An be a normalized factorization of the

finite abelian group G such that each Ai is a cyclic subset or a simulated

subset of G and |B| = pq, where p, q are distinct primes. Then the

factorization is periodic.

An example of [1] shows that the conditions that the Ai factors are
all cyclic or simulated cannot be dropped from Th. 5. Motivated by the
above results [13] advanced the next problem.

Problem 1. Let p, q be not necessarily distinct primes and let G be

a finite abelian group whose p-component and q-component are cyclic.

Suppose that G = BA1 · · ·An is a normalized factorization of G such that

|B| = pq and each |Ai| is a prime. Does it imply that the factorization

is periodic?

In [13] it was proved that if the primes p and q are equal, then the
answer for Problem 1 is “yes”. When the primes p and q are distinct then
the answer for Problem 1 is “yes” for n ≤ 3. This paper will extend the
above result for n = 4. We spell out this assertion formally as a theorem.

Theorem 6. Let p, q primes and let G be a finite abelian group with

cyclic p-component and with cyclic q-component. Let G = BA1 · · ·An be

a normalized factorization of G such that |B| = pq and each |Ai| is a

prime. If n ≤ 4, then the factorization is periodic.

2. Preliminaries

In this section we present some preliminary results. For easier ref-
erence we cite a result of [13].

Theorem 7. Let p be a prime and let G be a finite abelian group whose

p-component is cyclic. Let G = BA1 · · ·An be a normalized factorization

of G such that |B| = pα and each |Ai| is a prime. Then the factorization

is periodic.

Let G = AB be a normalized factorization of G, where |A| = p is
a prime. Choose an element a ∈ A \ {e} and set

(1) C = {e, a, a2, . . . , ap−1}.

By Lemma 3 of [12] in the factorization G = AB the factor A can be
replaced by C to get the factorization G = CB. Since |C| = p is a prime
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and since C is normalized, it follows that if C is periodic then it is a
subgroup of G and so ap = e. Conversely if ap = e, then C is a subgroup
of G and so it is a periodic subset of G. In other words C is periodic if
and only if |a| = p.

If |a| = p for each a ∈ A\{e}, then we say that A is a type 1 subset
of G. A type 1 subset A of G can be represented in the form

A = {e, a, a2ρ2, . . . , a
p−1ρp−1}, |ρi| = p.

If |a| 6= p for some a ∈ A \ {e}, then we say that A is a type 2 subset of
G. In this case the cyclic subset (1) is not periodic. For a type 2 subset
A we distinguish two subtypes.

In a typical situation |a| can be written in the form |a| = pαm,
where p does not divide m. Choose an integer t which is not divisible by
p and set

C ′ = {e, at, (at)2, . . . , (at)p−1}.

By Prop. 3 of [7] in the factorization G = CB the factor C can be
replaced C ′ to get the factorization G = C ′B.

If α ≥ 2, then we can choose t such that |at| = pα and so C ′ is not
a periodic subset of G. In this case we call A a type 2a subset of G.

If α = 1, then we can choose t such that |at| = pq, where q is a
prime distinct from p. Now C ′ is not a periodic subsets of G. In this
case we call A a type 2b subset of G.

If α = 0, then we can choose t such that at = e. Now C ′ is a
multiset that contains the identity element e with multiplicity p and so
the product C ′B cannot form a factorization of G. Therefore the α = 0
case cannot arise in connection with factorizations.

We may sum up our considerations in the following way. Suppose
that G = AB is a normalized factorization, where |A| = p is a prime.
If A is a type 1 subset of G, then in the factorization G = AB we do
not replace A. If A is a type 2 subset of G, then in the factorization
G = AB we replace A by the non-periodic cyclic subset (1) to get the
factorization G = CB. If A is a type 2a subset of G, then we may assume
that |a| = pα, where α ≥ 2 holds in (1). If A is a type 2b subset of G,
then we may assume that |a| = pq holds in (1), where q is a prime distinct
from p.

Assume that G = BA1 · · ·An is a normalized factorization such
that each |Ai| = pi is a prime and each Ai is a non-periodic subset. Set

Di =

{

Ai, if Ai is a type 1 subset,
Ci, if Ai is a type 2 subset,
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where ai ∈ Ai \ {e}

Ai = {e, ai, a
2
i ρi,2, . . . , a

pi−1
i ρi,pi−1}, |ρi,j| = pi,

Ci = {e, ai, a
2
i , . . . , a

pi−1
i }.

In the factorization G = BA1 · · ·An we replace each Ai by Di to get the
factorization G = BD1 · · ·Dn. Since Ai is not periodic we know that Di

is not periodic either. We call the subset Di the standardized version
of Ai.

For a subset A of G the notation 〈A〉 stands for the smallest sub-
group of G that contains A. The subgroup 〈A〉 is referred to as the span
of A in G or as the generatum of A in G. One also may say that A spans
or generates the subgroup 〈A〉 in G. For a subset A and for a character
χ of G the notation χ(A) stands for the sum

∑

a∈A

χ(a).

Let p, q be distinct primes and let G be a finite abelian group whose
p-component and q-component are cyclic. Let G = BA1 · · ·An be a nor-
malized factorization of G, where |B| = pq and each |Ai| is a prime.
Suppose that the factors A1, . . . , As are cyclic and the terminating ele-
ment of Ai has order pα, α ≥ 1 or qβ, β ≥ 1 for each i, 1 ≤ i ≤ s.
Consider the subgroup H = 〈As+1 ∪ · · · ∪An〉 of G. We will use the next
lemma later several times.

Lemma 1. If |H| = |As+1| · · · |An|, then one of the factors As+1, . . . , An

is periodic. If |H| = pγ|As+1| · · · |An|, γ ≥ 1 or |H| = qδ|As+1| · · · |An|,
δ ≥ 1, then B is periodic.

Proof. From |H| = |As+1| · · · |An| it follows that the product As+1 · · ·An

forms a factorization of H . By Th. 2 at least one of the factors As+1, ..., An

is periodic. This completes the proof of the first statement of the lemma.
Next assume that |H| = pγ|As+1| · · · |An|, γ ≥ 1 and try to show

that B is periodic. Setting C = BA1 · · ·As and D = As+1 · · ·An from
the factorization G = BA1 · · ·AsAs+1 · · ·An we get the normalized fac-
torization G = CD of G. Choose an element c ∈ C. Multiplying
both sides of the factorization G = CD by c−1 we get the normalized
factorization G = Gc−1 = (Cc−1)D of G. Restricting the factoriza-
tion G = (Cc−1)D to H we end up with the normalized factorization
H = G ∩ H = [(Cc−1) ∩ H ]D. It follows that |H| = |(Cc−1) ∩ H||D|.
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Using |H| = pγ |As+1| · · · |An| = pγ|D| we get that |(Cc−1) ∩ H| = pγ .
From the factorization

H = [(Cc−1) ∩ H ]As+1 · · ·An,

by Th. 7, we get that at least one of the factors (Cc−1)∩H, As+1, . . . , An

is periodic. Only (Cc−1) ∩ H can be periodic.
The p-component of G is cyclic and so it has a unique subgroup

K of order p. The elements of K \ {e} are periods of (Cc−1) ∩ H . As
(Cc−1) ∩ H is a normalized subset, K ⊆ [(Cc−1) ∩ H ] must hold. In
particular

⋂

c∈C

Cc−1 6= {e}.

From this, by Lemma 3 of [2], C is periodic.
By Th. 1 of [10], the fact that the elements of K \{e} are periods of

C can be expressed equivalently using characters of G. Namely, χ(K) = 0
implies χ(C) = 0 for each character χ of G.

Since the q-component of G is cyclic, there is a unique subgroup L
of G of order q. We claim that χ(K) = 0, χ(L) = 0 implies χ(B) = 0 for
each character χ of G.

In order to prove the claim choose a character χ of G for which
χ(K) = 0 and χ(L) = 0. Using χ(K) = 0 we get

0 = χ(C) = χ(BA1 · · ·As) = χ(B)χ(A1) · · ·χ(As).

Thus χ(B) = 0 or χ(Ai) = 0 for some i, 1 ≤ i ≤ s. If χ(B) = 0, then
there is nothing left to prove. Therefore we may assume that χ(Ai) = 0
for some i, 1 ≤ i ≤ s. Set Ai = {e, a, a2, . . . , ar−1}. The terminating
element of Ai is ar and we have assumed that the order of ar is either
pα, α ≥ 1 or qβ, β ≥ 1. If |ar| = pα, then set b = arpα−1

and if |ar| = qβ,
then set b = arqβ−1

.
This means that b ∈ K or b ∈ L. Note that χ(Ai) = 0 is equivalent

to that χ(a) 6= 1 and χ(ar) = 1. But χ(ar) = 1 cannot hold as χ(K) = 0
and χ(L) = 0 imply χ(b) 6= 1. This contradiction proves the claim.

By Th. 2 of [10], there are subsets S, T of G such that B can be
represented in the form

(2) B = SK ∪ TL,

where the products are direct and the union is disjoint. Considering the
cardinalities in (2) we get

pq = |B| = |S|p + |T |q.
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It follows that q divides |S| and p divides |T |. Using |S| ≥ 0, |T | ≥ 0 we
can draw the conclusion that either S = ∅ and so the elements of L \ {e}
are periods of B or T = ∅ and so the elements of K \ {e} are periods
of B. ♦

Let q1, . . . , qn be (not necessarily distinct) prime powers. The direct
product of cyclic subgroups of orders q1, . . . , qn respectively must be a
commutative group G. We refer to G as a group of type (q1, . . . , qn).

Suppose that the answer for Problem 1 is “no”. This means that
there is a finite abelian group G whose p-component and q-component are
cyclic, where p, q are primes. Further there is a normalized factorization
G = BA1 · · ·An such that |B| = pq, each |Ai| is a prime and none of the
factors B, A1 . . . , An is periodic. Let us call such a factorization simply
a counter-example.

From Th. 7 we know that in a counter-example p and q must be
distinct primes. From Th. 4 we know that in a counter-example G cannot
be a cyclic group.

Lemma 2. In a counter-example the p-component of G is of order p and

the q-component of G is of order q.

Proof. Let G = BA1 · · ·An be a counter-example. Suppose that the
p-component of G is of order pλ and the q-component of G is of order qµ.
We know that λ ≥ 1, µ ≥ 1. By symmetry we may assume that λ ≥ µ.
If λ = µ = 1, then there is nothing to prove. Thus we may assume that
λ ≥ 2.

Let A1, . . . , As be all the factors among A1, . . . , An whose cardinal-
ity is equal to p. Clearly, s = λ − 1.

Note that Ai cannot be a type 1 subset of for each i, 1 ≤ i ≤ s.
Indeed, if Ai is a type 1 subset of G for some i, 1 ≤ i ≤ s, then each
element of Ai\{e} has order p and consequently Ai is equal to the unique
subgroup of G of order p. This is an outright contradiction.

Therefore Ai is a type 2a or type 2b subset of G for each i, 1 ≤ i ≤ s.
If Ai is a type 2a subset of G, then Ai is a cyclic subset of G in the form

Ai = {e, ai, a
2
i , . . . , a

p−1
i }, |ai| = pαi, αi ≥ 2.

We set
Ci = {e, ci, c

2
i , . . . , c

p−1
i }, ai = ci.

Plainly, Ai can be replaced by Ci in the factorization G = BA1 · · ·An as
Ai = Ci. If Ai is a type 2b subset of G, then Ai is a cyclic subset of G
in the form
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Ai = {e, aibi, (aibi)
2, . . . , (aibi)

p−1}, |ai| = p

and |bi| is a prime. In this case we can write |ai| in the form pαi with
αi = 1. We set

Ci = {e, ci, c
2
i , . . . , c

p−1
i }, ai = ci.

In the factorization G = BA1 · · ·An the factor Ai can be replaced by Ci

as there is an integer t relatively prime to p such that At
i = Ci. Namely,

the choice t = |bi| is suitable.
We claim that the numbers α1, . . . , αs are distinct. In order to

prove the claim assume on the contrary that there are i, j, 1 ≤ i < j ≤ s
such that αi = αj . For the sake of definiteness we assume that i = 1,
j = 2.

In the factorization G = BA1A2A3 · · ·An we replace the factors
A1, A2 by C1, C2 to get the factorization G = BC1C2A3 · · ·An. As
|c1| = |C2|, there is an integer t relatively prime to p such that ct

i = c2.
In the factorization G = BC1C2A3 · · ·An we replace the factor C1 by Ct

1

to get the factorization G = BCt
1C2A3 · · ·An. Now Ct

1 = C2 and so the
product Ct

1C2 cannot be direct. This contradiction proves the claim.
We may assume that λ ≥ α1 > · · · > αs ≥ 1. Set H = 〈A1∪

∪ · · · ∪ An〉. If α1 < λ, then |G : H| = pα, α ≥ 1. So Lemma 1 is
applicable and it gives that the factorization G = BA1 · · ·An is periodic.
Thus we may assume that α1 = λ. Set H = 〈A2 ∪ · · · ∪ An〉. From
the factorization G = (BA1)A2 · · ·An, by Lemma 1, we get that the
factorization G = BA1 · · ·An is periodic. (If |H| = |A2| · · · |An|, then
one of the factors A2, . . . , An is periodic. If |H| 6= |A2| · · · |An|, then B is
periodic.) ♦

Let m be an integer such that the answer for Problem 1 is “yes” for
each n, n ≤ m − 1. Let G = BA1 · · ·Am be a normalized factorization
such that the p-component of G is of order p and the q-component of G of
is of order q. Further |B| = pq and each Ai is a non-periodic standardized
subset of G of prime cardinality. We assume that Am is a type 1 subset
of G in the form

Am = {e, a, a2ρ2, . . . , a
r−1ρr−1},

|ρi| = r is a prime r ≥ 3. We may assume that at least one of ρ2, . . . , ρr−1

is distinct from e. For the sake of simplicity we assume that ρ2 6= e. In
addition we assume that the r-component of G is an elementary r-group,
that is, the r-component of G is of type (r, . . . , r).

In the factorization G = BA1 · · ·Am the factor Am can be replaced
by the subgroup H = 〈a〉 to get the factorization G = BA1 · · ·Am−1H .
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By considering the factor group G/H we get the factorization

(3) G/H = [(BH)/H ][(A1H)/H ] · · · [(Am−1H)/H ]

of the factor group G/H .
Multiplying the factorization G = BA1 · · ·Am by a−1 we get the

factorization G = ga−1 = BA1 · · ·Am−1(Ama−1). In this factorization
the factor (Ama−1) can be replaced by the subgroup K = 〈aρ2〉 to get
the factorization G = BA1 · · ·Am−1K. Passing to the factor group G/K
gives the factorization

(4) G/K = [(BK)/K][(A1K)/K] · · · [(Am−1K)/K]

of the factor group G/K.

Lemma 3. Suppose that (AiH)/H is not a periodic subset of G/H in

the factorization (3) and (AiK)/K is not a periodic subset of G/K in the

factorization (4). Then in the factorization G = BA1 · · ·Am the factor

B is periodic.

Proof. The group G is a direct product of its subgroups L, M , N ,
where |L| = pq, N is the r-component of G and none of the primes p, q,
r divides |M |. Let x, y be a basis for L with |x| = p, |y| = q. The element
a ∈ N can be augmented by suitable elements of N to form a basis for N .
Similarly, the element aρ2 ∈ N can be augmented by suitable elements
to form a basis for N . In fact there are elements z1, . . . , zs−1 ∈ MN such
that both z1, . . . , zs−1, a and z1, . . . , zs−1, aρ2 form a basis for MN . Thus
x, y, z1, . . . , zs form a basis for G, where zs is either a or aρ2.

Let us choose zs to be a. Each b ∈ B can be represented uniquely
in the form

b = xiyjz
α(1,i,j)
1 · · · zα(s,i,j)

s ,

where
0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1, 0 ≤ α(k, i, j) ≤ |zk| − 1.

The factorization (3) is periodic, by the choice of m and by the assump-
tion of the lemma only (BH)/H can be periodic. We may assume that
xH is a period of (BH)/H since this is only a matter of exchanging the
roles of the elements x, y. It follows that

α(k, 0, j) = α(k, 1, j) = · · · = α(k, p − 1, j)

for each j, 0 ≤ j ≤ q − 1 and for each k, 1 ≤ k ≤ s − 1. In particular
0 = α(k, 0, 0) = α(k, 1, 0) = · · · = α(k, p − 1, 0)
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as B is a normalized subset of G.
The element ρ2 can be represented uniquely in the form

ρ2 = z
β(1)
1 · · · zβ(s)

s , 0 ≤ β(i) ≤ |zi| − 1.
Using this b can be written in the form

b = xiyj
[

s−1
∏

k=1

z
α(k,i,j)−β(k)α(s,i,j)
k

]

aα(s,i,j)−β(s)α(s,i,j)ρ
α(s,i,j)
2 .

From ρ2 6= e, it follows that one of β(1), . . . , β(s) is not zero. For the
sake of definiteness we assume that β(1) 6= 0.

From the factorization (4) it follows that (BK)/K is a periodic
subset in G/K. We may assume that either xK or yK is a period of
(BK)/K. Let us first assume that xK is a period of (BK)/K. This
implies that

α(1, 0, j)− β(1)α(s, 0, j) =
α(1, 1, j)− β(1)α(s, 1, j) = · · · = α(1, p − 1, j) − β(1)α(s, p− 1, j).

As β(1) 6= 0 we get
α(s, 0, j) = α(s, 1, j) = · · · = α(s, p − 1, j)

and so B is periodic.
Let us assume next that yK is a period of (BK)/K in G/K. This

implies that
α(1, i, 0) − β(1)α(s, i, 0) =
α(1, i, 1) − β(1)α(s, i, 1) = · · · = α(1, i, q − 1) − β(1)α(s, i, q − 1) = 0

for each i, 0 ≤ i ≤ p − 1. In other words
0 = α(1, i, j) − β(1)α(s, i, j), 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1.

From
α(1, 0, j) = α(1, 1, j) = · · · = α(1, p − 1, j)

we get
α(s, 0, j) = α(s, 1, j) = · · · = α(s, p − 1, j)

and so B is periodic. ♦

Lemma 4. In a counter-example for n = 4 the type of G can only be

one of the following

(p, q, r, r, r, r), (p, q, r2, r, r), (p, q, r3, r), (p, q, r2, r2),
(p, q, r, r, r, s), (p, q, r2, r, s), (p, q, r, r, s, s), (p, q, r, r, s2),
(p, q, r, r, s, t),

where p, q, r, s, t are distinct primes.

Proof. By Lemma 2 we may assume that p-component of G has order p
and the q-component of G has order q. As the order of G is a product of
six not necessarily distinct primes, we need all non-cyclic finite abelian
group whose order is a product of four not necessarily distinct primes. ♦



Factoring abelian groups whose orders are products of six primes 289

3. A special case

This section is devoted to a very special case of Problem 1. Suppose
G = HK is a factorization of the finite abelian group G, where H , K are
subgroups of G. Each element g ∈ G can be represented uniquely in the
form

g = ab, a ∈ H, b ∈ K.

The element a will be called the H-part of g and the element b will be
referred to as the K-part of g. Suppose p is a prime divisor of |G|. If H is
a p-group and |K| is not divisible by p, then H is called the p-component
of G and K is called the p′-component of G. The H-part of an element
g ∈ G is referred to as the p-part of g and the K-part of g is referred to
as the p′-part of g.

Let A be a normalized subset of G such that |A| = p is a prime. The
height of A is defined to be the product of the orders of the p′-parts of
the elements of A. Let A1, . . . , An be normalized subsets of G with prime
cardinalities. The height of a factorization G = BA1 · · ·An is defined to
be the product of the heights of the factors A1, . . . , An.

Theorem 8. Let G be a group of type (p, q, r, . . . , r), where p, q, r are

distinct primes. Let G = BA1 · · ·An be a normalized factorization of G
such that |B| = pq, |Ai| = r for each i, 1 ≤ i ≤ n. Then at least one of

the factors B, A1, . . . , An is periodic.

Proof. We divide the proof into four steps.
Step (1): Suppose there is a counter-example G = BA1 · · ·An. We

choose a counter-example with minimal n. For a fixed n we choose one
with a minimal height. Let x, y, u1, . . . , un be basis elements of G with
|x| = p, |y| = q, |u1| = · · · = |un| = r. Set L = 〈u1, . . . , un〉. Let A′

i be
the set of the L-parts of the elements of Ai. It is a corollary of Prop. 3
of [7] that in the factorization G = BA1 · · ·An each Ai can be replaced
by A′

i to get the normalized factorization G = BA′

1 · · ·A
′

n. In particular
the product A′

1 · · ·A
′

n is direct. The cardinalities give that L = A′

1 · · ·A
′

n

is a factorization of L. Thus G = BL is a normalized factorization of G.
Therefore B is a complete set of representatives in G modulo L. The
elements of B are in the form

xiyjli,j, li,j ∈ L, 1 ≤ i ≤ p − 1, 1 ≤ j ≤ q − 1.

Step (2): If Ai ⊆ L for each i, 1 ≤ i ≤ n, then L = A1 · · ·An is a
normalized factorization of L and by Th. 2, one of the factors A1, . . . , An

is periodic. This is a contradiction. Thus Ai 6⊆ L for some i, 1≤ i≤n,
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say A1 6⊆ L. There is an element a ∈ A1 whose p-part or q-part is not
e. Set A′

1 = {e, a, a2, . . . , ar−1}. By Lemma 3 of [12], in the factoriza-
tion G = BA1 · · ·An the factor A1 can be replaced by A′

1 to get the
normalized factorization G = BA′

1A2 · · ·An. The element a can be rep-
resented in the form a = a1d1, where |a1| = r, |d1| ∈ {p, q}. Set A′′

1 =
= {e, a1, a

2
1, . . . , a

r−2
1 , ar−1

1 d1}. By Lemma 2 of [11], in the factorization
G = BA′

1A2 · · ·An the factor A′

1 can be replaced by A′′

1 to get the factor-
ization G = BA′′

1A2 · · ·An. In general if Ai 6⊆ L, then Ai can be replaced
by a non-periodic simulated subset. We assume that in the starting
counter-example these replacements have already been done. We call a
factor Ai a type α factor if Ai 6⊆ L and we call Ai a type β factor if
Ai ⊆ L.

Step (3): If each Ai is a type α factor, then by Th. 5, one of the
factors B, A1, . . . , An is periodic. This is a contradiction and so there are
type β factors among A1, . . . , An. We may assume that A1, . . . , As type
α factors and As+1, . . . , An are type β factors. If r = 2, then a type β
factor is obviously a subgroup and consequently it is periodic. Thus in a
counter-example r ≥ 3 must hold. A type β factor Ai can be expressed
in the form

Ai = {e, ai, a
2
i di,2, . . . , a

r−1
i di,r−1},

where di,j 6∈ 〈ai〉. We also use the representation Ai = {ai,0, . . . , ai,r−1}
for Ai, where

ai,0 = e, ai,1 = ai, ai,2 = aidi,2, . . . , ai,r−1 = aidi,r−1.

For notational convenience temporarily we introduce the notation
A0 = B. By Lemma 3 of [11], in the factorization G = A0 · · ·An the
factor An can be replaced by Hn,k,m = 〈an,ka

−1
n,m〉 to get the normalized

factorization G = A0 · · ·An−1Hn,k,m for each k, m, k 6= m. Considering
the factor group G/Hn,k,m we get the normalized factorization

G/Hn,k,m = (A0/Hn,k,m)/Hn,k,m · · · (An−1Hn,k,m)/Hn,k,m.

The minimality of n in the counter-example gives that one of the factors
(Ai/Hn,k,m)/Hn,k,m is periodic. In the i 6= 0 case AiHn,k,m is a subgroup of
G. In the 1 ≤ i ≤ s case di ∈ Hn,k,m ⊆ L follows. This is a contradiction.
Thus (Ai/Hn,k,m)/Hn,k,m can be periodic only in the i ∈ {0, s+1, . . . , n}
case. In other words for each i, s + 1 ≤ i ≤ n there is an f(i, k, m) ∈
∈ {0, s+1, . . . , n} such that (Af(i,k,m)Hi,k,m)/Hi,k,m is periodic. We record
this data by constructing a graph Γ on the nodes {0, s + 1, . . . , n}. For
each i, k, m we draw an directed edge from i to f(i, k, m).
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If for each i, s + 1 ≤ i ≤ n there are k, m such that f(i, k, m) ∈
∈ {s + 1, . . . , n}, then Γ contains a cycle. Let Ω ⊆ {s + 1, . . . , n} be the
nodes of this cycle. Note that the product

∏

i∈Ω Ai forms a factorization
of the group

∏

i∈Ω〈ai〉. By Th. 2, at least one of the factors Ai, i ∈ Ω is
periodic. This is a contradiction. Thus there is an i, s + 1 ≤ i ≤ n such
that (BHi,k,m)/Hi,k,m is periodic for each possible choice of k, m. We
assume that i = n. The elements of (BHn,k,m)/Hn,k,m are the following

xiyjl′i,jHn,k,m, l′i,j ∈ 〈a1, . . . , an−1〉, 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1.

This set is periodic with period xHn,k,m or yHn,k,m.
Step (4): Suppose first that (BHn,k,m)/Hn,k,m is periodic with pe-

riod xHn,k,m. It follows that

l′0,j = l′1,j = · · · = l′p−1,j

for each j, 0 ≤ j ≤ q − 1. Let l′j be the common value. Therefore the
elements of B are the following

xiyjl′i,ja
β(i,j)
n , l′i,j ∈ 〈a1, . . . , an−1〉, 0 ≤ β(i, j) ≤ r − 1.

Here we set k = 1, m = 0 and used the representation

An = {e, an, a2
ndn,2, . . . , a

r−1
n dn,r−1}

of An. One of dn,2, . . . , dn,r−1 is not equal to e, since otherwise An is
periodic. We may assume that dn,r−1 6= e as An can be replaced by
At

n for each integer t that is relatively prime to r. (A little reflection
will convince the reader that replacing An by At

n is not changing the
family of subsets Hn,k,m originally assigned to An.) Plainly dn,r−1 ∈
∈ 〈a1, . . . , an−1〉\{e}. For notational simplicity temporarily set d=dn,r−1.
There is a γ, 1 ≤ γ ≤ r− 1 for which aγ ∈ Aγ

n holds. In the factorization
G = BA1 · · ·An the factor An can be replaced by H = 〈dγan〉 to get the
normalized factorization G = BA1 · · ·An−1H . In the factor group G/H
the factor (BH)/H must be periodic because of the choice of An. One
can write the elements of B in the following form

xiyjl′jd
−γβ(i,j)(dγan)β(i,j).

Here l′jd
−γβ(i,j) ∈ 〈a1, . . . , an−1〉 and (dγan)β(i,j) ∈ H . If (BH)/H is

periodic with period xH , then it follows that

l′jd
−γβ(0,j) = l′jd

−γβ(1,j) = · · · = l′jd
−γβ(p−1,j)

for each j, 0 ≤ j ≤ q − 1. Therefore
β(0, j) = β(1, j) = · · · = β(p − 1, j).

It implies that B is periodic with period x.
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To finish the proof note that An can be replaced by Hn,k,m such that
there are at least three distinct among the subgroups Hn,k,m as r ≥ 3. By
the pigeon-hole principle there are at least two choices of the k, m values
for which (BHn,k,m)/Hn,k,m is periodic with period xHn,k,m or there are
at least two choices of the k, m values for which (BHn,k,m)/Hn,k,m is
periodic with period yHn,k,m. For the sake of definiteness suppose that
the first possibility occurs. We then carry out the argument above with
these particular choices of k and m.

This completes the proof. ♦

4. Eight propositions

In this long section we deal with the eight group types left open by
Lemma 4 and Th. 8.

Proposition 1. Let G be a group of type (p, q, r, r, s, t), where p, q, r,
s, t are distinct primes. Suppose that G = BA1A2A3A4 is a normalized

factorization such that |B| = pq, |A1| = |A2| = r, |A3| = s, |A4| = t.
Then the factorization is periodic.

Proof. We may assume that none of the factors A1, A2, A3, A4 is pe-
riodic since otherwise there nothing to prove. In the factorization G =
= BA1A2A3A4 we replace each Ai by Di to get the normalized factor-
ization G = BD1D2D3D4.

If D4 = A4, then each element of A4 \ {e} has order t and so A4 is
equal to the unique subgroup of G of order t. This gives the contradiction
that A4 is periodic. Thus we may assume that D4 = C4. A similar
argument shows that we may assume that D3 = C3.

If Di = Ci for each i, 1 ≤ i ≤ 4, then from the factorization
G = BC1C2C3C4, by Th. 5, it follows the contradiction that at least one
of the factors B, C1, C2, C3, C4 is periodic. By symmetry we may assume
that D1 = A1.

If D2 = A2, then the product A1A2 forms a factorization of the
r-component of G which is a group of type (r, r). By Th. 2, either A1 or
A2 is periodic. Thus we may assume that D1 = A1, D2 = C2, D3 = C3,
D4 = C4. The choices for |a1|, |a2|, |a3|, |a4| are the following
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Table 1: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 1

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|a1| r r r r r r r r r r r r r r r r
|a2| rp rp rp rp rp rp rp rp rp rp rp rp rp rp rp rp
|a3| sp sp sp sp sq sq sq sq sr sr sr sr st st st st
|a4| tp tq tr ts tp tq tr ts tp tq tr ts tp tq tr ts
Case 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|a1| r r r r r r r r r r r r r r r r
|a2| rq rq rq rq rq rq rq rq rq rq rq rq rq rq rq rq
|a3| sp sp sp sp sq sq sq sq sr sr sr sr st st st st
|a4| tp tq tr ts tp tq tr ts tp tq tr ts tp tq tr ts
Case 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|a1| r r r r r r r r r r r r r r r r
|a2| rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs
|a3| sp sp sp sp sq sq sq sq sr sr sr sr st st st st
|a4| tp tq tr ts tp tq tr ts tp tq tr ts tp tq tr ts
Case 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|a1| r r r r r r r r r r r r r r r r
|a2| rt rt rt rt rt rt rt rt rt rt rt rt rt rt rt rt
|a3| sp sp sp sp sq sq sq sq sr sr sr sr st st st st
|a4| tp tq tr ts tp tq tr ts tp tq tr ts tp tq tr ts

|a1| ∈ {r},
|a2| ∈ {rp, rq, rs, rt},
|a3| ∈ {sp, sq, sr, st},
|a4| ∈ {tp, tq, tr, ts}.

This leaves 64 cases to consider. These are depicted in Table 1. Set
H = 〈A1 ∪ C2 ∪ C3 ∪ C4〉. In case 64 |H| = |A1||C2||C3||C4| holds. It
follows that H = A1C2C3C4 is a factorization. By Th. 2, the factorization
is periodic. The same holds in cases 43, 44, 47, 48, 59, 60, 63.

In case 1 |H| = p|A1||C2||C3||C4| holds. By Lemma 1, it follows
that B is periodic. The same holds in cases 1, 3, 4, 9, 11, 12, 13, 15, 16,
33, 35, 36, 41, 45, 49, 51, 52, 57, 61.

In case 32 |H| = q|A1||C2||C3||C4| holds. By Lemma 1, it follows
that B is periodic. The same holds in cases 22, 23, 24, 26, 27, 28, 30, 31,
32, 38, 39, 40, 42, 46, 54, 55, 56, 58, 62.
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Set H = 〈A1 ∪C2 ∪C3〉. In case 2 |H| = p|A1||C2||C3| holds. From
the factorization G = (BC4)A1C2C3, by Lemma 1, it follows that B is
periodic. The same applies in cases 10, 34.

In case 21 |H| = q|A1||C2||C3| holds. From the factorization G =
= (BC4)A1C2C3, by Lemma 1, it follows that B is periodic. The same
applies in cases 25, 37.

Set H = 〈A1∪C2∪C4〉. In cases 5, 7, 53 |H| = p|A1||C2||C4|. From
the factorization G = (BC3)A1C2C4, by Lemma 1, it follows that B is
periodic. In cases 18, 19, 50 |H| = q|A1||C2||C4|. From the factorization
G = (BC3)A1C2C4, by Lemma 1, it follows that B is periodic.

Set H = 〈A1 ∪ C2〉. In case 6 |H| = p|A1||C2||C4| and in case
17 |H| = q|A1||C2||C4|. From the factorization G = (BC3C4)A1C2, by
Lemma 1, it follows that B is periodic.

In the remaining cases 8, 14, 20, 29 Lemma 3 is applicable with the
type 1 factor A1. ♦

Proposition 2. Let G be a group of type (p, q, r3, r), where p, q, r
are distinct primes. Suppose that G = BA1A2A3A4 is a normalized

factorization such that |B| = pq, |A1| = |A2| = |A3| = |A4| = r. Then

the factorization is periodic.

Proof. We may assume that none of the factors A1, A2, A3, A4 is pe-
riodic since otherwise there nothing to prove. In the factorization G =
= BA1A2A3A4 we replace each Ai by Di to get the normalized factor-
ization G = BD1D2D3D4.

If Di = Ci for each i, 1 ≤ i ≤ 4, then from the factorization
G = BC1C2C3C4, by Th. 5, it follows the contradiction that at least one
of the factors B, C1, C2, C3, C4 is periodic. By symmetry we may assume
that D4 = A4.

If D3 = A3, then each element of A3A4 \{e} has order p. Note that
G has a unique subgroup of type (r, r). Thus the product A3A4 forms
a factorization of this subgroup. By Th. 2, either A3 or A4 is periodic.
Thus we may assume that D3 = C3. A similar argument shows that we
may assume that D1 = C1, D2 = C2.

Therefore we may assume that D1 = C1, D2 = C2, D3 = C3,
D4 = A4. The choices for |a1|, |a2|, |a3|, |a4| are the following

|a1| ∈ {r3, r2, rp, rq},
|a2| ∈ {r3, r2, rp, rq},
|a3| ∈ {r3, r2, rp, rq},
|a4| ∈ {r}.
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Table 2: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 2

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|a1| r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3

|a2| r3 r3 r3 r3 r2 r2 r2 r2 rp rp rp rp rq rq rq rq
|a3| r3 r2 rp rq r3 r2 rp rq r3 r2 rp rq r3 r2 rp rq
|a4| r r r r r r r r r r r r r r r r
Case 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|a1| r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2

|a2| r3 r3 r3 r3 r2 r2 r2 r2 rp rp rp rp rq rq rq rq
|a3| r3 r2 rp rq r3 r2 rp rq r3 r2 rp rq r3 r2 rp rq
|a4| r r r r r r r r r r r r r r r r
Case 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|a1| rp rp rp rp rp rp rp rp rp rp rp rp rp rp rp rp
|a2| r3 r3 r3 r3 r2 r2 r2 r2 rp rp rp rp rq rq rq rq
|a3| r3 r2 rp rq r3 r2 rp rq r3 r2 rp rq r3 r2 rp rq
|a4| r r r r r r r r r r r r r r r r
Case 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|a1| rq rq rq rq rq rq rq rq rq rq rq rq rq rq rq rq
|a2| r3 r3 r3 r3 r2 r2 r2 r2 rp rp rp rp rq rq rq rq
|a3| r3 r2 rp rq r3 r2 rp rq r3 r2 rp rq r3 r2 rp rq
|a4| r r r r r r r r r r r r r r r r

This leaves 64 cases to consider. These are depicted in Table 2.
Let us consider case 64. In the factorization G = BC1C2C3A4 the

factors C1, C2, C3, A4 can be replaced by 〈aq
1〉, 〈aq

2〉, 〈aq
3〉, 〈a4〉 to get

the factorization G = B〈aq
1〉〈a

q
2〉〈a

q
3〉〈a4〉. This shows that the product

〈aq
1〉〈a

q
2〉〈a

q
3〉〈a4〉 is direct. It follows the contradiction that G has a sub-

group of type (r, r, r). The same argument applies in cases 11, 12, 15,
16, 27, 28, 31, 32, 35, 36, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 55, 56,
57, 58, 59, 60, 61, 62, 63.

Set H = 〈C1∪C2∪C3∪A4〉. In cases 1, 2, 5, 6, 17, 18, 21, 22 |H| =
= |C1||C2||C3||A4|. Thus H = C1C2C3A4 is a factorization and, by Th. 2,
the factorization is periodic. In cases 3, 7, 9, 10, 19, 23, 25, 26, 33, 34,
37, 38 |H| = p|C1||C2||C3||A4|. In the factorization G = BC1C2C3A4, by
Lemma 1, the factor B is periodic. In cases 4, 8, 13, 14, 20, 24, 29, 30, 49,
50, 53, 54 |H| = q|C1||C2||C3||A4|. In the factorization G = BC1C2C3A4,
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by Lemma 1, the factor B is periodic. ♦

Proposition 3. Let G be a group of type (p, q, r2, r2), where p, q, r
are distinct primes. Suppose that G = BA1A2A3A4 is a normalized

factorization such that |B| = pq, |A1| = |A2| = |A3| = |A4| = r. Then

the factorization is periodic.

Proof. We may assume that none of the factors A1, A2, A3, A4 is pe-
riodic since otherwise there nothing to prove. In the factorization G =
= BA1A2A3A4 we replace each Ai by Di to get the normalized factor-
ization G = BD1D2D3D4.

If Di = Ci for each i, 1 ≤ i ≤ 4, then from the factorization
G = BC1C2C3C4, by Th. 5, it follows the contradiction that at least one
of the factors B, C1, C2, C3, C4 is periodic. By symmetry we may assume
that D4 = A4.

If D3 = A3, then each element of A3A4 \{e} has order p. Note that
G has a unique subgroup of type (r, r). Thus the product A3A4 forms
a factorization of this subgroup. By Th. 2, either A3 or A4 is periodic.
Thus we may assume that D3 = C3. A similar argument shows that we
may assume that D1 = C1, D2 = C2.

Therefore we may assume that D1 = C1, D2 = C2, D3 = C3,
D4 = A4. The choices for |a1|, |a2|, |a3|, |a4| are the following

|a1| ∈ {r2, rp, rq},
|a2| ∈ {r2, rp, rq},
|a3| ∈ {r2, rp, rq},
|a4| ∈ {r},

This leaves 27 cases to consider. These are depicted in Table 3.
Set H = 〈C1 ∪ C2 ∪ C3 ∪ A4〉. In cases 1 C1, C2, C3, A4 is in the

r-component of G. Hence H = C1C2C2A4 is a factorization and by Th. 2
the factorization is periodic.

In cases 2, 4, 5, 10, 11, 13, 14 |H| = p|C1||C2||C3||A4| and so
by Lemma 1, B is periodic. In cases 3, 7, 9, 19, 21, 25, 27 |H| =
= q|C1||C2||C3||A4| and so by Lemma 1, B is periodic.

Consider case 6. In the factorization G = BC1C2C3A4 the factors
C2, C3, A4 can be replaced by 〈ap

2〉, 〈aq
3〉, 〈a4〉. From the factoriza-

tion G = BC1〈a
p
2〉〈a

q
3〉〈a4〉 one can draw the conclusion that the prod-

uct 〈ap
2〉〈a

q
3〉〈a4〉 is direct. This leads to the contradiction that G has

a subgroup of type (r, r, r). A similar argument can be used in all the
remaining cases. ♦
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Table 3: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 3

Case 1 2 3 4 5 6 7 8 9
|a1| r2 r2 r2 r2 r2 r2 r2 r2 r2

|a2| r2 r2 r2 rp rp rp rq rq rq
|a3| r2 rp rq r2 rp rq r2 rp rq
|a4| r r r r r r r r r
Case 10 11 12 13 14 15 16 17 18
|a1| rp rp rp rp rp rp rp rp rp
|a2| r2 r2 r2 rp rp rp rq rq rq
|a3| r2 rp rq r2 rp rq r2 rp rq
|a4| r r r r r r r r r
Case 19 20 21 22 23 24 25 26 27
|a1| rq rq rq rq rq rq rq rq rq
|a2| r2 r2 r2 rp rp rp rq rq rq
|a3| r2 rp rq r2 rp rq r2 rp rq
|a4| r r r r r r r r r

Proposition 4. Let G be a group of type (p, q, r2, r, r), where p, q,
r are distinct primes. Suppose that G = BA1A2A3A4 is a normalized

factorization such that |B| = pq, |A1| = |A2| = |A3| = |A4| = r. Then

the factorization is periodic.

Proof. We may assume that none of the factors A1, A2, A3, A4 is pe-
riodic since otherwise there nothing to prove. In the factorization G =
= BA1A2A3A4 we replace each Ai by Di to get the normalized factor-
ization G = BD1D2D3D4.

If Di = Ci for each i, 1 ≤ i ≤ 4, then from the factorization
G = BC1C2C3C4, by Th. 5, it follows the contradiction that at least one
of the factors B, C1, C2, C3, C4 is periodic. By symmetry we may assume
that D4 = A4.

If D2 = A2, D3 = A3, then each element of A2A3A4 \ {e} has order
p. Note that G has a unique subgroup of type (r, r, r). Thus the product
A2A3A4 forms a factorization of this subgroup. By Th. 2, one of A2, A3,
A4 is periodic. Thus by symmetry we may assume that D2 = C2.

Therefore we may assume that one of the following situations holds

D1 = C1, D2 = C2, D3 = A3, D4 = A4,
D1 = C1, D2 = C2, D3 = C3, D4 = A4.
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Table 4: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 4

Case 1 2 3 4 5 6 7 8 9
|a1| r2 r2 r2 rp rp rp rq rq rq
|a2| r2 rp rq r2 rp rq r2 rp rq
|a3| r r r r r r r r r
|a4| r r r r r r r r r

The choices for |a1|, |a2|, |a3|, |a4| are the following

|a1| ∈ {r2, rp, rq}, |a1| ∈ {r2, rp, rq},
|a2| ∈ {r2, rp, rq}, |a2| ∈ {r2, rp, rq},
|a3| ∈ {r}, |a3| ∈ {r2, rp, rq},
|a4| ∈ {r}, |a4| ∈ {r}.

This leaves 9 and 27 cases to consider, respectively. These are depicted
in Table 4 and Table 3.

Let us deal with Table 4 first. Set H = 〈C1 ∪ C2 ∪ A3 ∪ A4〉.
In case 1 |H| = |C1||C2||A3||A4| and so H = C1C2A3A4 is a factoriza-
tion. By Th. 2, the factorization is periodic. In cases 2, 4, 5 |H| =
= p|C1||C2||A3||A4|. By Lemma 1, B is periodic. In cases 3, 7, 9 |H| =
= q|C1||C2||A3||A4|. By Lemma 1, B is periodic.

Consider case 6. In the factorization G = BC1C2A3A4 the factors
C1, C2, A3, A4 can be replaced by 〈ap

1〉, 〈a
q
2〉, 〈a3〉, 〈a4〉. This means that

the product 〈ap
1〉〈a

q
2〉〈a3〉〈a4〉 is direct. This leads to the contradiction

that G has a subgroup of type (r, r, r, r). Case 8 can be settled in a
similar way.

Next let us deal with Table 3. Set H = 〈C1 ∪ C2 ∪ C3 ∪ A4〉. In
case 1 |H| = |C1||C2||C3||A4| and so H = C1C2C3A4 is a factorization.
By Th. 2, the factorization is periodic. In cases 2, 4, 5, 10 11, 13 |H| =
= p|C1||C2||C3||A4|. By Lemma 1, B is periodic. In cases 3, 7, 9, 19, 21,
25 |H| = q|C1||C2||A3||A4|. By Lemma 1, B is periodic.

Let us consider case 27. In the factorization G = BC1C2C3A4 the
factors C1, C2, C3, A4 can be replaced by 〈aq

1〉, 〈aq
2〉, 〈aq

3〉, 〈a4〉 to get
the factorization G = B〈aq

1〉〈a
q
2〉〈a

q
3〉〈a4〉. This shows that the product

〈aq
1〉〈a

q
2〉〈a

q
3〉〈a4〉 is direct. It follows the contradiction that G has a sub-

group of type (r, r, r, r). The same argument applies in cases 14, 15 17,
18, 23, 24, 26.

We are left with cases 6, 8, 12, 16, 20, 22. By symmetry it is enough
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to settle case 8. In this case we carry out a more detailed analysis.
In the factorization G = BC1C2C3A4 the factors C2, C3, A4 can be

replaced by 〈aq
2〉, 〈a

p
3〉, 〈a4〉 to get the factorization G = BC1〈a

q
2〉〈a

p
3〉〈a4〉.

The product C1〈a
q
2〉〈a

p
3〉〈a4〉 forms a factorization of the r-component of

G which is a group of type (r2, r, r). It follows that one of

{a1, a
q
2, a

p
3}, {a1, a

p
3, a4}, {a1, a

q
2, a4}

is a basis for the r-component of G. The elements of G of order r together
with the identity element form a unique subgroup of G of type (r, r, r).
One of

{ar
1, a

q
2, a

p
3}, {ar

1, a
p
3, a4}, {ar

1, a
q
2, a4}

is a basis of this subgroup.
The subgroup N = 〈A4〉 is of type (r, r) or (r, r, r). Suppose first

that N is of type (r, r). If aq
2 6∈ N , then set H = 〈C1 ∪ C3 ∪ A4〉. Now

|H| = q|C1||C3||A4| and so by Lemma 1, B is periodic. If ap
3 6∈ N , then

set H = 〈C1 ∪ C2 ∪ A4〉. Now |H| = p|C1||C2||A4| and so by Lemma 1,
B is periodic. It remains that aq

2, a
p
3 ∈ N . It follows that aq

2, ap
3 form a

basis for N . But then the product 〈aq
2〉〈a

p
3〉〈a4〉 cannot be direct.

Suppose next that N is of type (r, r, r). Let

K = 〈aq
2〉, L = 〈ap

3〉, M = 〈a4〉.

Consider the factorizations

G/K = [(BK)/K][(C1K)/K][(C3K)/K][(A4K)/K],(5)

G/L = [(BL)/L][(C1L)/L][(C2L)/L][(A4L)/L],(6)

G/M = [(BM)/M ][(C1M)/M ][(C2M)/M ][(C3M)/M ].(7)

If ar
1, aq

2, ap
3 is a basis for N , then ar

1 6∈ K and so (C1K)/K cannot
be periodic in (5). Plainly, ar

3 6∈ K and so (C3K)/K cannot be periodic
in (5). As N is of type (r, r, r), (A4K)/K cannot be periodic in (5).
Thus (BK)/K must be periodic in (5). An analogous argument gives
that (BL)/L is periodic in (6). In the way we have seen in the proof of
Lemma 3 we can conclude that B is periodic.

If ar
1, ap

3, a4 is a basis for N , then ar
1 6∈ L and so (C1L)/L cannot

be periodic in (6). Plainly, ar
2 6∈ L and so (C2K)/K cannot be periodic

in (6). As N is of type (r, r, r), (A4L)/L cannot be periodic in (6). Thus
(BL)/L must be periodic in (6). An analogous argument gives that
(BM)/M is periodic in (7). Again we can conclude that B is periodic.

The case when ar
1, aq

2, a4 is a basis for N can be settled in a similar
way. ♦
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Table 5: The choices for |a3|, |a4| in Prop. 5

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|a3| s2 s2 s2 s2 sp sp sp sp sq sq sq sq sr sr sr sr
|a4| s2 sp sq sr s2 sp sq sr s2 sp sq sr s2 sp sq sr

Proposition 5. Let G be a group of type (p, q, r, r, s2), where p, q, r,
s are distinct primes. Suppose that G = BA1A2A3A4 is a normalized

factorization such that |B| = pq, |A1| = |A2| = r, |A3| = |A4| = s. Then

the factorization is periodic.

Proof. We may assume that none of the factors A1, A2, A3, A4 is pe-
riodic since otherwise there nothing to prove. In the factorization G =
= BA1A2A3A4 we replace each Ai by Di to get the normalized factor-
ization G = BD1D2D3D4.

If D4 = A4, then each element of A4 \ {e} has order s and so
A4 is equal to the unique subgroup of G of order s. This gives the
contradiction that A4 is periodic. Thus we may assume that D4 = C4.
A similar argument shows that we may assume that D3 = C3.

If Di = Ci for each i, 1 ≤ i ≤ 4, then from the factorization
G = BC1C2C3C4, by Th. 5, it follows the contradiction that at least one
of the factors B, C1, C2, C3, C4 is periodic. By symmetry we may assume
that D1 = A1.

If D2 = A2, then the product A1A2 forms a factorization of the
r-component of G which is a group of type (r, r). By Th. 2, either A1 or
A2 is periodic. Thus we may assume that D1 = A1, D2 = C2, D3 = C3,
D4 = C4. The choices for |a1|, |a2|, |a3|, |a4| are the following

|a1| ∈ {r},
|a2| ∈ {rp, rq, rs},
|a3| ∈ {s2, sp, sq, sr},
|a4| ∈ {s2, sp, sq, sr}.

There are 16 choices for |a3|, |a4| which are depicted in Table 5. In case
1 the product C3C4 forms a factorization of the s-component of G. By
Th. 2, we get the contradiction that one of C3, C4 is periodic.

In case 6 in the factorization G = BA1C2C3C4 the factors C3, C4

can be replaced by 〈ap
3〉, 〈a

p
4〉. This leads to the contradiction that G has

a subgroup of type (s, s). Using a similar argument we can sort out the
cases 7, 8, 10, 11, 12, 14, 15, 16.
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Table 6: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 5

Case 1 2 3 4 5 6 7 8 9
|a1| r r r r r r r r r
|a2| rp rp rp rq rq rq rs rs rs
|a3| s2 s2 s2 s2 s2 s2 s2 s2 s2

|a4| sp sq sr sp sq sr sp sq sr

By symmetry we may assume that |a3| ∈ {s2}, |a4| ∈ {sp, sq, sr}.
So there are 9 choices for |a1|, |a2|, |a3|, |a4| to consider. These cases are
depicted in Table 6.

Set H = 〈A1 ∪ C2 ∪ C3 ∪ C4〉. In case 9 |H| = |A1||C2||C3||C4|
and so H = A1C2C3C4 is a factorization. By Th. 2, the factorization is
periodic. In cases 1, 3, 7 |H| = p|A1||C2||C3||C4| and in cases 5, 6, 8
|H| = q|A1||C2||C3||C4|. By Lemma 1, B is periodic.

In cases 2, 4 Lemma 3 is applicable with the type 1 set A1. ♦

Proposition 6. Let G be a group of type (p, q, r2, r, s), where p, q, r,
s are distinct primes. Suppose that G = BA1A2A3A4 is a normalized

factorization such that |B| = pq, |A1| = |A2| = |A3| = r, |A4| = s. Then

the factorization is periodic.

Proof. We may assume that none of the factors A1, A2, A3, A4 is pe-
riodic since otherwise there nothing to prove. In the factorization G =
= BA1A2A3A4 we replace each Ai by Di to get the normalized factor-
ization G = BD1D2D3D4.

If D4 = A4, then each element of A4 \ {e} has order s and so A4 is
equal to the unique subgroup of G of order s. This gives the contradiction
that A4 is periodic. Thus we may assume that D4 = C4.

If Di = Ci for each i, 1 ≤ i ≤ 4, then from the factorization
G = BC1C2C3C4, by Th. 5, it follows the contradiction that at least one
of the factors B, C1, C2, C3, C4 is periodic. By symmetry we may assume
that D1 = A1.

If D2 = A2, then each element of A1A2 \ {e} has order r. The
elements of G of order r together with e form a unique subgroup of G
of type (r, r). Therefore the product A1A2 forms a factorization of this
subgroup of G. By Th. 2, either A1 or A2 is periodic. Thus we may
assume that D1 = A1, D2 = C2, D3 = C3, D4 = C4. The choices for |a1|,
|a2|, |a3|, |a4| are the following
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Table 7: The choices for |a1|, |a2|, |a3| in Prop. 6

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|a1| r r r r r r r r r r r r r r r r
|a2| r2 r2 r2 r2 rp rp rp rp rq rq rq rq rs rs rs rs
|a3| r2 rp rq rs s2 rp rq rs r2 rp rq sr r2 sp rq rs

Table 8: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 6

Case 1 2 3 4 5 6 7 8 9
|a1| r r r r r r r r r
|a2| r2 r2 r2 r2 r2 r2 r2 r2 r2

|a3| rp rp rp rq rq rq rs rs rs
|a4| sp sq sr sp sq sr sp sq sr

|a1| ∈ {r},
|a2| ∈ {r2, rp, rq, rs},
|a3| ∈ {r2, rp, rq, rs},
|a4| ∈ {sp, sq, sr}.

There are 16 choices for |a1, |a2|, |a3| which are depicted in Table 7. In
case 1 the product A1C2C3 forms a factorization of the r-component of
G. By Th. 2, we get the contradiction that one of A1, C2, C3 is periodic.

In case 6 in the factorization G = BA1C2C3C4 the factors A1, C2,
C3 can be replaced by 〈a1〉, 〈a

p
2〉, 〈a

p
3〉. This leads to the contradiction

that G has a subgroup of type (r, r, r). Using a similar argument we can
sort out the cases 7, 8, 10, 11, 12, 14, 15, 16.

By symmetry we may assume that |a2| ∈ {r2}, |a3| ∈ {rp, rq, rs}.
So there are 9 choices for |a1|, |a2|, |a3|, |a4| to consider. These cases are
depicted in Table 8.

Set H = 〈A1 ∪ C2 ∪ C3 ∪ C4〉. In case 9 |H| = |A1||C2||C3||C4|
and so H = A1C2C3C4 is a factorization. By Th. 2, the factorization is
periodic. In cases 1, 3, 7 |H| = p|A1||C2||C3||C4| and in cases 5, 6, 8
|H| = q|A1||C2||C3||C4|. By Lemma 1, B is periodic.

Set H = 〈A1 ∪ C2 ∪ C3〉. In case 2 |H| = p|A1||C2||C3| and in case
4 |H| = q|A1||C2||C3|. From the factorization G = (BC4)A1C2C3 by
Lemma 1, it follows that B is periodic. ♦

Proposition 7. Let G be a group of type (p, q, r, r, s, s), where p, q, r,
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Table 9: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 7

Case 1 2 3 4 5 6 7 8 9
|a1| r r r r r r r r r
|a2| rp rp rp rq rq rq rs rs rs
|a3| s s s s s s s s s
|a4| sp sq sr sp sq sr sp sq sr

s are distinct primes. Suppose that G = BA1A2A3A4 is a normalized

factorization such that |B| = pq, |A1| = |A2| = r, |A3| = |A4| = s. Then

the factorization is periodic.

Proof. We may assume that none of the factors A1, A2, A3, A4 is pe-
riodic since otherwise there nothing to prove. In the factorization G =
= BA1A2A3A4 we replace each Ai by Di to get the normalized factor-
ization G = BD1D2D3D4.

If Di = Ci for each i, 1 ≤ i ≤ 4, then from the factorization
G = BC1C2C3C4, by Th. 5, it follows the contradiction that at least one
of the factors B, C1, C2, C3, C4 is periodic. By symmetry we may assume
that D1 = A1.

If D2 = A2, then the product A1A2 forms a factorization of the
r-component of G. By Th. 2, either A1 or A2 is periodic. Thus we may
assume that D2 = C2.

If D3 = A3, D4 = A4, then the product A3A4 forms a factorization
of the s-component of G. It follows that either A3 or A4 is periodic. By
symmetry we may assume that D4 = C4.

Therefore we may assume that one of the following situations holds

D1 = A1, D2 = C2, D3 = A3, D4 = C4,
D1 = A1, D2 = C2, D3 = C3, D4 = C4.

The choices for |a1|, |a2|, |a3|, |a4| are the following

|a1| ∈ {r}, |a1| ∈ {r},
|a2| ∈ {rp, rq, rs}, |a2| ∈ {rp, rq, rs},
|a3| ∈ {s}, |a3| ∈ {sp, sq, sr},
|a4| ∈ {sp, sq, sr}, |a4| ∈ {sp, sq, sr}.

This leaves 9 and 27 cases to consider, respectively. These are depicted
in Table 9 and Table 10.

Let us deal with Table 9 first. Set H = 〈A1 ∪ C2 ∪ A3 ∪ C4〉.
In case 9 |H| = |A1||C2||A3||C4| and so H = A1C2A3C4 is a factoriza-
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Table 10: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 7

Case 1 2 3 4 5 6 7 8 9
|a1| r r r r r r r r r
|a2| rp rp rp rp rp rp rp rp rp
|a3| sp sp sp sq sq sq sr sr sr
|a4| sp sq sr sp sq sr sp sq sr
Case 10 11 12 13 14 15 16 17 18
|a1| r r r r r r r r r
|a2| rq rq rq rq rq rq rq rq rq
|a3| sp sp sp sq sq sq sr sr sr
|a4| sp sq sr sp sq sr sp sq sr
Case 19 20 21 22 23 24 25 26 27
|a1| r r r r r r r r r
|a2| rs rs rs rs rs rs rs rs rs
|a3| sp sp sp sq sq sq sr sr sr
|a4| sp sq sr sp sq sr sp sq sr

tion. By Th. 2, the factorization is periodic. In cases 1, 3, 7 |H| =
= p|A1||C2||A3||C4| and in cases 5, 6, 8 |H| = q|A1||C2||A3||C4|. By
Lemma 1, B is periodic.

In cases 2, 4 Lemma 3 is applicable with the type 1 subset A3.
Next let us deal with Table 10. Set H = 〈A1 ∪ C2 ∪ C3 ∪ C4〉. In

case 27 |H| = |A1||C2||C3||C4| and so H = A1C2C3C4 is a factorization.
By Th. 2, the factorization is periodic. In cases 1, 3, 7, 9, 19, 21, 25
|H| = p|A1||C2||C3||C4| and in cases 14, 15, 17, 18, 23, 24, 26 |H| =
= q|A1||C2||C3||C4|. By Lemma 1, B is periodic.

Set H = 〈A1 ∪ C2 ∪ C4〉. In case 6 |H| = p|A1||C2||C4| and in case
12 |H| = p|A1||C2||C4|. From the factorization G = (BC3)A1C2C4, by
Lemma 1, it follows that B is periodic.

In the remaining cases Lemma 3 is applicable with the type 1 subset
A1. ♦

Proposition 8. Let G be a group of type (p, q, r, r, r, s), where p, q, r,
s are distinct primes. Suppose that G = BA1A2A3A4 is a normalized

factorization such that |B| = pq, |A1| = |A2| = |A3| = r, |A4| = s. Then

the factorization is periodic.

Proof. We may assume that none of the factors A1, A2, A3, A4 is pe-



Factoring abelian groups whose orders are products of six primes 305

Table 11: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 8

Case 1 2 3 4 5 6 7 8 9
|a1| r r r r r r r r r
|a2| r r r r r r r r r
|a3| rp rp rp rq rq rq rs rs rs
|a4| sp sq sr sp sq sr sp sq sr

riodic since otherwise there nothing to prove. In the factorization G =
= BA1A2A3A4 we replace each Ai by Di to get the normalized factor-
ization G = BD1D2D3D4.

If D4 = A4, then each element of A4 \ {e} has order s and so A4 is
equal to to the unique subgroup of G of order s. Thus we may assume
that D4 = C4.

If Di = Ci for each i, 1 ≤ i ≤ 4, then from the factorization
G = BC1C2C3C4, by Th. 5, it follows the contradiction that at least one
of the factors B, C1, C2, C3, C4 is periodic. By symmetry we may assume
that D1 = A1.

If Di = Ai for each i, 1 ≤ i ≤ 3, then the product A1A2A3 forms
a factorization of the r-component of G. By Th. 2, one of A1, A2, A3 is
periodic. Therefore we may assume that one of the following situations
holds

D1 = A1, D2 = A2, D3 = C3, D4 = C4,
D1 = A1, D2 = C2, D3 = C3, D4 = C4.

The choices for |a1|, |a2|, |a3|, |a4| are the following

|a1| ∈ {r}, |a1| ∈ {r},
|a2| ∈ {r}, |a2| ∈ {rp, rq, rs},
|a3| ∈ {rp, rq, rs}, |a3| ∈ {rp, rq, rs},
|a4| ∈ {sp, sq, sr}, |a4| ∈ {sp, sq, sr}.

This leaves 9 and 27 cases to consider, respectively. These are depicted
in Table 11 and Table 12.

Let us settle Table 11 first. Set H = 〈A1 ∪ A2 ∪ C3 ∪ C4〉. In
case 9 |H| = |A1||A2||C3||C4| and so H = A1A2C3C4 is a factoriza-
tion. By Th. 2, the factorization is periodic. In cases 1, 3, 7 |H| =
= p|A1||A2||C3||C4| and in cases 5, 6, 8 |H| = q|A1||A2||C3||C4|. By
Lemma 1, B is periodic.
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Table 12: The choices for |a1|, |a2|, |a3|, |a4| in Prop. 8

Case 1 2 3 4 5 6 7 8 9
|a1| r r r r r r r r r
|a2| rp rp rp rp rp rp rp rp rp
|a3| rp rp rp rq rq rq rs rs rs
|a4| sp sq sr sp sq sr sp sq sr
Case 10 11 12 13 14 15 16 17 18
|a1| r r r r r r r r r
|a2| rq rq rq rq rq rq rq rq rq
|a3| rp rp rp rq rq rq rs rs rs
|a4| sp sq sr sp sq sr sp sq sr
Case 19 20 21 22 23 24 25 26 27
|a1| r r r r r r r r r
|a2| rs rs rs rs rs rs rs rs rs
|a3| rp rp rp rq rq rq rs rs rs
|a4| sp sq sr sp sq sr sp sq sr

Set H = 〈A1 ∪A2 ∪C3〉. In case 2 |H| = p|A1||A2||C3| and in cases
5, 6, 8 |H| = q|A1||A2||C3|. From the factorization G = (BC4)A1A2C3,
by Lemma 1, B is periodic.

Finally let us turn to Table 12. Set H = 〈A1 ∪ C2 ∪ C3 ∪ C4〉. In
case 27 |H| = |A1||C2||C3||C4| and so H = A1C2C3C4 is a factorization.
By Th. 2, the factorization is periodic. In cases 1, 3, 7, 9, 19, 21, 25
|H| = p|A1||C2||C3||C4| and in cases 14, 15, 17, 18, 23, 24, 26 |H| =
= q|A1||C2||C3||C4|. By Lemma 1, B is periodic.

In cases 4, 5, 8, 10, 11, 16, 20, 21 Lemma 3 is applicable with type
1 subset A1. Thus we left with cases 6, 12. These are symmetric cases
so it is enough to settle case 6.

In case 6 we carry out a more detailed analysis. Let K = 〈a1〉,
L = 〈ar

4〉. Consider the factorizations

G/K = [(BK)/K][(C2K)/K][(C3K)/K][(C4K)/K],(8)

G/L = [(BL)/L][(A1L)/L][(C2L)/L][(C3L)/L].(9)

In (9) only (BL)/L can be periodic. In (8) (BK)/K or (C4K)/K can
be periodic. If in (8) (BK)/K is periodic, then the argument we used in
the proof of Lemma 3 provides that B is periodic. Thus we may assume
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that in (8) (C4K)/K is periodic. This implies that ar
4 ∈ K.

The subset A1 can be written in the form
A1 = {e, a1, a

2
1ρ2, . . . , a

r−1
1 ρr−1}, |ρi| = r.

If ρ2, . . . , ρr−1 ∈ 〈a1〉, then A1 is periodic. Therefore we may assume that
one of ρ2, . . . , ρr−1 is not an element of 〈a1〉. For the sake of definiteness
we assume that ρ2 6∈ 〈a1〉.

Multiplying the factorization G = BA1C2C3C4 by a−1
1 we get the

factorization G = Ga−1
1 = B(A1a

−1
1 )C2C3C4. Set M = 〈a1ρ2〉 and con-

sider the factorization

(10) G/M = [(BM)/L][(C2M)/M ][(C3M)/M ][(C4M)/M ].

In (10) only (BM)/L or (C4M)/M can be periodic. If (BM)/L is peri-
odic, then using the fact that (BL)/L is periodic in (9) we get that B is
periodic. Thus we may assume that (C4M)/M is periodic in (10). This
implies that ar

4 ∈ M . Now ar
4 ∈ K ∩M = {e} and so ar

4 = e. This means
that C4 is periodic. ♦
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