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Abstract: By using a theorem of Bredihin on Beurling’s primes it is proved
that
#{n|192(n) < .’L‘} = Cl‘(log x)"'_l + O(:C(log x)r—l—al)

with some constants e; > 0, 7 > 0, where ¥ is completely multiplicative,
9(p) = p + 1 for every prime p, and J2(n) = 3(I(n)).

1. Introduction and formulation of the theorem

We shall use the following notations: N = set of natural numbers,
P = set of primes, p with or without suffixes always denote prime num-
bers, m(x) = number of primes up to z, m(z, k,[) = number of primes up
to x belonging to the arithmetic progression = [ (mod k). The letters
¢, c1, Co, . .. denote positive constants not necessarily same at different oc-
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currences. (m,n) denotes the greatest common divisor of m,n € N. Let
P(n) be the largest prime factor of n.

A function f : N — C (= set of complex numbers) is said to be a
multiplicative function, if f(1) = 1 and f(mn) = f(m) - f(n) holds for
every coprime pairs of m,n € N. We say that f is completely multiplica-
tive, if f(mn) = f(m) - f(n) is satisfied for every m,n € N.

A function g : N — R (= set of real numbers) is additive, if g(1) =0
and g(mn) = g(m) + g(n), when (m,n) = 1.

Let ¢(n) be Euler’s totient function, o(n) be the sum of divisors
function, w(n) = number of distinct divisors of n, u(n) be the Moebius-
function. ¢, o, u are multiplicative, w is additive. For some prime power
pr () =p* —p* T o(p*) =1+p+ ..+ pup) = -1, u(p*) =0
if  >2, w(p*) = 1.

Let f(n) (n € N) be such a function for which f(n) — oo(n — o0).
A natural question is to find the asymptotic of

(1.1) #{n e N|f(n) <z} as x— oc.
In some cases it is harder than to count the asymptotic of Y  f(n).
n<x
P. T. Bateman investigated (1.1) for f(n) = ¢(n) by analyzing the
Dirichlet series

1
Fo(s) =) (s =0 +it)
close to the vertical line 0 = 1, and proved that

#lnlp(n) < 2} = Ca + 0 < exp (= (1= 2) (Gtog )10 logx)))%>

C(22C§3)
¢
Similar estimate can be done for #{n|o(n) < z}, namely

#{nlo(n) <2} = Cro+ O (vexp (—(log))? ) .
by using the Dirichlet series,

A =3 T

and analyzing its properties at ¢ = 1. Here (' is a calculable constant.
(See also [2], [3], [4]).

for any € > 0. Here C' = , C is the Riemann zeta function.
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Let a = —1, or a € N be a fixed number, x,(n) be a completely
multiplicative function generated by k,(p) =p+a (p € P). Then
=1 1\
R S T
(e

and, by using the method of Smati [2] one can prove that

#{nlka(n) < 2} = c(a)z + O(wexp(—cy/Tog ),
where ¢(a) and ¢ are positive constants.
It would be nice to know the asymptotic of (1.1) for example, if

f(n) = ¢le(n), f(n) = o(e(n)), f(n) = ¢(a(n)), f(n) = a(a(n)).
There exist some inequalities of (1.1) for these functions in the literature
but the asymptotic is unknown.

Similarly, it would be interesting to count the asymptotic of

(1.2) #{peP, f(p) <z}

where

(13)  flp)=elp+1), f(p) =clp+1), f(p) =rilp+1)
Theorem A. Let f be one of the functions listed in (1.3). Then, there

1S a positive constant T such that
x x
O —>
log x + <(log :)3)1+5>

We shall prove it only in the case f(p) = k1(p+1). In what follows
we shall write ¢ instead of ;.

(1.4) #{pePlflp) <x}=1

holds for any constant € < %

Theorem 1. Let ¥ be completely multiplicative, ¥(p) = p+1 forp € P.
Let
R(z) =#{p e Pld(p+1) < z}.

x x
R®) = Tiogz 7O <<logx>1+f) ’
where T is a positive constant, € is an arbitrary constant less than 1/2.
T = 5(00), S is defined in (3.10), (3.11).
Let 1 <m <m < ..., m — oo (j — o0) be a sequence
of real numbers, P = {m;|j = 1,2,...}. Let N be the semigroup

Then
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generated by P under multiplication. Assume that the elements of
N are arranged in ascending order and are denoted by {n;}32,. Let

Ms(z) = S 1; Np(z)= 3 L.

i <T n; <z
N and P are called the sets of Beurling’s type of integers, and that
of the set of Beurling’s type of primes. These types of semigroups have
been introduced by A. Beurling [5]. M. B. Bredihin proved the following
assertion which is quoted now as

Lemma 1. [If

x T
() = Tlog:): 0 <(log:):)1+5>

with some € > 0, then
= - z(log )™
Nz(z) = Czx(logz)™ + O ( Togz)™ )
where €; = min{1,¢e}.
If we choose P = {J(p) = p+ 1, p € P}, then N = {(n)|n € N}.
Since Il 5(z) = m(z—1) = =—+0O (W), therefore T'(x) (= Np(x)) =

" logz

=Czx+0O (10§x), according to Lemma 1.

Let

Ty(z) := #{n|d2(n) < x}.

From Lemma 1 and Th. 1 immediately follows

Theorem 2. We have
Ty(z) = Cz(logz)" " + O (z(logz)™'79),

where 0 < € < 1/2, C is a positive constant and T is the same as in
Th. 1.

2. Auxiliary results

Let mp(x) = #{n <z |w(n) = k}.
Lemma 2 (Hardy—Ramanujan [8]). We have
cir (loglogx + ¢o)*1
()
log x (k—1)!
where ¢y, co are suitable explicitly given constants.

(k=1,2,..)

Let, as usual,
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According to the Siegel-Walfisz theorem we have
lix lix
w(x, k1) — ,
M I BT
uniformly as (k,1) = 1, k < (logz)#, 2 < x, A is an arbitrary constant,
C = C(A). (See [9].)
Lemma 3 (Sieve results). We have

(1)

cy ,
m(x+y, k1) —n(r, k) < ———— if 1 <k<y<unx,
(w by =l bd) < ol y
especially
(2)
7T(x+y)—7r(:z)<logy if 1<y<u,
(3) .
x
m(z, k1) < ——— if k<u,
& 1) (k) log % /

where C' 1s an absolute constant.

(1) is contained in Th. 3.7 in [7], (2) and (3) are special cases of (1).
Lemma 4 (Bombieri—Vinogradov inequality). Let A be an arbitrary
constant, B > 2A+5. Then
lix x

~ o) = ogn

" Tos o ®
where the constant d is ineffective. (See in [9].)

Lemma 5. For every constant A(> 0) there exists a constant B such
that

2w(k) c ‘
(2.1) > o < og )7 if x> 10,

k<wl/3
w(k)>Bloglog x

where ¢ is a constant.
Proof. Let Uy =3, Ujyy = 2U;, (7 =0,1,...). Let Up < 2/ < Upyy.
Let

(2.2) Ry, = .
UhSkZSUW o(k)

w(k)>Bloglogx
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It is known that w(k) < log k, therefore R, = 0 if logk < Bloglogz, i.e.
if & < (logz)B. Assume that U, > (logz)®. We know that o(n) >

oglozn (M = 3), therefore

1 < cloglog U,
p(k) = Un
where c is an absolute constant. Then by Lemma 2,

R, <S8BT 5 e
h

if k¢ (Uh,Uh+1),

Up<k<Upy1
w(k)>Bloglog x

< c(loglog Up)Up41 Z ,(loglog Uy, 4 ¢1)" !
Uh(log Uh) [>Bloglogx (l - 1>'
Thus the left-hand side of (2.1) is less than

Z < Xp -2,

Uh+1 >(log m)B
h<T

where
2¢(loglog U,
21 — ZC(lOg—ngh) S CQ].ng,
heT 0gUp
(2loglog x + 2¢;) !
Y —
? 2. (I—1)!
[>Bloglogx
Let n,, = %@(’ngl—fﬂc)m. Then, from logm! = mlog ™ + O(1) we obtain
that

2log1l 2
nmSCQeXp(mlog oglog T+ C).

Let m > Bloglogz — 1. Then 7,, < ¢, exp(—mlog ), and so

B
2y = Z Nm < C2 Z exp (—(m —1)log g) <

m>Bloglog x m>Bloglog x

B B
< 2% exp (—B(log log ) log g)
if x > z(B). Thus
Sy < c5(log ) FES,

c3 = c3(B). Hence Lemma 5 immediately follows. ¢
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3. Proof of Theorem 1

Let t = (logz)®, 0<e < %, e be fixed, @ = [] p. For some
p<t

=1Ir». Em=]]r

p%||n p"|In
p<t p>t

Let U(z|D) = #{p < z|M(p+1) = D}. M(p+ 1) = D holds, if
and only if p+1=0 (mod D), and (25,Q) = 1. Thus

U(xz,D) = Z Z

p+1= O (mod D) ‘(Q p+1)

integer n let

Thus

U(x|D) = Z,u m(x,0D,—1).

J|Q
Let
_ p(o) 1 1
) _ng(éD) _DH ! p—1)°

o i

Hence

m(y,0D, —

(3.1) max |U(y|D) —v(D)liy| < %max

b= 30?1;;5) ‘ '

Let P(n) be the largest prime factor of n. Let us sum over those D < z1,
for which P(n) <

Then
(32)
: Ly | wm
5 maxlU1D) = oD)iy] < Y maxrlylh, 1) = |2
D<z4 k<z3
P(D)<t say

By using Lemma 4, one can deduce that

. cix
(33) Z max|U(y|D) —v(D)liy] < g
DSmZ
P(D)<t

where A is an arbitrary positive constant. It is enough to observe that
the right-hand side of (3.3) can be subdivided into two parts according
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to w(k) < Bloglogx or w(k) > Bloglogz. The sum under w(k) <

< Bloglogz is O ( iz ) for every fixed B. The second sum is less

(logz)4 )7
than

1 iz
li . gu(k)
i) > 50 2" = ogap

1
k<z3
w(k)>Bloglog x

if B is large enough. See Lemma 5.

3.1.
Y =(logz)*, H= _—L-0<e <1

(log )2 ?
Let g1, g2 be completely multiplicative,
1+1 if ¢<Y 1, if ¢<Y
91(q) = { I 92(q) = {

1, if ¢>Y’ 14+, if ¢>Y

for every prime gq. .
o) =TT (143) =1t -

p

p*ln
Observe that, from the known inequality 7(z,k,l) < C(li x)/¢(k) if
k < \/z (see (3) in Lemma 3), say, we have

1
Zloggz(er 1)< CZW(%Q“, _1)2 < (li z) Z - <

p<a >Y
iz
S Vlogy
Hence )
#{p <zllogge(p+1) > H} < e
- HY logY’
thus ‘
#{p <zllogg(p+1) > H} < L,
- (log z)=2

This quantity is not bigger than the error term.
Let us observe:
1)ifd(p+1) <z, and Ay(p+ 1) = D, then (p+ 1)x(D) < z.
2) if (p+1)k(D) <z, loggs(p+1) < H,and ¥(p+1) > z, then

e (640

(3.4) (p+1)k(D) > w1 > 7
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and so
x cx x
. — < 1< ——-.
(35) WD) TRy =P Ty
By sieve we obtain that the number of primes satisfying (3.5) is less than
li x
Hr(D)e(D)

The sum of this quantity over those D for which P(D) < t is
O ((bghlf()lix) -0 (e(logl]c}gx)lix)‘ Indeed,

3 ¥<H(H 1 1 +) <
< 3 5 <
e D)D) ~ o rP)e(p)  R(P?)e(p?)
1
<11 (1 + -+ %) <
Dt p p
1
<exp ( -+ cl> <
p<t p
<cologt.
Here ¢, ¢q, ¢ are absolute constants. .
3.) Since U(z|D) < w(z,D,~1), and n(z,D,~1) < C g if

1 < D < /x (see Lemma 3), therefore

(3.6) S U@D) < Cliz Y ﬁ—l—x 3 %.

D>zl/4 11/4<D<CL‘1/2 11/2§D<z
P(D)<t P(D)<t P(D)<t
Let
U(z,y) =#{n <z, P(n) <y}
It is known (see [9], Th. 1 in Ch. III. 5) that
U(z,y) < cre™™? if x>y >2,
(3.7) " loga
U= foey-
Then
log V' —logx
3.8 1<V —— | <V — .
(3:8) P(DZ)Q = OV P ( 2logt) = OV &P (85loglogx)

V<D<2V
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Subdividing the interval [z'/4 2'/2), and [z!/2, x) into intervals of
type [V,2V) and observing that 1/¢(D) < % if D e [V,2V], we
obtain that

liz
D) <c—.
> Ulal )S e

D>zl/4
P(D)<t

From (3.3) we obtain that

(3.9) R(z)=liz }_ Zggg +0 (%) .
D

To estimate the right-hand side of (3.9), observe that v(D) = 0 if D is
odd, furthermore that
1 1 1 1 1
vD)==TT(1- —)==TT(1- — ) T]——.
2= 51 55) =515 T
ptD p>2 p>2

Let A be multiplicative,

h2") = 2a(11§)a B 31a
) = e T ey TSP PP
and h(p®) = 0 if p > ¢. Thus
Zgg; — L(H)W(D), if P(D)<t,

where
(3.10) L(t) = 2H (1 - z%)
We have -

P(%th(D) =
N (H 2 +">3g<t<l+ %(”pil = +)) N
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and so

(3.11) S(t):== > h(D)L(t) :% Ep —)@-p—1) _

Let
(3.12) 7 = S(00) = %H <1 - #)
o p(p—1)
S(t) is a monoton decreasing function of ¢,

St) _ B S R 1
1SW_H<1 p(p—l)) - p<p>tp(p—

p>t

2 4
< exp <?) < 1+¥, and so

S(t):T+O<%>.

Finally we observe that

D>zl/4
P(D)<t

- 1 i o1/4
§Z2j$1/4w(2jx 1) <

1 log 27 /4 1log x _log2 \ 1
< — — 1 — 21o t) <
CZeXp 2 " logt Lexp 8 logt ( o -

< ¢y exp(—\/ logz), say.

Thus

R(z) = rlis + O <htx) + O(liz - exp(—+/log x))+

+O<(log2-lix).
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By choosing € < g5 < %, Th. 1 follows.

Th. 2 is a direct consequence of Lemma 1 and of Th. 1.
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