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Abstract: In this survey we find new semigroups and collect all semigroups
known up to now that have a right (two-sided) compatible natural partial order.
In this first part trivially resp. totally ordered semigroups are considered and
semigroups in special classes – in particular (E-)medial semigroups – with this
property are studied. The second part will deal with the classes of E-inversive,
eventually regular, and regular semigroups. As far as possible the structure
of the semigroups in question is described and methods to construct them are
provided.

Introduction

On any semigroup (S, ·) the relation

a ≤S b if and only if a = xb = by, xa = a, for some x, y ∈ S1

is a partial order, the so-called natural partial order of S ([18]). It gener-
alizes that on regular ([11], [23]), in particular inverse ([31]) semigroups.
It is easy to see that the following are equivalent for any semigroup S:

(i) a ≤S b;
(ii) a = xb = by, ay = a, for some x, y ∈ S1;
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(iii) a = xb = by, xa = a = ay, for some x, y ∈ S1.
If E(S) denotes the set of all idempotents in S, then ≤S restricted

to E(S) takes the form: e ≤S f if and only if e = ef = fe. Note that
if a = eb = by for some e ∈ E(S1), y ∈ S1, or if a = xb = bf for some
x ∈ S1, f ∈ E(S1), then a ≤S b.

A useful property of ≤S would be right, left, or even two-sided
compatibility with multiplication: for any c ∈ S,

a ≤S b implies ac ≤S bc . . . right compatibility,

ca ≤S cb . . . left compatibility,

ac ≤S bc, ca ≤S cb . . . two-sided compatibility.

In general, the natural partial order of a semigroup is neither right, nor
left compatible with multiplication. In fact, all possibilities may occur:

(1) For any commutative semigroup S, ≤S is two-sided compatible.
(2) For S = R1, where R is a right zero semigroup, ≤S is right

but not left compatible (since ≤R is the identity relation). Also, the
semigroup S = (T2, ◦) of all transformations of a two-element set, with
respect to composition from the left, has this property ([15]).

(3) For S = L1, where L is a left zero semigroup, ≤S is left, but
not right compatible.

(4) For S = (T3, ◦), the full transformation semigroup on a three-
element set (with composition from the left), ≤S is neither left, nor right
compatible: writing (abc) with a, b, c ∈ {1, 2, 3} for f ∈ T3 with 1f = a,
2f = b, 3f = c, we have by [15]

(111) <S (112), but (333) ◦ (111) = (111) 6≤S (222) = (333) ◦ (112),

(112) <S (132), but (112) ◦ (211) = (221) 6≤S (211) = (132) ◦ (211).

Also the monoid S1, where S = M(I, G, Λ; P ) is a completely simple
semigroup with |I| > 1, |Λ| > 1, has this property: if e = (j, p−1

µj , µ),
a = (i, g, λ) ∈ S, then e ∈ E(S), hence e <S1 1; but ea 6≤S 1a = a
and ae 6≤S a1 = a (since ≤S is the identity relation by [27], II.4.2, and
ea 6= a, ae 6= a).

In the following survey we provide necessary and/or sufficient con-
ditions for the natural partial order on general semigroups and particular
classes of semigroups to be right or even two-sided compatible. Also, we
describe – as far as possible – the structure of these semigroups and give
a method to construct them. At the very least, concrete examples of
such semigroups are given.
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A considerable simplification of this problem appears if for a semi-
group S, in the definition of ≤S, one or both of the elements x, y ∈ S
are idempotent. In this situation the question of compatibility can be
treated by properties of E(S). This happens in the following cases:

(a) S is regular: a ≤S b ⇔ a = eb = bf for some e, f ∈ E(S); in
particular,

(b) S is inverse: a ≤S b ⇔ a = eb (a = bf) for some e ∈ E(S)
(f ∈ E(S));

(c) S is a band: e ≤S f ⇔ e = ef = fe.
(d) S is groupbound, called epigroup in [29] and completely π-regular

in [17] (i.e., for any a ∈ S there exists n > 0 such that an belongs to a
subgroup of S): by [12], 1.4.6,

a ≤S b ⇔ a = eb = bf for some e, f ∈ E(S1);

hence this also holds if S is periodic (in particular, finite);
(e) S is E-inversive (i.e., for any a ∈ S there is a′ ∈ S with aa′ ∈

∈ E(S)) such that whenever ax = a (a, x ∈ S) then ax′ = a for some
x′ ∈ S such that xx′ ∈ E(S): by Result 5.9, Remark (i),

a ≤S b if and only if a = xb = bf for some x ∈ S1, f ∈ E(S1).

Note that every groupbound semigroup satisfies these conditions (see
Example (4) preceding Result 5.9).

It is the aim of this survey to specify in different classes as many
semigroups as possible (all those), for which the natural partial order
is right (two-sided) compatible. In this first part we consider trivially
resp. totally ordered semigroups (Sec. 2), and several special classes
(Sec. 3), in particular, (E-)medial semigroups (Sec. 4). Throughout, suf-
ficient conditions for right (two-sided) compatibility with multiplication
by particular elements are given. In the second part, the compatibility
problem is dealt with for the class of E-inversive (Sec. 5), of eventually
regular (Sec. 6), and of regular semigroups (Sec. 7). The references given
in part I beginning with 5, 6, or 7, concern results in part II.

The following list gives a sample of semigroups S, for which

(I) ≤S is two-sided compatible: weakly cancellative (in particular,
right or left cancellative); right or left simple; completely simple; right
or left stratified (see Sec. 2); centric (3.3); commutative (3.3, Cor.); neg-
atively ordered (3.4, Cor.); right and left commutative (3.6, Cor.); ex-
ternally commutative (4.2); H-commutative (3.8); t-archimedean (3.12);
nilextensions of inverse semigroups (3.15, Remark); powerjoined (3.16);
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power centralized (3.17); right or left quasicommutative (3.19); residu-
ated (3.22); medial and every element has a right and a left identity
(4.1); medial archimedean (4.3); medial without maximal elements (4.4);
E-inversive E-unitary with central idempotents (5.7, Cor.); E-inversive
rectangular (5.8); eventually regular (groupbound) with central idem-
potents (6.3); eventually regular unipotent (6.5); locally inverse (7.6);
inverse (7.8); regular right (left) commutative (7.15); regular (E-)medial
(7.16, 7.18); regular externally commutative (7.17); normal orthogroups
(7.19, Cor.); normal cryptogroups (7.22); generalized inverse (7.27).

(II) ≤S is right compatible (besides those in I): right full (3.2); left
negatively ordered (3.4); right commutative (3.6); R-commutative (3.7);
right archimedean (3.11); left residuated (3.21); medial and every element
has a right identity (4.1); stationary on the left (4.8); eventually regular
with E(S) a rightzero band (6.4); regular locally L-unipotent (7.3); right
inverse (7.4, Cor.); regular with L-majorization (7.9 – see 7.3); regular
with E(S) a right seminormal band (7.26).

Most of the proofs are straightforward, so they will be omitted. For
some of them we indicate the essential step supposing as first sentence:
“Let a <S b, i.e., a = xb = by, xa = a = ay, for some x, y ∈ S” resp.
“a = eb = bf for some e, f ∈ E(S)”. Throughout the paper we consider
only semigroups with |S| > 1.

1. Necessary and/or sufficient conditions

Up to now there is only one criterion for right compatibility of the
natural partial order on a general semigroup. It is quite “close” to the
definition. However, for many interesting classes of semigroups it makes
it possible to answer the question, when ≤S is right or even two-sided
compatible with multiplication.

Result 1.1 ([20]). For a semigroup S, ≤S is right compatible if and
only if axb ∈ abS1 for any a, b, x ∈ S such that ax = ya = y2a for some
y ∈ S1.

In case that ≤S has one of the particular forms considered in the
Introduction we have

Corollary. Let S be a semigroup such that a ≤S b implies a = bf for
some f ∈ E(S1). Then ≤S is right compatible if and only if aeb ∈ abS1

for any a, b ∈ S, e ∈ E(S), such that ae ∈ S1a.
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Proof. Necessity: Let a, b ∈ S, e ∈ E(S) be such that ae ∈ S1a, i.e.,
ae = xa for some x ∈ S1. Then c := xa = ae satisfies c ≤S a, whence
cb ≤S ab. Thus, cb = ab · y for some y ∈ S1, so that aeb = cb = aby ∈
∈ abS1.

Sufficiency: Let a <S b and c ∈ S. Then a = xb = bf , xa = a, for
some x ∈ S, f ∈ E(S). Thus bf ∈ S1b, hence bfc ∈ bcS1, i.e., bfc = bcy
for some y ∈ S1. Therefore, ac = x · bc = bfc = bc · y and x · ac = ac,
i.e., ac ≤S bc. ♦

Remark. Note that the particular form of ≤S is only used in the proof of
sufficiency. Thus, Corollary gives a necessary condition for semigroups
S with E(S) 6= φ in order that ≤S be right compatible. Also, in this
condition “ae ∈ S1a” can be replaced by “ae ∈ E(S1)a”.

A further necessary condition for right compatibility is L-majoriza-
tion: a semigroup S satisfies L-majorization if whenever a, b, c ∈ S are
such that a ≥S b, a ≥S c and bLc, then b = c (see [27]).

Result 1.2 ([20]). Let S be a semigroup. If ≤S is right compatible then
S satisfies L-majorization.

Remark. For regular semigroups S, L-majorization is also sufficient for
right compatibility of ≤S (see Result 7.9). But in general, L-majorization
in a semigroup S does not imply right compatibility of ≤S: Let Y =
= {0, e, f} be the semilattice with 0 <Y e <Y f and let T =M(I, Y, Λ, P )
be the generalized Rees matrix-semigroup over Y with |I| = 1, |Λ| > 1,
and P = (pν1) be such that for some λ, µ ∈ Λ, pλ1 = 0, pµ1 = e. Then
S = T 1 is L-trivial, i.e., xLy implies x = y; therefore S satisfies L-
majorization. But ≤S is not right compatible: for (1, e, µ), (1, f, λ) ∈ S
we have (1, e, µ) ∈ E(S) and thus (1, e, µ) <S 1; however,

(1, e, µ)(1, f, λ) = (1, e, λ) �S (1, f, λ) = 1 · (1, f, λ),

since (1, f, λ)(1, y, λ) = (1, 0, λ) for any y ∈ Y . Note that S is not regular:
(1, e, λ) 6∈ Reg S.

In the non-regular case the converse of Result 1.2 holds under an
additional assumption (sufficiency in the following characterization is due
to M. Petrich).

Result 1.3 ([20]). Let S be a semigroup such that S2 is regular. Then
≤S is right compatible if and only if S satisfies L-majorization.

Remark. (i) The condition “S2 regular” is not necessary for right com-
patibility of ≤S. For example, on the multiplicative semigroup S of nat-
ural numbers, ≤S is the identity relation (since S is cancellative), hence
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(right) compatible; but S2 is not regular. More generally, for any proper
inflation S of (N, ·), ≤S is non-trivial and compatible (see Appendix (C)
in part II), but S2 ⊆ N is not regular.

(ii) Examples of (non-regular) semigroups S such that S2 is regular
are provided by inflations of regular semigroups T : ab ∈ T for all a, b ∈ S.
Note that ≤S is right compatible if and only if ≤T is so (see Appendix
(C) in part II).

Another necessary condition for two-sided compatibility of ≤S is
given by

Result 1.4 ([28]; see [20]). Let S be a semigroup. If ≤S is two-sided
compatible then every principal order ideal (a] = {x ∈ S|x ≤S a} of
(S,≤S) is directed downwards.

Remark. (i) If S is an inverse semigroup, ≤S is two-sided compati-
ble (see Result 7.8) and S has the property given in Result 1.4, by [3],
Exercise 7.1(4).

(ii) The converse of Result 1.4 does not hold: let S = (T2, ◦) be the
(regular) transformation semigroup on a two-element set, and consider
S0. Then for any a ∈ S0, (a] is directed downwards (since 0 ∈ (a]); but
≤S0 is not left compatible (see Example (2) in the Introduction).

A sufficient condition for two-sided compatibility of ≤S was given
by M. Petrich (oral communication):

Result 1.5. Let S be a semigroup such that any element of S, which is
a right identity of some element in S, belongs to the center of S. Then
≤S is two-sided compatible.

Proof. Let a <S b, i.e., a = xb = by, xa = a = ay, for some x, y ∈ S.
Then y ∈ S is a right identity of a ∈ S, hence y ∈ Z(S). Thus we have
for any c ∈ S:

ac = x · bc = byc = bcy, x · ac = ac, i.e., ac ≤S bc;

ca = cb · y = y · cb, ca · y = ca, i.e., ca ≤S cb. ♦

Remark. The converse of Result 1.5 does not hold: consider any inverse
semigroup S that is not a Clifford semigroup. Then ≤S is two-sided com-
patible (see Result 7.8) and every idempotent of S is a right identity of
itself; but E(S) * Z(S) (otherwise S would be a Clifford semigroup).
The same holds for any right zero semigroup. Note that for any semi-
group S satisfying the condition in Result 1.5 all idempotents are central.
Also, “right” can be replaced by “left”.
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Next we consider semigroups S such that E(S) forms a subsemi-
group (hence E(S) 6= φ). Note that this property is not implied by right
or left compatibility of ≤S, in general. For example, any completely sim-
ple semigroup S has a trivial, hence a compatible natural partial order
(see Sec. 2) – but E(S) is a subsemigroup if and only if S is a rectangular
group (see [25], IV.3.3).

Result 1.6. Let S be a semigroup such that E(S) is a subsemigroup. If
≤S is right compatible then the following hold:

(i) E(S) is a right seminormal band (i.e., egefg = efg for all
e, f, g ∈ E(S));

(ii) for any e ∈ E(S), E(eSe) is a right regular band (i.e., fgf = gf
for all f, g ∈ E(eSe)).

Proof. (i) E(S) is a semilattice Y of rectangular bands Eα(α ∈ Y ), i.e.,
efe = e for all e, f ∈ Eα (see [13], 3.1). Let e, f, g ∈ E(S); then e ∈ Eα,
f ∈ Eβ, g ∈ Eγ, for some α, β, γ ∈ Y ; hence egefg, efg ∈ Eαβγ := B.
Now ege = e · ege = ege · e implies ege ≤S e, so that by hypothesis,
ege · fg ≤S e · fg. Since both elements are idempotent we also have
egefg ≤B efg. But for the rectangular band B, ≤B is trivial by 7.1,
Cor. Hence it follows that egefg = efg.

(ii) Let e ∈ E(S) and f, g ∈ E(eSe) ⊆ E(S). Then f = exe,
g = eye, for some x, y ∈ S, and we obtain by (i):
fgf = exe · eye · exe = e · exe · e · eye · exe = e · eye · exe = eye · exe = fg.

♦

Result 1.7. Let S be a semigroup such that E(S) is a subsemigroup. If
≤S is two-sided compatible then the following hold:

(i) E(S) is a normal band (i.e., efgh=egfh for all e, f, g, h∈E(S));
(ii) for any e ∈ E(S), E(eSe) is a semilattice.

Proof. (i) By [26] (p. 29), a right and left seminormal band is normal.
We give a direct proof. Similarly to the beginning of the proof of Result
1.6(i), we have efgh, egfh ∈ Eαβγδ (for h ∈ Eδ). Since efghe ≤S e and
hefgh ≤S h, we obtain in the rectangular band B = Eαβγδ:

efgh = efgh · egfh · efgh = (efghe) · gf · (hefgh) ≤B e · gf · h.

But B is trivially ordered by 7.1, Cor.; it follows that efgh = egfh.
(ii) A right and left regular band, is commutative, hence a semilat-

tice (see Result 1.6). ♦

In the particular case that S is a monoid, we have
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Result 1.8. Let S be a monoid. If ≤S is right compatible then
(i) E(S) is a right regular band (i.e., efe = fe for all e, f ∈ E(S));
(ii) E(S)a ⊆ aS for every a ∈ S.

Proof. (i) First, E(S) is a subsemigroup of S : if e, f ∈ E(S) then
e ≤S 1S implies ef ≤S 1Sf = f , so that ef ∈ E(S) by [20]. Hence by
Result 1.6 (ii), E(S) = E(1SS1S) is a right regular band.

(ii) Let e ∈ E(S), a ∈ S. Then e ≤S 1S implies that ea ≤S 1Sa = a.
Thus ea = ay for some y ∈ S; hence E(S)a ⊆ aS. ♦

For bands with identity this yields the following criterion:

Result 1.9. Let S be a band with identity. Then ≤S is right compatible
if and only if S is a right regular band. In particular, ≤S is two-sided
compatible if and only if S is a semilattice.

Proof. Necessity in the first statement holds by Result 1.8(i). Suffi-
ciency: Let e ≤S f , that is, e = ef = fe. Then we have for any g ∈ S:
eg·fg = e·gfg = e·fg = ef ·g = eg, fg·eg = f ·geg = f ·eg = fe·g = eg;

therefore eg ≤S fg. Concerning the second statement, observe that a
band, which is right- and left regular, is commutative, hence a semi-
lattice. Conversely, for any commutative semigroup S, ≤S is two-sided
compatible. ♦

Since sufficiency in Result 1.9 holds without the hypothesis of an
identity we have the following

Corollary. Let S be a right regular band; then ≤S is right compatible.
In particular, for any semilattice S, ≤S is two-sided compatible.

Generalizing Result 1.9 we have

Result 1.10. Let S be a semigroup which has a greatest element with
respect to ≤S. Then ≤S is right compatible if and only if E(S) is a right
regular band.

Proof. First by [28], S is either a band B with identity 1B or an inflation
of B at 1B by only one element a /∈ B. In the first case, the statement
holds by Result 1.9. In the second case, S =B∪{a} where ea=ae=e for
every e∈B. Since B is a subsemigroup of S with identity and a /∈E(S)=
= B, we have necessity byResult 1.9. Sufficiency: If e ≤S f(e, f ∈ B),
then eg ≤S fg for any g ∈ B (by Result 1.9); also ea = e ≤S f = fa.
For e <S a (e ∈ B) we have for any f ∈ B : ef = fef ≤S f = af , and
ea = e ≤S 1B = aa. Therefore, ≤S is right compatible. ♦

The converse of Result 1.8 (ii) holds for semigroups, whose natural
partial order has a particular form:
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Result 1.11. Let S be a semigroup such that a ≤S b implies a = bf
for some f ∈ E(S1). If E(S)a ⊆ aS1 for any a ∈ S then ≤S is right
compatible.

Corollary. Let S be a semigroup such that a ≤S b implies a = eb
(a = bf) for some e ∈ E(S1)(f ∈ E(S1)). If the idempotents of S are
central in S then ≤S is two-sided compatible.

For monoids, on which the natural partial order has this particular
form, Results 1.8(ii) and 1.11 give

Result 1.12. Let S be a monoid such that a ≤S b implies a = bf for
some f ∈ E(S). Then ≤S is right compatible if and only if E(S)a ⊆ aS
(equivalently, E(S)a ⊆ aE(S)) for any a ∈ S.

Proof. Concerning the statement in the parentheses, note that in the
proof of Result 1.8 (ii), ea = af for some f ∈ E(S) (by the particular
form of ≤S). ♦

Result 1.13. Let S be a monoid such that a ≤S b if and only if
a = eb = bf for some e, f ∈ E(S). Then ≤S is two-sided compatible
if and only if aE(S) = E(S)a for every a ∈ S.

Remark. In particular, for a finite or regular monoid S, ≤S is two-sided
compatible if and only if aE(S) = E(S)a for every a ∈ S. In the second
case, S is inverse.

It was noted in [11] that for regular monoids S, ≤S is right (left)
compatible with multiplication by particular elements (see also [36]).
This observation holds for numerous semigroups and will be applied in
the following sections. First we have the following

Result 1.14. Let S be a semigroup such that ≤S is right (left) compatible
with multiplication by idempotents. Then ≤S is right (left) compatible
with multiplication by regular elements.

Proof. Let a ≤S b and c = cc′c ∈ S. Since cc′ ∈ E(S) we have
a · cc′ ≤S b · cc′. Hence there are x, y ∈ S1 such that acc′ = x · bcc′ =
= bcc′ · y, x · acc′ = acc′. Multiplying on the right by c ∈ S we get:
ac = x · bc = bc · c′yc, x · ac = ac, i.e., ac ≤S bc. ♦

Remark. Let S be a semigroup such that Se ⊆ eS1 for any e ∈ E(S).
Then ≤S is right compatible with multiplication by idempotents (see
Result 1.17 below).

Result 1.15. Let S be a monoid. If c ∈ S is right invertible then a ≤S b
(a, b ∈ S) implies ac ≤S bc.
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Proof. Since cc′ = 1S for some c′ ∈ S we have
ac = x · bc = byc = b1Syc = b · cc′ · yc = bc · z (z ∈ S), x · ac = ac;

i.e., ac ≤S bc. ♦

Remark. For a monoid S, every right (left) invertible element c ∈ S is
maximal in (S,≤S): if c ≤S a for some a ∈ S, then c = xa, xc = c, for
some x ∈ S; hence xcc′ = cc′, that is, x = 1S and c = a. In particular,
1S ∈ S is maximal in (S,≤S).

Result 1.16. Let S be a semigroup. If c ∈ S is such that Sc ⊆ cS1,
then a ≤S b (a, b ∈ S) implies ac ≤S bc. In particular, ≤S is two-sided
compatible with multiplication by elements in the center of S.

By Result 1.14 we obtain

Result 1.17. Let S be a semigroup such that Se ⊆ eS1 for any e ∈ E(S).
Then ≤S is right compatible with multiplication by regular elements.

Generalizing we have

Result 1.18. Let S be a semigroup such that for all a ∈ S, e ∈ E(S),
there exists n > 0 such that ane ∈ eS1. Then ≤S is right compatible with
multiplication by regular elements.

Proof. Let a <S b, i.e., a = xb = by and xa = a (x, y ∈ S). Then for
any k > 0 : a = ay = by · y = by2 = · · · = byk. If e ∈ E(S) then for some
n > 0, z ∈ S1:

ae = x · be = byne = be · z, xae = ae, and ae ≤S be.

Hence the claim follows by Result 1.14. ♦

Remark. Every periodic semigroup S such that E(S) is a right regular
band, satisfies the condition in Result 1.18: if a ∈ S, e ∈ E(S), then
an = f ∈ E(S) for some n > 0, whence ane = fe = efe ∈ eS1. Also,
any inflation S =

⋃

α∈B

Tα of a right regular band B does so (since a2 ∈ B

for all a ∈ S and E(S) = B); in this case, ≤S is right compatible with
multiplication by every element of S because by 1.9, Cor., ≤B is right
compatible (see Appendix (C) in part II); if S 6= B then ≤S is not trivial.
More generally: any nil-extension of a right regular band.

As a particular case of Result 1.17 we get

Result 1.19. Let S be a semigroup with central idempotents (i.e.,
ae = ea for all e ∈ E(S), a ∈ S). Then ≤S is two-sided compatible
with multiplication by regular elements.

More generally we have
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Result 1.20. Let S be a semigroup such that aeb = eab (aeb = abe) for
all a, b ∈ S, e ∈ E(S). Then ≤S is two-sided compatible with multipli-
cation by regular elements.

Proof. For any e ∈ E(S), ae = x·be = bye = b(y ·e·e) = b(e·y ·e) = be·z
(z ∈ S) and x · ae = ae; also ea = eb · y = exb = x · eb and eay = ea;
therefore, ae ≤S be and ea ≤S eb. Thus the claim follows by Result
1.14. ♦

If the natural partial order has a particular form we have the fol-
lowing

Result 1.21. Let S be a semigroup such that a ≤S b if and only if
a = eb = bf for some e, f ∈ E(S), and efa = fea for any a ∈ S,
e, f ∈ E(S). Then ≤S is two-sided compatible with multiplication by
regular elements.

Proof. For any c = cc′c ∈ S, ac = e·bc = bfc = b(f ·cc′ ·c) = b(cc′ ·f ·c) =
= bc·z (z ∈ S); ca = cb·f =ceb = c(c′c·e·b) = c(e·c′c·b) = w ·cb(w ∈ S);
hence ac ≤S bc and ca ≤S cb. ♦

Remark. (i) Every groupbound semigroup with commuting idempotents
satisfies the conditions in Result 1.21.

(ii) The class of semigroups S satisfying efa = fea for any a ∈ S,
e, f ∈ E(S), is properly contained in the class of E-medial semigroups
(see Sec. 4.), as any left zero semigroup shows.

Generalizing Result 1.21 we have the following

Corollary. Let S be a semigroup such that a ≤S b implies a = bf for
some f ∈ E(S), and E(S) is a right regular band (i.e., efe = fe for any
e, f ∈ E(S)). Then ≤S is right compatible with multiplication by regular
elements.

Proof. ac = x · bc = bfc = b(f · cc′)c = b(cc′ · f · cc′)c = bc · z (z ∈ S)
and x · ac = ac; hence ac ≤S bc. ♦

Result 1.22. Let S be a semigroup such that abe = bea (eab = bea)
for any a, b ∈ S, e ∈ E(S). Then ≤S is two-sided compatible with
multiplication by regular elements.

Proof. Every regular element a ∈ S is central in S, since for any x ∈ S:
xa = x · a · a′a = a · a′a · x = ax; hence the statement follows by Result
1.16. (Putting b = e we obtain that very idempotent of S is central in
S; thus the statement also follows from Result 1.19.) ♦

In the following particular case we know more:

Result 1.23.Let S be a semigroup such that axy=xya for all a, x, y∈S.
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Then ≤S is two-sided compatible with multiplication by any c ∈ S, that
has a right or a left identity.

Proof. ac = x · bc = byc = b(ycc′) = b(cc′y) = bc · z (z ∈ S), x · ac = ac;
ca = cb · y = cxb = (cc′x)b = (c′xc)b = w · cb (w ∈ S), ca · y = ca;
therefore, ac ≤S bc and ca ≤S cb. The proof for “left” is similar. ♦

Remark. A semigroup S satisfying the identity axy = xya is called
(1,2)-commutative in [22]. If every element of S has a right identity then
for any a, x, y, b ∈ S: axyb = a · xyy′ · b = a · yy′x · b ∈ aySxb. For
semigroups with this property we still have

Result 1.24. Let S be a semigroup such that axyb ∈ aySxb for all
a, x, y, b ∈ S. Then ≤S is right (left) compatible with multiplication by
any c ∈ S, that has a right (left) identity.

Remark. Note that every regular element a = aa′a of a semigroup
S has a′a ∈ S as a right and aa′ ∈ S as a left identity. Concerning
regular semigroups satisfying the condition in Result 1.24, see Result
7.21. and the Remarks following it. General observations on semigroups
with elements having a right (and left) identity are provided in Appendix
(F) of part II.

2. Trivially or totally ordered semigroups

A semigroup S is trivially ordered if ≤S is the identity relation.
Evidently, for any trivially ordered semigroup the natural partial order
is two-sided compatible. By [4], a semigroup S is trivially ordered if
and only if a2b = ab = bc (a, b, c ∈ S) implies ab = b (equivalently,
ab2 = ab = ca implies ab = a). Examples of trivially ordered semigroups
are:

1. Weakly cancellative semigroups, i.e., xa = xb and ax = bx
(a, b, x, y ∈ S) together imply a = b; in particular, left or right cancella-
tive semigroups, hence every group ([20]). Furthermore, generalized Rees
matrix semigroups S = M(I, T, Λ, P ) over a left or right cancellative
semigroup T (S is not left or right cancellative, in general; see Appendix
(G) in part II).

2. Left or right simple semigroups; in particular, left or right groups,
hence every left or right zero semigroup ([20]).

3. Left or right stratified semigroups, i.e., a ∈ abS resp. a ∈ Sba
for all a, b ∈ S; equivalently, S is simple and contains a minimal left resp.
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right ideal ([20]); in particular,
4. Completely simple semigroups (see [27], II.4.2), hence rectangu-

lar groups and rectangular bands.
5. Every Rees matrix semigroup over any of the semigroups given

in 1. to 4. above ([5]).

Other classes of trivially ordered semigroups are specified in: 2.2;
2.3; 2.4; 2.5; 3.11, Remark (v); 3.12, Remark (ii); 4.3, Remarks (iii) and
(iv); 4.8, Remark; 4.9; 5.1, Cor.; 5.2; 5.3; 7.1; 7.12; 7.29.

If a semigroup S contains a zero then 0 <S a for every a ∈ S,
a 6= 0; hence S is not trivially ordered (|S| > 1). In case that ≤S on S\0
is trivial, ≤S is two-sided compatible on S. For example, every group
with zero or every completely 0-simple semigroup or every nil-semigroup
has a nontrivial, two-sided compatible natural partial order. Generally,
this holds adjoining a zero to a trivially ordered semigroup.

By contrast, adjoining an identity to a trivially ordered semigroup S
does not always yield a compatible natural partial order on S1: consider
the completely simple semigroup S given in Example (4) of the Intro-
duction. The following result gives a necessary and sufficient condition
in a more general situation:

Result 2.1. Let S be a semigroup such that ≤S is right compatible (in
particular, ≤S is trivial). Then after adjoining an identity, the natural
partial order on S1 is right compatible if and only if E(S)a ⊆ aS1 for
every a ∈ S.

Proof. Necessity holds by Result 1.8(ii). Sufficiency: Let a ≤S1 b (a, b ∈
∈ S1). If a, b ∈ S then ac ≤S bc for every c ∈ S, and a · 1 ≤S b · 1. If
a ≤S1 1 then a = e ∈ E(S) by [20]; thus for any c ∈ S1, ec = cx for some
x ∈ S1, that is, e · c ≤S1 c = 1 · c. The case 1 <S1 a (with a ∈ S1) is
impossible by the Remark following Result 1.14. ♦

Remark. It follows, in particular, that for semigroups S without idem-
potents and with right compatible natural partial order, ≤S1 is also right
compatible.

We can add three further classes of semigroups with trivial natural
partial order.

Result 2.2. Let S be a semigroup such that no element of S has a right
(left) identity. Then ≤S is the identity relation.

Proof. If there are a, b ∈ S with a <S b then xa = a = ay for some
x, y ∈ S. ♦
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Remark. (i) Examples of such semigroups are given by S = (N, +)
where 0 /∈ N; or Rees matrix semigroups S = M(I, T, Λ; P ) over a
left (right) cancellative monoid T , where no entry of P is invertible; for
instance, T = (N, ·) and 1 /∈ P – see Appendix (G) in part II.

(ii) By Result 2.2, any element of a semigroup S which has no right
or left identity is maximal in (S,≤S). The converse does not hold, as any
group shows.

Result 2.3. Let S be a semigroup such that aS ∩ bS = φ or Sa∩Sb = φ
for any a, b ∈ S, a 6= b. Then ≤S is the identity relation.

Proof. Assume that there are a, b ∈ S such that a <S b. Then xa =
= a = xb and ay = a = by for some x, y ∈ S, hence Sa ∩ Sb 6= φ and
aS ∩ bS 6= φ: contradiction. ♦

Remark. (i) Examples of semigroups satisfying the condition in Result
2.3 are given by rectangular bands S: assume that there are e, f ∈ S
such that e 6= f, eS ∩ fS 6= φ and Se ∩ Sf 6= φ; then ex = fy, ze = wf
for some x, y, w, z ∈ S; hence by [13], IV.3.2, e = exe = fy · e = fe =
= f · ze = f · wf = f : contradiction.

(ii) In particular, let S be a nowhere right (left) reversible semi-
group: aS ∩ bS = φ(Sa ∩ Sb = φ) for any a 6= b in S; then ≤S is the
identity relation. Note that the intersection of any two principal right
(left) ideals of S is empty and any principal right (left) ideal of S has a
unique generator. Hence the partially ordered set of all principal right
(left) ideals of S forms an antichain. For example, any left (right) zero
semigroup satisfies this condition.

Result 2.4. Let S be a monoid such that a ≤S b implies that a = bu or
a = ub for some invertible u ∈ S. Then ≤S is the identity relation.

Proof. Let a ≤S b (a, b ∈ S); then a = bu or a = ub for some u ∈ S
such that uu′ = u′u = 1S (u′ ∈ S). Thus either b = au′, whence aRb, or
b = u′a whence aLb. In both cases it follows by [20], that a = b. ♦

As examples for monoids having this property we mention the fol-
lowing: a monoid S is called a right cone if (i) for any a, b ∈ S there
exists c ∈ S such that a = bc or b = ac, and (ii) ab = ac (a, b, c ∈ S)
implies b = cu for some invertible u ∈ S ([2]). Note that the principal
right ideals of S form a chain.

Result 2.5. Let S be a right cone; then ≤S is the identity relation.

Proof. Let a ≤S b (a, b ∈ S), i.e., a = xb = by, xa = a, for some
x, y ∈ S. Thus xa = xb, so that a = bu for some invertible u ∈ S. Hence
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the statement follows from Result 2.4. ♦

The other extreme for a partially ordered set is the total order. By
[20], a semigroup S is totally ordered with respect to ≤S if and only if
either S = E(S), where E(S) is a chain, or S = E(S)∪{a}, where E(S)
is a chain with greatest element, a /∈ E(S) and ea = ae = e for every
e ∈ E(S).

Result 2.6. Let S be a semigroup such that ≤S is a total order. Then
≤S is two-sided compatible.

Proof. First, let S = E(S) where E(S) is a chain. Then for e, f ∈ E(S),
e ≤S f or f ≤S e, that is, e = ef = fe or f = fe = ef . Thus ef = fe
for all e, f ∈ E(S), and S = E(S) is commutative. It follows that also
S = E(S) ∪ {a} is commutative. Hence ≤S is two-sided compatible in
both cases. ♦

3. Some particular classes

In this section we specify several classes of semigroups, for which
the natural partial order is right or even two-sided compatible. First, we
obtain immediately from Result 1.1:

Result 3.1. Let S be a semigroup such that aSb ⊆ abS1 for all a, b ∈ S.
Then ≤S is right compatible.

Remark. The converse of Result 3.1 does not hold: consider the com-
pletely 0-simple semigroup S = M◦(I, G, Λ; P ) with pλj = 0 for some
λ ∈ Λ, j ∈ I. Then for a = (i, g, λ), b = (j, h, µ) ∈ S we have ab = 0 and
thus abS1 = {0}. But since P is regular, there exist k ∈ I, ν ∈ Λ such
that pλk 6= 0, pνj 6= 0. Hence for c = (k, g, ν) ∈ S we have acb 6= 0, that
is, aSb 6= {0}. However, ≤S is (right) compatible since on S\0, ≤S is the
identity relation (see Sec. 2).

The following results are easy consequences of Result 3.1.

Result 3.2. Let S be a semigroup such that Sa ⊆ aS(⊆ aS1) for any
a ∈ S (i.e., S is right full). Then ≤S is right compatible.

Result 3.3. Let S be a semigroup such that aS = Sa for every a ∈ S
(i.e., S is centric). Then ≤S is two-sided compatible.

Corollary. Let S be a commutative semigroup. Then ≤S is two-sided
compatible.

Remark. (i) The converses of the Results 3.2, 3.3, 3.4 and the Corollary
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do not hold: consider any left zero semigroup S. Then ≤S is the identity
relation (see Sec. 2), hence (right) compatible, but Sa = S 6⊆ {a} = aS
(and S is not commutative).

(ii) A large class of semigroups S satisfying Sa ⊆ aS for every
a ∈ S, is that of semilattices Y of right simple semigroups Sα, α ∈ Y
([25], II.4.9). Note that every right simple semigroup is trivially ordered
(see Sec. 2). But if for some α <Y β in Y , E(Sα) 6= φ then for a := eb
with e ∈ E(Sα), b ∈ Sβ, we have a = eb = by for some y ∈ S, that is,
a <S b (since a ∈ Sα, b ∈ Sβ). Hence ≤S is not the identity relation, in
general.

Another class of semigroups S satisfying Sa ⊆ aS1 for every a ∈ S
is that of left negatively ordered semigroups: ax ≤S x for all a, x ∈ S
(see [6], [7]). For instance, a semigroup S is left negatively ordered if
Sx ⊆ xE(S1) for any x ∈ S; the converse holds for semigroups S such
that a ≤S b implies a = be for some e ∈ E(S1). Further examples are
given in [6].

Result 3.4 ([6]). Let S be a left negatively ordered semigroup. Then ≤S

is right compatible.

Proof. Let a, x ∈ S; then xa ≤S a. Hence xa = ay for some y ∈ S1,
that is, Sa ⊆ aS1. Thus S satisfies the condition in Result 3.2. ♦

Corollary. Let S be a negatively ordered semigroup (i.e., S is left and
right negatively ordered). Then ≤S is two-sided compatible.

Remark. (i) By [6], a semigroup S is negatively ordered if and only if S is
an inflation of a semilattice. Note that such a semigroup is commutative.

(ii) A semigroup S is negatively ordered if Sx ⊆ xE(S1) and xS ⊆
⊆ E(S1)x for any x ∈ S (see above). It follows that a semigroup satisfy-
ing these conditions is commutative (by (i)).

Result 3.5. Let S be a semigroup such that a ∈ aSb (a ∈ bSa) for any
a, b ∈ S. Then ≤S is the identity relation.

Proof. If a ≤S b then a = by = ay for some y ∈ S1. Since b = bsa for
some s ∈ S, it follows that b = bs · a = bs · ay = bsa · y = by = a. ♦

Remark. By [17], Th. 1.3.10, a semigroup S satisfies the condition in
Result 3.5 if and only if S is a left (right) group.

Result 3.6. Let S be a right commutative semigroup (i.e., axy = ayx
for all a, x, y ∈ S). Then ≤S is right compatible.

Proof. S satisfies the condition in Result 3.1. ♦

Remark. Examples of right commutative semigroups are given by left
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abelian groups (by [22], Th. 10.5, these are precisely the simple right
commutative semigroups). More generally, inflations of a semigroup
T = N×G, where N is a left normal band and G is an abelian group, are
right commutative. Note that by [26], V.5.6(8), a semigroup S is right
commutative and S2 is a band if and only if S is an inflation of a left
normal band B (i.e., efg = egf for all e, f, g ∈ B). For further examples
see [26], IV.6 (dual).

Corollary. Let S be a right and left commutative semigroup. Then ≤S

is two-sided compatible.

Remark. (i) Examples of semigroups which are right and left com-
mutative: commutative semigroups; semigroups S containing an element
so ∈ S such that the principal ideal of S generated by so ∈ S is a commu-
tative subsemigroup of S, endowed with the new operation: a∗b = as0b –
note that (S, ∗) is commutative if and only if asob = bsoa for any a, b ∈ S.
This is satisfied, for instance, if so ∈ S is also regular, since by (iv) below,
a ∗ x ∗ b = b ∗ x ∗ a, i.e., asoxsob = bsoxsoa for any a, b, x ∈ S, so that for
any inverse x ∈ S of so ∈ S the above condition is satisfied.

(ii) Every regular, resp. weakly cancellative, semigroup S, that
is right and left commutative, is commutative: in the first case, S is
externally commutative (see (iv) below), hence S is a strong semilattice
of abelian groups (by [22], Th. 11.4); in the second, a · xy = a · yx and
xy · a = yx · a imply xy = yx for all x, y ∈ S.

(iii) There are right and left commutative semigroups which are
not commutative: let X, Y be disjoint sets, 0∈ Y , and f : X×X → Y
a function such that f(x1, x2) 6= f(x2, x1) for some x1, x2 ∈ X; on
S = X ∪ Y define a multiplication by a ∗ b = f(a, b) if a, b ∈ X, and
a ∗ b = 0 otherwise. Then by [26], V.3.8(2), (S, ∗) is a semigroup such
that S3 = {0}. Hence r ∗ s ∗ t = 0 = r ∗ t ∗ s, s ∗ t ∗ r = 0 = t ∗ s ∗ r for
any r, s, t ∈ S, but S is not commutative since x1 ∗ x2 6= x2 ∗ x1. Note
that 0 ∈ S is the zero of S (since 0 /∈ X) and that on S \ {0},≤S is the
identity relation (since 0 6= a <S b implies a = x ∗ b, x ∗ a = a, whence
a = x ∗ a = x ∗ x ∗ b = 0: contradiction). See also the semigroup given in
[22], p. 27.

(iv) Let S be a right and left commutative semigroup. Then S
is externally commutative (i.e., axb = bxa for any a, b, x ∈ S): axb =
= a · bx=ab · x= b · ax= bxa. In particular, xny = yxn for any x, y ∈ S,
n ≥ 2 (put a = xn−1). Furthermore, the idempotents of S are central
(put x = e ∈ E(S)). For S regular see (ii) above. Concerning externally
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commutative semigroups in general, see Result 4.2 below.

Result 3.7. Let S be an R-commutative semigroup (i.e., ab ∈ baS1 for
all a, b ∈ S). Then ≤S is right compatible.

Proof. S satisfies the condition in Result 3.2. ♦

Remark. R-commutative semigroups S are also called right c-semi-
groups. By [22], Th. 5.2, a semigroup S is R-commutative if and only
if Green’s relation R is a commutative congruence on S. Furthermore,
by [22], Th. 5.3, S is a semilattice of archimedean semigroups. (See also
[24].)

Result 3.8. Let S be an H-commutative semigroup (i.e., ab ∈ bSa for
all a, b ∈ S). Then ≤S is two-sided compatible.

Proof. S satisfies the condition in Result 3.2 and its dual: aS ⊆ Sa for
any a ∈ S.

Remark. By [22], Th. 5.1 and Th. 5.2, a semigroup S is H-commutative
if and only if S is both R- and L-commutative (equivalently, Green’s
relation H is a commutative congruence on S).

Result 3.9. Let S be a semigroup satisfying the identity aba = ba. Then
≤S is right compatible.

Proof. S satisfies the condition in Result 3.7. ♦

Remark. Examples are given by inflations S of a right regular band B;
if S 6= B, then ≤S is not trivial (see Appendix (C) in part II).

Several of the next results depend on the following (see Result 1.18)

Result 3.10. Let S be a semigroup such that for all a, b ∈ S there exists
n > 0 such that anb ∈ bS1. Then ≤S is right compatible.

Proof. Let a <S b, i.e., a = xb = by, xa = a = ay (x, y ∈ S). Hence for
any k > 0, a = byk. If c ∈ S, then ac = x · bc = bync = b · ync = bc · z for
some n > 0, z ∈ S1. Since x · ac = ac it follows that ac ≤S bc. ♦

Result 3.11. Let S be a right archimedean semigroup (i.e. for all a, b ∈
∈ S there exists n > 0 such that an ∈ bS). Then ≤S is right compatible.

Proof. S satisfies the condition in Result 3.10. ♦

Remark. (i) A semigroup S is right archimedean if and only if for
all a, b ∈ S there exists n > 0 such that an ∈ bS1 (if an = b then
an+1 = ba ∈ bS). Examples of right archimedean semigroups, which
are not right simple, are provided by nil-extensions S of a right simple
semigroup T , in particular, proper inflations of a right simple semigroup
T (if a, b ∈ S then am, bn ∈ T for some m, n > 0, hence am = b · bn−1x
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(= bx if n = 1) for some x ∈ T ; note that T is a non-trivial right ideal
of S).

(ii) Every right (left) archimedean semigroup S contains at least
one maximal element: Assume that there is no maximal element in S.
Let I be any right ideal of S, c ∈ I and a ∈ S. Then there exists b ∈ S
with a <S b, hence xa = a for some x ∈ S and xka = a for any k > 0.
Since xn = cs for some n > 0, s ∈ S, we get a = xna = csa ∈ I.
Therefore I = S and S is right simple. It follows by Example 2 of Sec.
2, that ≤S is the identity relation, a contradiction. In case that every
element of S is maximal we have

(iii) A right archimedean semigroup S with E(S) 6= φ is trivially
ordered if and only if S is a right group:

Sufficiency holds by Example 2 in Sec. 2.
Necessity: Let a ∈ S, e ∈ E(S); then e = en = ax for some x ∈ S.

Hence S is E-inversive, and thus by Result 5.1 below, S is completely
simple: S = M(I, G, Λ; P ). Since S is right archimedean it follows that
|I| = 1. Normalizing P at i = 1, i.e., pλ1 = 1G for any λ ∈ Λ, and giving
Λ the multiplication of a right zero semigroup, it is easily seen that S is
isomorphic with the right group T = G × Λ.

(iv) By [17], Th. 1.4.6 (dual), a semigroup is right archimedean
with E(S) 6= φ if and only if S is a nil-extension of a right group. (Note
that in the cited result the statement in the parentheses of item (iv) does
not hold, as every left group shows.)

(v) A semigroup S is a right group if and only if S is right archimed-
ean and every element of S has a left identity: Necessity holds by [3],
Th. 1.27 and Lemma 1.26. Sufficiency: By the proof of (ii) above (starting
with xa = a), S is right simple. Furthermore E(S) 6= φ: let a ∈ S; then
a = a′a for some a′ ∈ S, hence a = (a′)ka for every k > 0; now (a′)n = ax
for some n > 0, x ∈ S, so that a = (a′)na = ax · a and ax ∈ E(S). It
follows by [3], Th. 1.27, that S is a right group. In particular, a semigroup
S is a group if and only if S is a right (left) archimedean monoid.

Result 3.12. Let S be a t-archimedean semigroup (i.e., S is right and
left archimedean). Then ≤S is two-sided compatible.

Remark. (i) A semigroup S is t-archimedean if and only if for all a, b ∈ S
there exists n > 0 such that an ∈ bS ∩ Sb. For example, any group and
every nil-semigroup S (i.e., for any a ∈ S there is n > 0 with an = 0, the
zero of S) is t-archimedean.

(ii) By [4],5.3, for any t-archimedean semigroup S the following
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hold:
(1) |E(S)| ≤ 1;
(2) if E(S) = φ, then ≤S is the identity relation;
(3) if |E(S)| = 1, then S is trivially ordered if and only if S is a

group;
(4) if S has a zero, then S is a nil-semigroup and S\{0} is trivially

ordered.
(iii) A semigroup S is a group if and only if S is t-archimedean

and every element of S has a right and a left identity – this follows from
Remark (v) above and its dual.

Result 3.13. Let S be a semigroup such that for all a, b ∈ S there exists
k > 0 with ak ∈ bk+1S. Then ≤S is right compatible.

Proof. S satisfies the condition in Result 3.11. ♦

Remark. By [17], Th. 1.4.4, a semigroup S satisfies the condition in
Result 3.13 if and only if S is a nil-extension of a right simple semigroup
(note that E(S) = φ is possible). As a particular case we get

Result 3.14. Let S be a semigroup such that for all a, b ∈ S there exists
k > 0 with ak = bkak. Then ≤S is right compatible.

Proof. S satisfies the condition in Result 3.11. ♦

Remark. By [17], Th. 1.4.9, a semigroup S satisfies the condition in
Result 3.14 if and only if S is a nil-extension of a periodic right group.

Result 3.15. Let S be a semigroup such that for all a, b ∈ S there exists
k > 0 with ak ∈ bkSbk. Then ≤S is two-sided compatible.

Proof. S satisfies the condition in Result 3.11 and its dual: am ∈ Sb for
some m > 0. ♦

Remark. By [17], Th. 1.4.7, a semigroup S satisfies the condition in Re-
sult 3.15 if and only if S is a nil-extension of a group. More generally, for
any nilextension S of an inverse semigroup, ≤S is two-sided compatible
by [36].

Result 3.16. Let S be a powerjoined semigroup (i.e., for all a, b ∈ S
there exist m, n > 0 such that am = bn). Then ≤S is two-sided compatible.

Proof. S satisfies the condition in Result 3.11 and its dual (if n = 1
then am+1 = ba ∈ bS). ♦

Examples of powerjoined semigroups:

1. Finite groups; note that ≤S is the identity relation (see Sec. 2).
More generally: periodic groups.



Classes of semigroups with compatible natural partial order I 185

2. Proper inflations S =
⋃

g∈G

Tg of a group G of order n: if a, b ∈ S,

a ∈ Tg and b ∈ Th say, then a2 = g2, b2 = h2 ∈ G, hence a2n = 1G = b2n.
Note that ≤S is not trivial and that a ≤S b implies ac = bc and ca = cb
for any c ∈ S (see Appendix (C) in part II).

3. Nil-semigroups: for a, b∈S exist m, n>0 such that am =0= bn.
Note that ≤S is the identity relation on S\0.

4. Monogenic semigroups: if S = 〈c〉 and a = cm, b = cn, then
an = bm. Note that ≤S is the identity relation if S is infinite. If S
is finite, then ≤S is trivial if and only if S is a cyclic group (necessity:
cn = e ∈ E(S) for some n > 0, thus cn+1 = e · c ≤S c and cn+1 = c; since
cn = e ∈ Kc, the group part of S, c = cn+1 ∈ Kc and S = 〈c〉 = Kc, i.e.,
S is a cyclic group; for sufficiency see Sec. 2).

Remark. Let S be a powerjoined semigroup; then the following hold:
(i) S is t-archimedean (see the Remarks following Result 3.12).
(ii) |E(S)| ≤ 1; if |E(S)| = 1 then S is periodic.
(iii) If a ∈ S has a right (left) identity then an = a for some

n > 1 : a = ax for some x ∈ S implies a = axk for any k > 0; since
xm = al for some m, l > 0, it follows that a = a · al = al+1. In particular,
if a ∈ S is not maximal in (S,≤S) then a ∈ S is regular. Therefore, if
S has a non-maximal element then by (ii), |E(S)| = 1 and S is periodic
(see Examples 2, 3 above). If every element of S is maximal then ≤S

is the identity relation; more precisely, if E(S) 6= φ then S is a periodic
group by Remark (ii)(2) following Result 3.12; for E(S) = φ see Example
4 following Result 3.16.

(iv) S has at least one maximal element, by (i) and Remark (ii)
following Result 3.11. Note that a maximal element of S is not necessarily
regular (see Examples 2.,3.,4. above).

(v) A semigroup S is a periodic group if and only if S is powerjoined
and every element of S has a right and a left identity, by (i) and Remark
(iii) following Result 3.12.

(vi) If a <S b then a = bn for some n > 1: a = xb = xa for some
x ∈ S implies that a = xkb for any k > 0; since xm = bl for some m, l > 0
we obtain a = bl · b = bl+1. In particular, if a ∈ S is not minimal in
(S,≤S) then an <S a for some n > 1.

A somewhat larger class is that of power centralized semigroups S:
for any a, b ∈ S there exists n > 0 such that anb = ban. This class
was introduced by P. Moravec, Power centralized semigroups, Semigroup



186 H. Mitsch

Forum 73 (2006), 143–155. There, the powerjoined semigroups and the
periodic semigroups with central idempotents are mentioned as examples.
Also, any externally commutative semigroup belongs to this class – see
Remark (iv) preceding Result 3.7.

Result 3.17. Let S be a power centralized semigroup. Then ≤S is two-
sided compatible.

Proof. S satisfies the condition in Result 3.10 and its dual: abm ∈ S1a
for some m > 0. ♦

Result 3.18. Let S be a semigroup such that for all a, b ∈ S there exists
n > 0 with ab ∈ bnS1. Then ≤S is right compatible.

Proof. S satisfies the condition in Result 3.10. ♦

Result 3.19. Let S be a left quasi-commutative semigroup (i.e., for all
a, b ∈ S there exists n > 0 such that ab = bna. Then ≤S is two-sided
compatible.

Proof. First, ≤S is right compatible, since S satisfies the condition in
Result 3.18. Also, ca = cb · y = cx · b = xnc · b = z · cb for some n > 0,
z ∈ S, ca · y = ca; thus ca ≤S cb. ♦

Result 3.20. Let S be a σ-reflexive semigroup (i.e., for all a, b ∈ S there
exists n > 0 such that ab = (ba)n). Then ≤S is two-sided compatible.

Proof. S satisfies the condition in Result 3.7 and its dual: ab ∈ S1ba
∀a, b ∈ S. ♦

Remark. For a detailed treatment of several classes of semigroups men-
tioned above, see [17] and [22]. In particular, for a semigroup S the
concepts: σ-reflexive, left quasi-commutative, and right quasicommuta-
tive are equivalent ([22], Th. 8.2).

As a further class of semigroups with right compatible natural par-
tial order we mention the following: for a semigroup S and a, b ∈ S the
left residual a ·.b ∈ S of a by b with respect to ≤S (if it exists) is defined
by the condition that x ≤S a ·.b if and only if xb ≤S a (see [7]). If a ·.b
exists for all a, b ∈ S, S is called a semigroup with left residuals (S is left
residuated).

Result 3.21. Let S be a semigroup such that the left residuals ab ·.b exist
for all a, b ∈ S. Then ≤S is right compatible.

Proof. Let a ≤S b (a, b ∈ S) and c ∈ S. Since bc ≤S bc, we have
b ≤S bc ·.c. Hence a ≤S b ≤S bc ·.c, so that by definition, ac ≤S bc. ♦

Result 3.22. Let S be a residuated semigroup (i.e., S is left and right
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residuated). Then ≤S is two-sided compatible.

Finally, we consider the class of U-semigroups S defined by the
condition that the subsemigroup generated by any two subsemigroups
of S is equal to their set theoretic union (see [26]). They appear in the
study of the lattice of all subsemigroups of a semigroup – including the
empty set – under set inclusion. For such semigroups, ≤S is “almost”
two-sided compatible:

Result 3.23. Let S be an U-semigroup. If a <S b and c ∈ S then the
following hold:

(i) ac ≤S bc whenever ac 6= a, and (ii) ca ≤S cb whenever ca 6= a.

Proof. (i) We have a = xb = by, xa = a = ay, hence a = byk for
any k > 0 and ac = x · bc = b · yc, x · ac = ac (x, y ∈ S). By [26],
V.2.17(2), there exists n > 0 such that yc = yn or yc = cn. Hence either:
ac = byn = a, or: ac = bcn = bc · z (z ∈ S1) and ac ≤S bc.

(ii) is proved in a similar way. ♦

4. (E-)Medial semigroups

A semigroup S is called medial if it satisfies the identity axyb =
= ayxb (see [22], [26]). Note that if E(S) 6= φ then E(S) is a normal
band. Examples:

(1) commutative semigroups;
(2) right (left) commutative semigroups (see Result 3.6);
(3) normal bands B, i.e., efgh = egfh for all e, f, g, h ∈ B (see

[27], IV.1.2); more generally, inflations of normal bands (note that by
[26], V.5.6(7), a semigroup S is an inflation of a normal band if and only
if S is medial and S2 is a band).

(4) rectangular abelian groups, i.e., S = R × G, where R is a
rectangular band (efg = eg ∀e, f, g ∈ R – see [13], IV.3.2) and G is
an abelian group (by [22], Th. 9.8, these are precisely the simple medial
semigroups); more generally,

(5) S = N×T where N is a normal band and T is any commutative
semigroup (note that S is commutative if and only if N is a semilattice).

(6) S = C × T where C is a semilattice and T is a rectangular
abelian group (note that S is commutative if and only if T is an abelian
group – a commutative rectangular band has only one element: see [13],
IV.3.2).
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(7) Generalized Rees matrix semigroups S = M(I, T, Λ; P ) over
a commutative semigroup T with P = (pλi) such that for any λ ∈ Λ,
pλi = pλj∀i, j ∈ I (i ∈ I, pµi = pνi∀µ, ν ∈ Λ). Note that S is not
commutative if |I| > 1 or |Λ| > 1 – see Appendix (G) in part II.

(8) S = 〈Y, Sα; ϕα,β〉, i.e., strong semilattices of medial semigroups
Sα(α ∈ Y ), are again medial, because for all a ∈ Sα, b ∈ Sβ , x ∈ Sγ ,
y ∈ Sδ, say, and ε = αβγδ: axyb = (aϕα,ε)(xϕγ,ε)(yϕδ,ε)(bϕβ,ε) = ayxb
since the product is formed in Sε.

Remark. (i) In general, for a medial semigroup S,≤S is not right or
left compatible: consider the generalized Rees matrix semigroup S =
= M(I, T, Λ; P ) where I = Λ = {1, 2}, T is the semilattice 0 < e < f ,
and P is given by p11 = e, p12 = f, p21 = p22 = 0. Then (1, e, 1) <S

(1, f, 1), but (1, e, 1)(2, f, 2) = (1, e, 2) �S (1, f, 2) = (1, f, 1)(2, f, 2),
since (1, f, 2)(k, x, λ) = (1, 0, λ) 6= (1, e, λ) for any (k, x, λ) ∈ S.

(If p11 = e, p21 = f, p12 = p22 = 0, then ≤S is not left compatible.)
Note that S is medial:

(i, a, λ)(k, x, κ)(l, y, ν)(j, b, µ) = (i, apλkxpκlypνjb, µ),

(i, a, λ)(l, y, ν)(k, x, κ)(j, b, µ) = (i, apλlypνkxpκjb, µ).

If one of pλk, pκl, pνj is 0 then also one of pλl, pνk, pκj is 0, and equality
holds. If none of pλk, pκl, pνj is 0 then λ = κ = ν = 1, so that p1k, p1l, p1j

are equal to e or f . If one of these is e then both products are equal to
(i, axybe, µ). If none of these is e then all are equal to f and we obtain
(i, axybf, µ) – see Appendix (G) in part II.

(ii) By [26], IV.3.1, a medial semigroup S is a semilattice of archi-
medean semigroups; see also Result 4.3.

Result 4.1. Let S be a medial semigroup. Then ≤S is right (left) com-
patible with multiplication by any c ∈ S, which has a right (left) identity.

Remark. (i) For an inflation S of a normal band B (see Example (3)
above) an element a ∈ S, a /∈ B, has no right and no left identity. In
spite of that, ≤S is two-sided compatible, since by Result 1.7, Cor., for
any normal band B, ≤B is two-sided compatible (see Appendix (C) in
part II).

(ii) For semigroups S = N × T given in Example (4) above with T
a commutative monoid, every element has a right and a left identity. It
follows that ≤S is two-sided compatible. Note that ≤S is not trivial if
≤N or ≤T is not trivial. More generally,

(iii) Let S = 〈Y, Sα; ϕα,β〉 be such that Sα = Nα × Tα where Nα is
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a normal band and Tα is a commutative monoid for any α ∈ Y . Then S
is a medial semigroup (see Example (6) above), in which every element
has a left and a right identity. Hence ≤S is two-sided compatible – see
Appendix (B) in part II.

As a particular class of medial semigroups we consider semigroups
S satisfying axb = bxa for all a, b, x ∈ S: by [22], Lemma 11.1, such
semigroups S are medial. They are called externally commutative, also
completely symmetrical (see [22]). For such semigroups, Result 4.1 can
be sharpened obtaining as a particular case of Result 3.17:

Result 4.2. Let S be an externally commutative semigroup (i.e., axb =
= bxa for any a, b, x ∈ S). Then ≤S is two-sided compatible.

Proof. For any a, b ∈ S, a2b = ba2. Hence the statement follows by
Result 3.17. ♦

Remark. (i) For the particular case of a right and left commutative
semigroup S see the Cor. of Result 3.6 and Remark (iv) following it.
Note that in general, S is not commutative (see Remark (iii) preceding
Result 3.7).

(ii) There are externally commutative semigroups which are not
right nor left commutative. The following is an adaptation of the con-
struction of N -semigroups due to T. Tamura (see [25], II.7.3). Let (S, +)
be a commutative cancellative semigroup and f : S×S → S be a function
satisfying for any a, b, c ∈ S:

f(a, b) + f(a + b + f(a, b), c) = f(b, c) + f(a, b + c + f(b, c)) =

= f(b, a) + f(c, a + b + f(b, a)).

Define a new operation on S by: a ∗ b = a + b + f(a, b); then (S, ∗)
is an externally commutative semigroup (associativity holds by the first
equality, external commutativity by the second). If in addition:

(1) f(x, y) 6= f(y, x) for some x, y ∈ S then (S, ∗) is not commuta-
tive;

(2) f(x, y) + f(a, x + y + f(x, y)) 6= f(y, x) + f(a, x + y + f(y, x))
for some a, x, y ∈ S, then (S, ∗) is not right commutative (hence also not
commutative);

(3) f(x, a) + f(y, x + a + f(x, a)) 6= f(y, a) + f(x, y + a + f(y, a))
for some a, x, y ∈ S, then (S, ∗) is not left commutative (hence again not
commutative).

(iii) By contrast, if S is an externally commutative semigroup such
that every a ∈ S has a right (left) identity, then S is commutative: for
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any a, b ∈ S and any right identity a′ ∈ S of a ∈ S, ab = aa′a′ · b =
= b · a′a′ · a = b · aa′a′ = ba. In particular, any externally commutative
semigroup without maximal elements is commutative (see Appendix (F)
in part II).

Result 4.3. Let S be a medial semigroup which is archimedean (i.e., for
any a, b ∈ S there is n > 0 such that an ∈ SbS). Then ≤S is two-sided
compatible.

Proof. Let a <S b and c ∈ S. Then a = xb = by, xa = a = ay, for some
x, y ∈ S. Hence a = byk for any k > 0. Since yn = sct for some n > 0,
s, t ∈ S, we have

ac = x · bc = bync = b(s · ct)c = b(ct · s)c = bc · z (z ∈ S), x · ac = ac;

that is, ac ≤S bc. Similarly, ca ≤S cb. ♦

Examples of medial archimedean semigroups:
(1) Rectangular abelian groups: S is medial by example (4) above;

S is archimedean since S is (completely) simple. More generally, infla-
tions S =

⋃

α∈T

Tα of a rectangular abelian group T : for any a, b ∈ S, b ∈ Tβ

say, a2 ∈ T and thus a2 = xβy = xby for some x, y ∈ T , since T is (com-
pletely) simple; S is medial since T is so. Note that ≤S is not trivial if
S 6= T (see Appendix (C) in part II).

(2) Generalized Rees matrix semigroups S = M(I, T, Λ; P ) where
T is a commutative, archimedean semigroup and P is such that for
any λ ∈ Λ, pλi = pλj ∀i, j ∈ I (for any i ∈ I, pµi = pνi∀µ, ν ∈ Λ):
indeed, if (i, a, λ), (j, b, µ)∈ S then for apλi, bpλjpµi ∈ T there are
n > 0, x ∈ T , such that (apλi)

n = bpλjpµix, whence (i, a, λ)n+1 =
= (i, x, λ)(j, b, µ)(i, a, λ); S is medial by example (7) above. Note that
≤S is non-trivial if ≤T is non-trivial (see Appendix (G) in part II); for
example if T is a commutative nil-semigroup.

Remark. (i) Let S be a right commutative archimedean semigroup
without idempotents. Then by [26], IV.5.1, a 6= xa for all a, x ∈ S;
hence ≤S is the identity relation, by Result 2.2.

(ii) Also, every medial weakly cancellative semigroup S is trivially
ordered (see Sec. 2). By [26], III.4.7, these semigroups are exactly the
subdirect products of a rectangular band and a commutative cancellative
semigroup.

A further sufficient condition for compatibility of ≤S is given in

Result 4.4. Let S be a medial semigroup. If (S,≤S) does not contain
maximal elements then ≤S is two-sided compatible.
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Proof. Every element of S has a right and a left identity (see the proof
of Result 2.2). Thus the statement follows from Result 4.1 and its dual.

♦

Examples of semigroups satisfying both conditions in Result 4.4:
(i) Chains without greatest element (considered as particular semi-

lattices).
(ii) S = C × T where C is a chain without greatest element and

T is a rectangular abelian group (see example (6) above): if (α, a) ∈ S
then (α, a) <S (β, a) for any β ∈ C with α <C β.

(iii) S =N×T where N is a normal band and T is a commutative
semigroup without maximal elements (see example (5) above): if (α, a) ∈
∈ S then (α, a) <S (α, b) for any b ∈ T with a <T b.

(iv) Strong semilattices Y of rectangular abelian groups Sα, S =
= 〈Y, Sα; ϕα,β〉, such that (Y,≤Y ) has no maximal element and each ϕα,β

is surjective: S is medial by [26], IV. 3.10 (8) (see also [22], Th. 9.10);
(S,≤S) has no maximal elements, by Appendix (F) in part II.

(v) Iterated inflations S =
∞⋃

n=0

Sn of a medial trivially ordered semi-

group So (for example, So a rectangular abelian group) – see Appendix
(D) in part II: at each step, every maximal element is inflated.

Next we will consider the larger class of E-medial semigroups S:
aefb = afeb for all a, b ∈ S, e, f ∈ E(S). Note that if E(S) 6= φ then
E(S) is a normal band. Examples:

(1) Medial semigroups.
(2) Semigroups S with E(S) = φ ([4], [5]) or with commuting

idempotents; in particular
(3) Inverse semigroups; more generally, inflations of inverse semi-

groups (note that these are not regular). An inverse semigroup S is me-
dial if and only if S is commutative: if S is medial then for all x, y ∈ S,

xy = xx−1 · xy · y−1y = xx−1 · yx · y−1y = (xx−1 · y)(x · y−1y) ≤S y · x

since xx−1y ≤S y, xy−1y ≤S x, and ≤S is two-sided compatible by 7.8;
similarly yx ≤S xy, hence xy = yx.

(4) Rectangular groups S = R ×G, where R is a rectangular band
and G is a non-abelian group (note that S is not medial); more generally,
inflations of such semigroups; in particular, non-abelian groups.

Remark. Let S be a semigroup such that E(S) is an ideal of S; then S
is E-medial if and only if aefa = afea for any a ∈ S, e, f ∈ E(S) (for S
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a band, see [13], Ex. IV.13, or [27], IV.1.2): for the proof of sufficiency
let a, b ∈ S, e, f ∈ E(S); then

aefb = aef · aef · b = (aefa) · efb = (afea) · efb · efb =

= a(f · ea · e · f) · befb = a(f · e2a · f) · bfeb =

= af(e · af · bf · e)b = af(e · bf · af · e)b =

= af(eb · f · af · eb) = af(eb · af 2 · eb) =

= afeb · afeb = afeb.

Result 4.5. Let S be an E-medial semigroup such that a ≤S b implies
a = bf for some f ∈ E(S1). Then ≤S is right compatible with multipli-
cation by regular elements.

There are several particular classes of medial resp. E-medial semi-
groups of special interest.

Result 4.6. Let S be a semigroup satisfying the identity axb = ab. Then
≤S is two-sided compatible; more precisely, a ≤S b implies ac = bc and
ca = cb for every c ∈ S.

Remark. By [25], III.4.10 (4), a semigroup S satisfies axb = ab for all
a, b, x ∈ S if and only if S is an inflation of a rectangular band B. For
example, see the six-element semigroup in [13], Ex. IV.9. If S 6= B then
≤S is not the identity relation (see Appendix (C) in part II). Generalized
Rees-matrix semigroups satisfying the condition in Result 4.6 are given
in Example (iii) following Result 8.6 (see Appendix (G) in part II).

More generally, we consider semigroups S such that aeb = ab for all
a, b ∈ S, e ∈ E(S) ([33]). In case that E(S) 6= φ, E(S) is a rectangular
band and S is E-medial. If the natural partial order has a particular
form, we have

Result 4.7. Let S be a semigroup such that aeb = ab for all a, b ∈ S,
e ∈ E(S). If a ≤S b implies a = bf for some f ∈ E(S1), then ≤S is right
compatible; more precisely, a ≤S b implies ac = bc for any c ∈ S.

Remark. (i) By [25], IV. 3.12 (3), a semigroup S satisfies aeb = ab for
all a, b ∈ S, e ∈ E(S), and S2 is regular if and only if S is an inflation of
a rectangular group T . For regular semigroups satisfying this condition,
see Result 7.12.

(ii) Let S = R×G be a rectangular group, where R is a rectangular
band and G is a nontrivial group. Then ≤S has the indicated form (since
S is regular) and S satisfies aeb = ab for all a, b ∈ S, e ∈ E(S), but not
axb = ab for all a, b, x ∈ S.
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(iii) Let S be a rectangular semigroup, i.e., if a, b, x, y ∈ S are such
that three of ax, ay, bx, by ∈ S are equal then all four are equal. Such
a semigroup satisfies aeb = ab for all a, b ∈ S, e ∈ E(S) (by [3], Ex.
3.2(7)), but in general not axb = ab for all a, b, x ∈ S (see (ii)).

(iv)A semigroup S is called stationary on the left if ac=bc (a, b, c∈S)
implies ax = bx for any x ∈ S. By [30], also [3], Ex. 3.2(9), such semi-
groups are rectangular, hence satisfy aeb = ab for all a, b ∈ S, e ∈ E(S).
Their natural partial order has the desired property:

Result 4.8. Let S be a semigroup, which is stationary on the left. Then
≤S is right compatible; more precisely, a ≤S b implies ac = bc for every
c ∈ S.

Proof. If a <S b then ay = a = by for some y ∈ S, hence ac = bc for
any c ∈ S. ♦

Remark. If S is a rectangular monoid, then ≤S is the identity relation:
let a ≤S b, i.e., a = xb = by, xa = a = ay for some x, y ∈ S. Then
a · 1S = ay = by, and three of a1S, ay, b1S, by ∈ S are equal; therefore
a = b. If ≤S has a particular form we have

Result 4.9. Let S be a monoid such that a ≤S b implies a = eb or
a = bf for some e, f ∈ E(S). Then the following are equivalent:

(i) S satisfies aeb = ab for any a, b ∈ S, e ∈ E(S);
(ii) E(S) = {1S};
(iii) ≤S is the identity relation.

Proof. (i) implies (ii): Let e ∈ E(S); for a = b = 1S we obtain e = 1S.
(ii) implies (iii), by the particular form of ≤S .

(iii) implies (i): e = 1S (0 /∈ S since |S| > 1) and (i) is trivial. ♦

Remark. Let S be a regular or groupbound monoid. Then ≤S has the
above form (see the Introduction). Therefore, ≤S is the identity relation
if and only if E(S) = {1S}. In fact, in this case S is a group since S is
E-inversive (see Result 5.3 below).

For another particular class of E-medial semigroups we have

Result 4.10.Let S be a semigroup such that axeb=aexb for all a, b, x∈S,
e ∈ E(S). Then ≤S is two-sided compatible with multiplication by regular
elements.

Proof. For any c = cc′c ∈ S,

ac = x · bc = byc = b · ycc′ · c = b · cc′y · c = bc · z (z ∈ S), xac = ac;

ca = cb · y = cxb = c · c′cx · b = c · xc′c · b = w · cb (w ∈ S), ca · y = ca;

therefore, ac ≤S bc and ca ≤S cb. ♦
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Remark. (i) Any semigroup with central idempotents satisfies the con-
dition in Result 4.10 (see Result 1.19).

(ii) The class V of semigroups considered in Result 4.10 is properly
contained in between the class of medial and that of E-medial semigroups:
(1) any non-abelian group S is non-medial, but S ∈ V; (2) any inverse
monoid S containing a non-central idempotent is E-medial, but S /∈ V
(for ea 6= ae, also aa−1ea 6= aea−1a). Regular semigroups belonging to
the class V are considered in Result 7.19 below.

With respect to the converse of Result 4.10 we have (for S a band,
see [13], Ex. IV.12):

Result 4.11. Let S be a semigroup such that E(S) is a subsemigroup
of S satisfying: if a, b, x ∈ S, e ∈ E(S), then axeb, aexb ∈ Eα for some
α ∈ Y , where E(S) is the semilattice Y of rectangular bands Eα (α ∈ Y ).
If ≤S is two-sided compatible with multiplication by idempotents then
axeb = aexb for all a, b, x ∈ S, e ∈ E(S).

Proof. Note that E(S) is an ideal of S. Let a, b, x ∈ S, e ∈ E(S); then
we have for some α ∈ Y that axeb, aexb ∈ Eα, hence

axeb = axeb · aexb · axeb = (axeba) · ex · (baxeb) ≤S aexb,

because axeba = axeb · a = a · xeba with axeb ∈ E(S), i.e., axeba ≤S

a, and also baxeb ≤S b; since exbaxeb, aex ∈ E(S), it follows that
axeba · exbaxeb ≤S a · exbaxeb, and aex · baxeb ≤S aex · b; thus the
inequality holds. Since by 7.1, Cor., ≤S is the identity relation on Eα,
equality prevails. ♦

Remark. Any inflation S =
⋃

α∈B

Tα of a rectangular band B satisfies the

conditions in Result 4.11, since by 7.1, Cor., B is trivially ordered (see
Appendix (C) in part II).

A generalization of medial semigroups in another direction is given
by the class of E-externally medial semigroups S, i.e., exyf = eyxf for
any e, f ∈ E(S), x, y ∈ S. If E(S) 6= φ then E(S) forms a normal band.
Examples:

(1) Medial semigroups.
(2) Semigroups S in which every idempotent is a left (resp. right)

zero of S. In particular, (non commutative) semigroups with zero as
unique idempotent; for example, semigroups with zero multiplication or
idempotentfree semigroups with a zero adjoined.

(3) Generalized Rees matrix semigroups S = M(I, T, Λ; P ), where
T is a semigroup with zero as unique idempotent and P is arbitrary; hence
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E(S) = {(i, 0, λ) ∈ S|i ∈ I, λ ∈ Λ}. Note that in general, S is not medial:
let T be a semigroup as above which is also right 0-cancellative; consider
T 1, |I| > 1, and P such that 1 ∈ T 1 is not an entry of P and there are pλi,
pλj ∈ P which do not commute (hence pλi, pλj 6= 0) – then (i, 1, λ) /∈ E(S)
and (i, 1, λ)(i, 1, λ)(j, 1, λ)(i, 1, λ) 6= (i, 1, λ)(j, 1, λ)(i, 1, λ)(i, 1, λ).

(4) Semigroups S such that E(S) is a right (left) ideal of S and E(S)
is a rectangular band: if e, f ∈ E(S), x, y ∈ S, then exyf , eyxf ∈ E(S)
and

exyf = exyf · eyxf · exyf = (exyfe) · yx · (fexyf) = e · yx · f,

because exyfe ≤E(S) e, fexyf ≤E(S) f , hence exyfe = e, fexyf = f
(since a rectangular band is trivially ordered, by 7.1, Cor.). For instance,
let S =< Y ; So, S1; ϕ > be the strong semilattice Y : 0 <Y 1 of a
rectangular band So and an idempotentfree semigroup S1 with arbitrary
linking homomorphism ϕ : S1 → So. In general, S is not medial: take for
S1 any non-medial, idempotentfree semigroup (for example, S1 = N ×G
where N is the additive semigroup of natural numbers without zero and
G is any non-abelian group).

(5) Let S be a semigroup such that E(S)a ⊆ aS1, aE(S) ⊆ S1a
for any a ∈ S, and every element of S has both an idempotent left
and right identity; then S is E-externally medial if and only if S is
commutative. Concerning necessity, let x, y ∈ S; then x = x′x, y =
= yy′ for some x′, y′ ∈ E(S) and xy = x′xyy′ = x′y · xy′ ≤S yx, since
x′y = yz(z ∈ S1) and xy′ = wx(w ∈ S1) imply that x′y ≤S y and
xy′ ≤S x, whence the inequality follows by Result 4.12 (and its dual)
below; similarly, yx ≤S xy and thus xy = yx. (Note that every inverse
semigroup satisfies the given conditions – see Example (3) for E-medial
semigroups; also every semigroup with central idempotents in which any
element has an idempotent left (right) identity – see Appendix (F ) in
part II).

Result 4.12. Let S be an E-externally medial semigroup (i.e., exyf =
= eyxf for any e, f ∈ E(S), x, y ∈ S). If for any a ∈ S there is some
g ∈ E(S) with a = ag (a = ga), then ≤S is right (left) compatible.

Proof. Let a <S b; then a = xb = by, xa = a for some x, y ∈ S,
and there is g ∈ E(S) such that b = bg. Hence, if c ∈ S, c = ch with
h ∈ E(S), then

ac = x · bc = byc = b(g · yc · h) = b(g · cy · h) = bc · z (z ∈ S),

x · ac = ac; i.e., ac ≤S bc. ♦
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Remark. (i) If in an E-externally medial semigroups S every element
has both an idempotent left and right identity then ≤S is two-sided com-
patible; note that in this case S is medial (see Result 4.1).

(ii) Let S be a strong semilattice Y of monoids Sα(α ∈ Y ). Then
S satisfies the conditions of Result 4.12 if and only if S is commutative
(necessity: since every Sα (α ∈ Y ) is commutative, so is S). In this case,
≤S is two-sided compatible by Result 3.3, Cor.

(iii) A regular semigroup S is E-externally medial (satisfies the con-
ditions of Result 4.12) if and only if S is medial (see Remark (i)). In this
case, ≤S is two-sided compatible (see Result 7.16, Remark (i),(ii) follow-
ing it). In particular, any completely simple semigroup S = M(I, G, Λ; P )
over an abelian group G such that in each row of P all entries are equal
(i.e., for any λ ∈ Λ, pλi = pλj for all i, j ∈ I) is E-externally medial. In
this case, ≤S is the identity relation; note that S is a rectangular abelian
group since E(S) is a subsemigroup of S (see [25], IV.3.3).

(iv) More generally, semigroups satisfying the conditions in Result
4.12 are given by “rectangular commutative monoids”, i.e., S = R × T ,
where R is a rectangular band and T is a commutative monoid (note that
in general, S is not “rectangular” in the sense of Remark (iii) following
Result 4.7). S is again medial, and for any (α, a) ∈ S there is (α, 1T ) ∈
∈ E(S) such that (α, 1T )(α, a) = (α, a) = (α, a)(α, 1T ); hence ≤S is two-
sided compatible (by Remark (i)). Note that ≤S is the identity relation
if and only if ≤T is so (since (α, a) ≤S (β, b) ⇔ α = β, a ≤T b) – see
Appendix (G) in part II.
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