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I. Kátai
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Abstract: By using a theorem of Bredihin on Beurling’s primes it is proved
that

#{n|ϑ2(n) ≤ x} = Cx(log x)τ−1 + O(x(log x)τ−1−ε1)

with some constants ε1 > 0, τ > 0, where ϑ is completely multiplicative,
ϑ(p) = p + 1 for every prime p, and ϑ2(n) = ϑ(ϑ(n)).

1. Introduction and formulation of the theorem

We shall use the following notations: N = set of natural numbers,
P = set of primes, p with or without suffixes always denote prime num-
bers, π(x) = number of primes up to x, π(x, k, l) = number of primes up
to x belonging to the arithmetic progression ≡ l (mod k). The letters
c, c1, c2, . . . denote positive constants not necessarily same at different oc-
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currences. (m,n) denotes the greatest common divisor of m,n ∈ N. Let
P (n) be the largest prime factor of n.

A function f : N → C (= set of complex numbers) is said to be a
multiplicative function, if f(1) = 1 and f(mn) = f(m) · f(n) holds for
every coprime pairs of m,n ∈ N. We say that f is completely multiplica-
tive, if f(mn) = f(m) · f(n) is satisfied for every m,n ∈ N.

A function g : N → R (= set of real numbers) is additive, if g(1) = 0
and g(mn) = g(m) + g(n), when (m,n) = 1.

Let ϕ(n) be Euler’s totient function, σ(n) be the sum of divisors
function, ω(n) = number of distinct divisors of n, µ(n) be the Moebius-
function. ϕ, σ, µ are multiplicative, ω is additive. For some prime power
pα : ϕ(pα) = pα − pα−1; σ(pα) = 1 + p + . . . + pα, µ(p) = −1, µ(pα) = 0
if α ≥ 2, ω(pα) = 1.

Let f(n) (n ∈ N) be such a function for which f(n) → ∞(n→ ∞).
A natural question is to find the asymptotic of

(1.1) #{n ∈ N|f(n) ≤ x} as x→ ∞.

In some cases it is harder than to count the asymptotic of
∑

n≤x

f(n).

P. T. Bateman investigated (1.1) for f(n) = ϕ(n) by analyzing the
Dirichlet series

F0(s) =

∞
∑

n=1

1

ϕ(s)s
(s = σ + it)

close to the vertical line σ = 1, and proved that

#{n|ϕ(n) ≤ x} = Cx+ O
(

x exp

(

− (1 − ε)

(

1

2
(log x)(log log x)

))
1
2

)

for any ε > 0. Here C = ζ(2)ζ(3)
ζ(6)

, ζ is the Riemann zeta function.

Similar estimate can be done for #{n|σ(n) ≤ x}, namely

#{n|σ(n) ≤ x} = C1x+ O
(

x exp (−(log x))
1
2

)

,

by using the Dirichlet series,

F1(s) =

∞
∑

n=1

1

σ(n)s
,

and analyzing its properties at σ = 1. Here C1 is a calculable constant.
(See also [2], [3], [4]).
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Let a = −1, or a ∈ N be a fixed number, κa(n) be a completely
multiplicative function generated by κa(p) = p+ a (p ∈ P). Then

F (a)(s) =

∞
∑

n=1

1

κa(n)s
=
∏

p∈P

(

1 − 1

(p+ a)s

)−1

,

and, by using the method of Smati [2] one can prove that

#{n|κa(n) ≤ x} = c(a)x+ O(x exp(−c
√

log x)),

where c(a) and c are positive constants.
It would be nice to know the asymptotic of (1.1) for example, if

f(n) = ϕ(ϕ(n)), f(n) = σ(ϕ(n)), f(n) = ϕ(σ(n)), f(n) = σ(σ(n)).
There exist some inequalities of (1.1) for these functions in the literature
but the asymptotic is unknown.

Similarly, it would be interesting to count the asymptotic of

(1.2) #{p ∈ P, f(p) < x}
where

(1.3) f(p) = ϕ(p+ 1), f(p) = σ(p+ 1), f(p) = κ1(p+ 1).

Theorem A. Let f be one of the functions listed in (1.3). Then, there
is a positive constant τ such that

(1.4) #{p ∈ P|f(p) < x} = τ
x

log x
+ O

(

x

(log x)1+ε

)

holds for any constant ε < 1
2
.

We shall prove it only in the case f(p) = κ1(p+1). In what follows
we shall write ϑ instead of κ1.

Theorem 1. Let ϑ be completely multiplicative, ϑ(p) = p+ 1 for p ∈ P.
Let

R(x) = #{p ∈ P|ϑ(p + 1) ≤ x}.
Then

R(x) = τ
x

log x
+ O

(

x

(log x)1+ε

)

,

where τ is a positive constant, ε is an arbitrary constant less than 1/2.
τ = S(∞), S is defined in (3.10), (3.11).

Let 1 < π1 ≤ π2 ≤ . . . , πj → ∞ (j → ∞) be a sequence
of real numbers, P̃ = {πj |j = 1, 2, . . .}. Let Ñ be the semigroup
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generated by P̃ under multiplication. Assume that the elements of
Ñ are arranged in ascending order and are denoted by {ni}∞i=1. Let
ΠP̃(x) =

∑

πj<x

1; NP̃(x) =
∑

nj<x

1.

Ñ and P̃ are called the sets of Beurling’s type of integers, and that
of the set of Beurling’s type of primes. These types of semigroups have
been introduced by A. Beurling [5]. M. B. Bredihin proved the following
assertion which is quoted now as

Lemma 1. If

ΠP̃(x) = τ
x

log x
+ O

(

x

(log x)1+ε

)

with some ε > 0, then

NP̃(x) = Cx(log x)τ−1 + O
(

x(log x)τ−1

(log x)ε1

)

,

where ε1 = min{1, ε}.
If we choose P̃ = {ϑ(p) = p+ 1, p ∈ P}, then N = {ϑ(n)|n ∈ N}.

Since ΠP̃(x) = π(x−1) = x
log x

+O
(

x
(log x)2

)

, therefore T (x) (= NP̃(x)) =

= Cx+ O
(

x
log x

)

, according to Lemma 1.

Let
T2(x) := #{n|ϑ2(n) ≤ x}.

From Lemma 1 and Th. 1 immediately follows

Theorem 2. We have
T2(x) = Cx(log x)τ−1 + O

(

x(log x)τ−1−ε
)

,

where 0 < ε < 1/2, C is a positive constant and τ is the same as in
Th. 1.

2. Auxiliary results

Let πk(x) = #{n ≤ x | ω(n) = k}.
Lemma 2 (Hardy–Ramanujan [8]). We have

πk(x) <
c1x

log x

(log log x+ c2)
k−1

(k − 1)!
(k = 1, 2, . . .)

where c1, c2 are suitable explicitly given constants.

Let, as usual,

lix =

∫ x

2

du

log u
.
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According to the Siegel–Walfisz theorem we have
∣

∣

∣

∣

π(x, k, l) − lix

ϕ(k)

∣

∣

∣

∣

< C
lix

ϕ(k)(log x)A
,

uniformly as (k, l) = 1, k ≤ (log x)A, 2 ≤ x, A is an arbitrary constant,
C = C(A). (See [9].)

Lemma 3 (Sieve results). We have
(1)

π(x+ y, k, l) − π(x, k, l) <
cy

ϕ(k) log y
k

if 1 ≤ k ≤ y ≤ x,

especially
(2)

π(x+ y) − π(x) <
Cy

log y
if 1 < y < x,

(3)

π(x, k, l) <
Cx

ϕ(k) log x
k

if k < x,

where C is an absolute constant.

(1) is contained in Th. 3.7 in [7], (2) and (3) are special cases of (1).

Lemma 4 (Bombieri–Vinogradov inequality). Let A be an arbitrary
constant, B ≥ 2A+ 5. Then

∑

k≤
√

x

(log x)B

max
y≤x

max
(l,k)=1

∣

∣

∣

∣

π(x, k, l) − lix

ϕ(k)

∣

∣

∣

∣

≤ d
x

(log x)A
,

where the constant d is ineffective. (See in [9].)

Lemma 5. For every constant A(> 0) there exists a constant B such
that

(2.1)
∑

k≤x1/3

ω(k)>B log log x

2ω(k)

ϕ(k)
≤ c

(log x)A
if x ≥ 10,

where c is a constant.

Proof. Let U0 = 3, Uj+1 = 2Uj, (j = 0, 1, . . .). Let UT ≤ x1/3 < UT+1.
Let

(2.2) Rh =
∑

Uh≤k≤Uh+1
ω(k)>B log log x

2ω(k)

ϕ(k)
.
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It is known that ω(k) < log k, therefore Rh = 0 if log k < B log log x, i.e.
if k < (log x)B. Assume that Uh+1 ≥ (log x)B. We know that ϕ(n) >
> cn

log log n
(n ≥ 3), therefore

1

ϕ(k)
≤ c log logUh

Uh
if k ∈ (Uh, Uh+1),

where c is an absolute constant. Then by Lemma 2,

Rh ≤c log logUh

Uh

∑

Uh≤k<Uh+1
ω(k)≥B log log x

2ω(k) ≤

≤c(log logUh)Uh+1

Uh(logUh)

∑

l≥B log log x

2l (log logUh + c1)
l−1

(l − 1)!
.

Thus the left-hand side of (2.1) is less than
∑

Uh+1≥(log x)B

h≤T

≤ Σ1 · Σ2,

where

Σ1 =
∑

h≤T

2c(log logUh)

logUh

≤ c2 log x,

Σ2 =
∑

l≥B log log x

(2 log log x+ 2c1)
l−1

(l − 1)!
.

Let ηm = (2 log log x+2c)m

m!
. Then, from logm! = m log m

e
+ O(1) we obtain

that

ηm ≤ c2 exp

(

m log
2 log log x+ 2c

m

)

.

Let m ≥ B log log x− 1. Then ηm ≤ c2 exp(−m log B
3
), and so

Σ2 =
∑

m≥B log log x

ηm ≤ c2
∑

m≥B log log x

exp

(

−(m− 1) log
B

3

)

≤

≤ 2
Bc2
3

exp

(

−B(log log x) log
B

3

)

if x > x(B). Thus

Σ2 ≤ c3(log x)−B log B
3 ,

c3 = c3(B). Hence Lemma 5 immediately follows. ♦
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3. Proof of Theorem 1

Let t = (log x)ε, 0 < ε < 1
2
, ε be fixed, Q =

∏

p<t

p. For some

integer n let

M(n) :=
∏

pa||n
p≤t

pa, E(n) =
∏

pr ||n
p>t

pr.

Let U(x|D) = #{p ≤ x|M(p + 1) = D}. M(p + 1) = D holds, if
and only if p+ 1 ≡ 0 (mod D), and

(

p+1
D
, Q
)

= 1. Thus

U(x,D) =
∑

p≤x
p+1≡0 (mod D)

∑

δ|(Q, p+1
D )

µ(δ).

Thus

U(x|D) =
∑

δ|Q

µ(δ)π(x, δD,−1).

Let

ν(D) :=
∑

δ|Q

µ(δ)

ϕ(δD)
=

1

D

∏

p<t
p∤D

(

1 − 1

p− 1

)

.

Hence

(3.1) max
y≤x

|U(y|D) − ν(D)li y| ≤
∑

δ|Q

max
y≤x

∣

∣

∣

∣

π(y, δD,−1) − li y

ϕ(Dδ)

∣

∣

∣

∣

.

Let P (n) be the largest prime factor of n. Let us sum over those D ≤ x
1
4 ,

for which P (n) ≤ t.
Then

(3.2)
∑

D≤x
1
4

P (D)≤t

max
y≤x

|U(y|D) − ν(D)li y| ≤
∑

k≤x
1
3

say

max
y≤x

∣

∣

∣

∣

π(y|k,−1) − li y

ϕ(k)

∣

∣

∣

∣

· 2ω(k).

By using Lemma 4, one can deduce that

(3.3)
∑

D≤x
1
4

P (D)≤t

max
y≤x

|U(y|D) − ν(D)li y| ≤ cli x

(log x)A

where A is an arbitrary positive constant. It is enough to observe that
the right-hand side of (3.3) can be subdivided into two parts according
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to ω(k) ≤ B log log x or ω(k) > B log log x. The sum under ω(k) ≤
≤ B log log x is O

(

li x
(log x)A

)

, for every fixed B. The second sum is less

than

(li x)
∑

k≤x
1
3

ω(k)>B log log x

1

ϕ(k)
· 2ω(k) ≪ li x

(log x)A

if B is large enough. See Lemma 5.

3.1.

Y = (log x)2ε2 , H = 1
(log x)ε2

, 0 < ε2 <
1
2
.

Let g1, g2 be completely multiplicative,

g1(q) =

{

1 + 1
q
, if q < Y

1, if q ≥ Y
, g2(q) =

{

1, if q < Y

1 + 1
q
, if q ≥ Y

for every prime q.

κ(n) =
ϑ(n)

n
=
∏

pα||n

(

1 +
1

p

)α

= g1(n) · g2(n).

Observe that, from the known inequality π(x, k, l) < C(li x)/ϕ(k) if
k ≤ √

x (see (3) in Lemma 3), say, we have
∑

p≤x

log g2(p+ 1) ≤ c
∑

π(x, qa,−1)
a

q
≪ (li x)

∑

q>Y

1

q2
≪

≪ li x

Y log Y
.

Hence

# {p ≤ x| log g2(p+ 1) > H} ≪ li x

HY log Y
,

thus

# {p ≤ x| log g2(p+ 1) > H} ≪ li x

(log x)ε2
.

This quantity is not bigger than the error term.

Let us observe:
1.) if ϑ(p+ 1) ≤ x, and AY (p+ 1) = D, then (p+ 1)κ(D) ≤ x.
2.) if (p+ 1)κ(D) ≤ x, log g2(p+ 1) ≤ H , and ϑ(p+ 1) > x, then

(3.4) (p+ 1)κ(D) >
x

g2(p+ 1)
≥ xe− log2(p+1) ≥ x− cx

H
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and so

(3.5)
x

κ(D)
− cx

Hκ(D)
≤ p+ 1 ≤ x

κ(D)
.

By sieve we obtain that the number of primes satisfying (3.5) is less than
li x

Hκ(D)ϕ(D)
.

The sum of this quantity over those D for which P (D) ≤ t is

O
(

(log t)lix
H

)

= O
(

ε(log log x)lix
H

)

. Indeed,

∑

P (D)≤t

1

κ(D)ϕ(D)
≤
∏

p≤t

(

1 +
1

κ(p)ϕ(p)
+

1

κ(p2)ϕ(p2)
+ · · ·

)

≤

≤
∏

p≤t

(

1 +
1

p
+

c

p2

)

≤

≤ exp

(

∑

p≤t

1

p
+ c1

)

≤

≤c2 log t.

Here c, c1, c2 are absolute constants.
3.) Since U(x|D) ≤ π(x,D,−1), and π(x,D,−1) < C lix

ϕ(D)
if

1 ≤ D ≤ √
x (see Lemma 3), therefore

(3.6)
∑

D>x1/4

P (D)≤t

U(x|D) < Clix
∑

x1/4<D<x1/2

P (D)≤t

1

ϕ(D)
+ x

∑

x1/2≤D<x
P (D)≤t

1

D
.

Let
Ψ(x, y) = #{n ≤ x, P (n) ≤ y}.

It is known (see [9], Th. 1 in Ch. III. 5) that

(3.7)

{

Ψ(x, y) ≤ cxe−u/2 if x ≥ y ≥ 2,

u = log x
log y

.

Then

(3.8)
∑

P (D)≤t
V ≤D≤2V

1 ≤ cV exp

(

− log V

2 log t

)

≤ cV exp

( − log x

8ε log log x

)

.
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Subdividing the interval [x1/4, x1/2), and [x1/2, x) into intervals of
type [V, 2V ) and observing that 1/ϕ(D) ≤ c log log x

V
if D ∈ [V, 2V ], we

obtain that
∑

D>x1/4

P (D)≤t

U(x|D) ≤ c
lix

H
.

From (3.3) we obtain that

(3.9) R(x) = lix
∑

D≤x1/4

P (D)≤t

ν(D)

κ(D)
+ O

(

(log t)lix

H

)

.

To estimate the right-hand side of (3.9), observe that ν(D) = 0 if D is
odd, furthermore that

ν(D) =
1

D

∏

p<t
p∤D

(

1 − 1

p− 1

)

=
1

D

∏

p<t
p>2

(

1 − 1

p− 1

)

∏

p|D
p>2

1

1 − 1
p−1

.

Let h be multiplicative,

h(2α) =
1

2α(1 + 1
2
)α

=
1

3α

h(pα) =
1

pα(1 − 1
p−1

)(1 + 1
p
)α

=
p− 1

(p+ 1)α(p− 2)
if 3 ≤ p < t (p ∈ P),

and h(pα) = 0 if p ≥ t. Thus
ν(D)

κ(D)
= L(t)h(D), if P (D) ≤ t,

where

(3.10) L(t) =
∏

2<p≤t

(

1 − 1

p− 1

)

.

We have
∑

P (D)≤t

h(D) =

=

(

1+
1

3
+

1

32
+· · ·

)

∏

3≤p≤t

(

1+
(p− 1)

(p−2)(p+1)

(

1+
1

p+1
+

1

(p+1)2
+· · ·

))

=

=
1

2

∏

3≤p≤t

(

1 +
p− 1

p(p− 2)

)

,
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and so

S(t) :=
∑

P (D)≤t

h(D)L(t) =
1

2

∏

3≤p≤t

(p− 2)

(p− 1)

(p2 − p− 1)

p(p− 2)
=(3.11)

=
1

2

∏

3≤p≤t

(

p2 − p− 1

p2 − p

)

=

=
1

2

∏

3≤p≤t

(

1 − 1

p(p− 1)

)

.

Let

(3.12) τ = S(∞) =
1

2

∏

3≤p

(

1 − 1

p(p− 1)

)

S(t) is a monoton decreasing function of t,

1 ≤ S(t)

S(∞)
=
∏

p>t

(

1 − 1

p(p− 1)

)−1

< exp

(

2
∑

p>t

1

p(p− 1)

)

<

< exp

(

2

t

)

< 1 +
4

t
, and so

S(t) = τ + O
(

1

t

)

.

Finally we observe that
∑

D>x1/4

P (D)<t

ν(D)

κ(D)
≤

≤
∞
∑

j=0

1

2jx1/4
ψ(2jx1/4, t) ≤

≤ c

∞
∑

j=0

exp

(

−1

2

log 2jx1/4

log t

)

= x exp

(

−1

8

log x

log t

)

(

1 − e−
log 2
2 log t

)−1

≤

≤ c2 exp(−
√

log x), say.

Thus

R(x) = τ lix+ O
(

lix

t

)

+ O(lix · exp(−
√

log x))+

+ O
(

(log t) · lix
H

)

.
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By choosing ε < ε2 <
1
2
, Th. 1 follows.

Th. 2 is a direct consequence of Lemma 1 and of Th. 1.
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