Mathematica Pannonica

22/2 (2011), 153-164

A CONSEQUENCE OF THE THEOREM OF BREDIHIN

K.-H. Indlekofer
Fakultät für Elektrotechnik, Informatik und Mathematik, Institut für Mathematik, Universität Paderborn, Warburger Straße 100, Paderborn 33098, Germany

I. Kátai

Eötvös Loránd University, Department of Computer Algebra, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary

Received: December 2009
MSC 2010: 11 N 80
Keywords: Beurling's primes.

$$
\begin{aligned}
& \text { Abstract: By using a theorem of Bredihin on Beurling's primes it is proved } \\
& \text { that } \\
& \qquad \#\left\{n \mid \vartheta_{2}(n) \leq x\right\}=C x(\log x)^{\tau-1}+\mathcal{O}\left(x(\log x)^{\tau-1-\varepsilon_{1}}\right) \\
& \text { with some constants } \varepsilon_{1}>0, \quad \tau>0 \text {, where } \vartheta \text { is completely multiplicative, } \\
& \vartheta(p)=p+1 \text { for every prime } p \text {, and } \vartheta_{2}(n)=\vartheta(\vartheta(n)) \text {. }
\end{aligned}
$$

1. Introduction and formulation of the theorem

We shall use the following notations: $\mathbb{N}=$ set of natural numbers, $\mathcal{P}=$ set of primes, p with or without suffixes always denote prime numbers, $\pi(x)=$ number of primes up to $x, \pi(x, k, l)=$ number of primes up to x belonging to the arithmetic progression $\equiv l(\bmod k)$. The letters c, c_{1}, c_{2}, \ldots denote positive constants not necessarily same at different oc-
currences. (m, n) denotes the greatest common divisor of $m, n \in \mathbb{N}$. Let $P(n)$ be the largest prime factor of n.

A function $f: \mathbb{N} \rightarrow \mathbb{C}(=$ set of complex numbers) is said to be a multiplicative function, if $f(1)=1$ and $f(m n)=f(m) \cdot f(n)$ holds for every coprime pairs of $m, n \in \mathbb{N}$. We say that f is completely multiplicative, if $f(m n)=f(m) \cdot f(n)$ is satisfied for every $m, n \in \mathbb{N}$.

A function $g: \mathbb{N} \rightarrow \mathbb{R}$ (= set of real numbers) is additive, if $g(1)=0$ and $g(m n)=g(m)+g(n)$, when $(m, n)=1$.

Let $\varphi(n)$ be Euler's totient function, $\sigma(n)$ be the sum of divisors function, $\omega(n)=$ number of distinct divisors of $n, \mu(n)$ be the Moebiusfunction. φ, σ, μ are multiplicative, ω is additive. For some prime power $p^{\alpha}: \varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1} ; \sigma\left(p^{\alpha}\right)=1+p+\ldots+p^{\alpha}, \mu(p)=-1, \mu\left(p^{\alpha}\right)=0$ if $\alpha \geq 2, \omega\left(p^{\alpha}\right)=1$.

Let $f(n)(n \in \mathbb{N})$ be such a function for which $f(n) \rightarrow \infty(n \rightarrow \infty)$. A natural question is to find the asymptotic of

$$
\begin{equation*}
\#\{n \in \mathbb{N} \mid f(n) \leq x\} \quad \text { as } \quad x \rightarrow \infty \tag{1.1}
\end{equation*}
$$

In some cases it is harder than to count the asymptotic of $\sum_{n \leq x} f(n)$.
P. T. Bateman investigated (1.1) for $f(n)=\varphi(n)$ by analyzing the Dirichlet series

$$
F_{0}(s)=\sum_{n=1}^{\infty} \frac{1}{\varphi(s)^{s}} \quad(s=\sigma+i t)
$$

close to the vertical line $\sigma=1$, and proved that
$\#\{n \mid \varphi(n) \leq x\}=C x+\mathcal{O}\left(x \exp \left(-(1-\varepsilon)\left(\frac{1}{2}(\log x)(\log \log x)\right)\right)^{\frac{1}{2}}\right)$
for any $\varepsilon>0$. Here $C=\frac{\zeta(2) \zeta(3)}{\zeta(6)}, \zeta$ is the Riemann zeta function.
Similar estimate can be done for $\#\{n \mid \sigma(n) \leq x\}$, namely

$$
\#\{n \mid \sigma(n) \leq x\}=C_{1} x+\mathcal{O}\left(x \exp (-(\log x))^{\frac{1}{2}}\right)
$$

by using the Dirichlet series,

$$
F_{1}(s)=\sum_{n=1}^{\infty} \frac{1}{\sigma(n)^{s}}
$$

and analyzing its properties at $\sigma=1$. Here C_{1} is a calculable constant. (See also [2], [3], [4]).

Let $a=-1$, or $a \in \mathbb{N}$ be a fixed number, $\kappa_{a}(n)$ be a completely multiplicative function generated by $\kappa_{a}(p)=p+a \quad(p \in \mathcal{P})$. Then

$$
F^{(a)}(s)=\sum_{n=1}^{\infty} \frac{1}{\kappa_{a}(n)^{s}}=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{(p+a)^{s}}\right)^{-1}
$$

and, by using the method of Smati [2] one can prove that

$$
\#\left\{n \mid \kappa_{a}(n) \leq x\right\}=c(a) x+\mathcal{O}(x \exp (-c \sqrt{\log x}))
$$

where $c(a)$ and c are positive constants.
It would be nice to know the asymptotic of (1.1) for example, if $f(n)=\varphi(\varphi(n)), f(n)=\sigma(\varphi(n)), f(n)=\varphi(\sigma(n)), f(n)=\sigma(\sigma(n))$. There exist some inequalities of (1.1) for these functions in the literature but the asymptotic is unknown.

Similarly, it would be interesting to count the asymptotic of

$$
\begin{equation*}
\#\{p \in \mathcal{P}, f(p)<x\} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
f(p)=\varphi(p+1), f(p)=\sigma(p+1), f(p)=\kappa_{1}(p+1) \tag{1.3}
\end{equation*}
$$

Theorem A. Let f be one of the functions listed in (1.3). Then, there is a positive constant τ such that

$$
\begin{equation*}
\#\{p \in \mathcal{P} \mid f(p)<x\}=\tau \frac{x}{\log x}+\mathcal{O}\left(\frac{x}{(\log x)^{1+\varepsilon}}\right) \tag{1.4}
\end{equation*}
$$

holds for any constant $\varepsilon<\frac{1}{2}$.
We shall prove it only in the case $f(p)=\kappa_{1}(p+1)$. In what follows we shall write ϑ instead of κ_{1}.
Theorem 1. Let ϑ be completely multiplicative, $\vartheta(p)=p+1$ for $p \in \mathcal{P}$. Let

$$
R(x)=\#\{p \in \mathcal{P} \mid \vartheta(p+1) \leq x\}
$$

Then

$$
R(x)=\tau \frac{x}{\log x}+\mathcal{O}\left(\frac{x}{(\log x)^{1+\varepsilon}}\right)
$$

where τ is a positive constant, ε is an arbitrary constant less than $1 / 2$. $\tau=S(\infty), S$ is defined in (3.10), (3.11).

Let $1<\pi_{1} \leq \pi_{2} \leq \ldots, \quad \pi_{j} \rightarrow \infty \quad(j \rightarrow \infty)$ be a sequence of real numbers, $\tilde{\mathcal{P}}=\left\{\pi_{j} \mid j=1,2, \ldots\right\}$. Let $\tilde{\mathcal{N}}$ be the semigroup
generated by $\tilde{\mathcal{P}}$ under multiplication. Assume that the elements of $\tilde{\mathcal{N}}$ are arranged in ascending order and are denoted by $\left\{n_{i}\right\}_{i=1}^{\infty}$. Let $\Pi_{\tilde{\mathcal{P}}}(x)=\sum_{\pi_{j}<x} 1 ; \quad N_{\tilde{\mathcal{P}}}(x)=\sum_{n_{j}<x} 1$.
$\tilde{\mathcal{N}}$ and $\tilde{\mathcal{P}}$ are called the sets of Beurling's type of integers, and that of the set of Beurling's type of primes. These types of semigroups have been introduced by A. Beurling [5]. M. B. Bredihin proved the following assertion which is quoted now as
Lemma 1. If

$$
\Pi_{\tilde{\mathcal{P}}}(x)=\tau \frac{x}{\log x}+\mathcal{O}\left(\frac{x}{(\log x)^{1+\varepsilon}}\right)
$$

with some $\varepsilon>0$, then

$$
N_{\tilde{\mathcal{P}}}(x)=C x(\log x)^{\tau-1}+\mathcal{O}\left(\frac{x(\log x)^{\tau-1}}{(\log x)^{\varepsilon_{1}}}\right)
$$

where $\varepsilon_{1}=\min \{1, \varepsilon\}$.
If we choose $\tilde{\mathcal{P}}=\{\vartheta(p)=p+1, p \in \mathcal{P}\}$, then $\mathcal{N}=\{\vartheta(n) \mid n \in \mathbb{N}\}$. Since $\Pi_{\tilde{\mathcal{P}}}(x)=\pi(x-1)=\frac{x}{\log x}+\mathcal{O}\left(\frac{x}{(\log x)^{2}}\right)$, therefore $T(x) \quad\left(=N_{\tilde{\mathcal{P}}}(x)\right)=$ $=C x+\mathcal{O}\left(\frac{x}{\log x}\right)$, according to Lemma 1 .

Let

$$
T_{2}(x):=\#\left\{n \mid \vartheta_{2}(n) \leq x\right\} .
$$

From Lemma 1 and Th. 1 immediately follows
Theorem 2. We have

$$
T_{2}(x)=C x(\log x)^{\tau-1}+\mathcal{O}\left(x(\log x)^{\tau-1-\varepsilon}\right)
$$

where $0<\varepsilon<1 / 2, C$ is a positive constant and τ is the same as in Th. 1.

2. Auxiliary results

Let $\pi_{k}(x)=\#\{n \leq x \mid \omega(n)=k\}$.
Lemma 2 (Hardy-Ramanujan [8]). We have

$$
\pi_{k}(x)<\frac{c_{1} x}{\log x} \frac{\left(\log \log x+c_{2}\right)^{k-1}}{(k-1)!} \quad(k=1,2, \ldots)
$$

where c_{1}, c_{2} are suitable explicitly given constants.
Let, as usual,

$$
\operatorname{li} x=\int_{2}^{x} \frac{d u}{\log u}
$$

According to the Siegel-Walfisz theorem we have

$$
\left|\pi(x, k, l)-\frac{\operatorname{li} x}{\varphi(k)}\right|<C \frac{\operatorname{li} x}{\varphi(k)(\log x)^{A}},
$$

uniformly as $(k, l)=1, k \leq(\log x)^{A}, 2 \leq x, A$ is an arbitrary constant, $C=C(A)$. (See [9].)
Lemma 3 (Sieve results). We have

$$
\begin{equation*}
\pi(x+y, k, l)-\pi(x, k, l)<\frac{c y}{\varphi(k) \log \frac{y}{k}} \quad \text { if } 1 \leq k \leq y \leq x \tag{1}
\end{equation*}
$$

especially

$$
\begin{gather*}
\pi(x+y)-\pi(x)<\frac{C y}{\log y} \quad \text { if } 1<y<x \tag{2}\\
\pi(x, k, l)<\frac{C x}{\varphi(k) \log \frac{x}{k}} \quad \text { if } k<x
\end{gather*}
$$

where C is an absolute constant.
(1) is contained in Th. 3.7 in [7], (2) and (3) are special cases of (1).

Lemma 4 (Bombieri-Vinogradov inequality). Let A be an arbitrary constant, $B \geq 2 A+5$. Then

$$
\sum_{k \leq \frac{\sqrt{x}}{(\log x)^{B}}} \max _{y \leq x} \max _{(l, k)=1}\left|\pi(x, k, l)-\frac{\operatorname{li} x}{\varphi(k)}\right| \leq d \frac{x}{(\log x)^{A}},
$$

where the constant d is ineffective. (See in [9].)
Lemma 5. For every constant $A(>0)$ there exists a constant B such that

$$
\begin{equation*}
\sum_{\substack{k \leq x^{1 / 3} \\ \omega(k)>B \log \log x}} \frac{2^{\omega(k)}}{\varphi(k)} \leq \frac{c}{(\log x)^{A}} \quad \text { if } x \geq 10, \tag{2.1}
\end{equation*}
$$

where c is a constant.
Proof. Let $U_{0}=3, U_{j+1}=2 U_{j},(j=0,1, \ldots)$. Let $U_{T} \leq x^{1 / 3}<U_{T+1}$. Let

$$
\begin{equation*}
R_{h}=\sum_{\substack{U_{h} \leq k \leq U_{h+1} \\ \omega(k)>B \log \log x}} \frac{2^{\omega(k)}}{\varphi(k)} . \tag{2.2}
\end{equation*}
$$

It is known that $\omega(k)<\log k$, therefore $R_{h}=0$ if $\log k<B \log \log x$, i.e. if $k<(\log x)^{B}$. Assume that $U_{h+1} \geq(\log x)^{B}$. We know that $\varphi(n)>$ $>\frac{c n}{\log \log n}(n \geq 3)$, therefore

$$
\frac{1}{\varphi(k)} \leq \frac{c \log \log U_{h}}{U_{h}} \quad \text { if } k \in\left(U_{h}, U_{h+1}\right)
$$

where c is an absolute constant. Then by Lemma 2,

$$
\begin{aligned}
R_{h} & \leq \frac{c \log \log U_{h}}{U_{h}} \sum_{\substack{U_{h} \leq k<U_{h+1} \\
\omega(k) \geq B \log \log x}} 2^{\omega(k)} \leq \\
& \leq \frac{c\left(\log \log U_{h}\right) U_{h+1}}{U_{h}\left(\log U_{h}\right)} \sum_{l \geq B \log \log x} 2^{l} \frac{\left(\log \log U_{h}+c_{1}\right)^{l-1}}{(l-1)!}
\end{aligned}
$$

Thus the left-hand side of (2.1) is less than

$$
\sum_{\substack{U_{h+1} \geq(\log x)^{B} \\ h \leq T}} \leq \Sigma_{1} \cdot \Sigma_{2}
$$

where

$$
\begin{aligned}
& \Sigma_{1}=\sum_{h \leq T} \frac{2 c\left(\log \log U_{h}\right)}{\log U_{h}} \leq c_{2} \log x, \\
& \Sigma_{2}=\sum_{l \geq B \log \log x} \frac{\left(2 \log \log x+2 c_{1}\right)^{l-1}}{(l-1)!}
\end{aligned}
$$

Let $\eta_{m}=\frac{(2 \log \log x+2 c)^{m}}{m!}$. Then, from $\log m!=m \log \frac{m}{e}+\mathcal{O}(1)$ we obtain that

$$
\eta_{m} \leq c_{2} \exp \left(m \log \frac{2 \log \log x+2 c}{m}\right)
$$

Let $m \geq B \log \log x-1$. Then $\eta_{m} \leq c_{2} \exp \left(-m \log \frac{B}{3}\right)$, and so

$$
\begin{aligned}
\Sigma_{2}=\sum_{m \geq B \log \log x} \eta_{m} & \leq c_{2} \sum_{m \geq B \log \log x} \exp \left(-(m-1) \log \frac{B}{3}\right) \leq \\
& \leq 2 \frac{B c_{2}}{3} \exp \left(-B(\log \log x) \log \frac{B}{3}\right)
\end{aligned}
$$

if $x>x(B)$. Thus

$$
\Sigma_{2} \leq c_{3}(\log x)^{-B \log \frac{B}{3}}
$$

$c_{3}=c_{3}(B)$. Hence Lemma 5 immediately follows. \diamond

3. Proof of Theorem 1

Let $t=(\log x)^{\varepsilon}, \quad 0<\varepsilon<\frac{1}{2}, \quad \varepsilon$ be fixed, $Q=\prod_{p<t} p$. For some integer n let

$$
M(n):=\prod_{\substack{p^{a}, \mid n \\ p \leq t}} p^{a}, \quad E(n)=\prod_{\substack{p^{r}>\| n \\ p>t}} p^{r} .
$$

Let $U(x \mid D)=\#\{p \leq x \mid M(p+1)=D\} . M(p+1)=D$ holds, if and only if $p+1 \equiv 0(\bmod D)$, and $\left(\frac{p+1}{D}, Q\right)=1$. Thus

$$
U(x, D)=\sum_{\substack{p \leq x \\ p+1=0}} \sum_{\delta(\bmod D)} \mu\left(Q, \frac{p+1}{D}\right)<
$$

Thus

$$
U(x \mid D)=\sum_{\delta \mid Q} \mu(\delta) \pi(x, \delta D,-1)
$$

Let

$$
\nu(D):=\sum_{\delta \mid Q} \frac{\mu(\delta)}{\varphi(\delta D)}=\frac{1}{D} \prod_{\substack{p<t \\ p \nmid D}}\left(1-\frac{1}{p-1}\right) .
$$

Hence

$$
\begin{equation*}
\max _{y \leq x}|U(y \mid D)-\nu(D) \operatorname{li} y| \leq \sum_{\delta \mid Q} \max _{y \leq x}\left|\pi(y, \delta D,-1)-\frac{\operatorname{li} y}{\varphi(D \delta)}\right| \tag{3.1}
\end{equation*}
$$

Let $P(n)$ be the largest prime factor of n. Let us sum over those $D \leq x^{\frac{1}{4}}$, for which $P(n) \leq t$.

Then

$$
\begin{equation*}
\left.\sum_{\substack{D \leq x^{\frac{1}{4}} \\ P(D) \leq t}} \max _{y \leq x} \right\rvert\, U(y \mid D)-\nu(D) \text { li } \left.y\left|\leq \sum_{\substack{k \leq \leq \frac{1}{3} \\ s a y}} \max _{y \leq x}\right| \pi(y \mid k,-1)-\frac{\text { li } y}{\varphi(k)} \right\rvert\, \cdot 2^{\omega(k)} \tag{3.2}
\end{equation*}
$$

By using Lemma 4, one can deduce that

$$
\begin{equation*}
\sum_{\substack{D \leq x^{\frac{1}{4}} \\ P(D) \leq t}} \max _{y \leq x}|U(y \mid D)-\nu(D) \operatorname{li} y| \leq \frac{c \operatorname{li} x}{(\log x)^{A}} \tag{3.3}
\end{equation*}
$$

where A is an arbitrary positive constant. It is enough to observe that the right-hand side of (3.3) can be subdivided into two parts according
to $\omega(k) \leq B \log \log x$ or $\omega(k)>B \log \log x$. The sum under $\omega(k) \leq$ $\leq B \log \log x$ is $\mathcal{O}\left(\frac{\operatorname{li} x}{(\log x)^{A}}\right)$, for every fixed B. The second sum is less than

$$
\text { (li } x) \sum_{\substack{k \leq x^{\frac{1}{3}} \\ \omega(k)>B \log \log x}} \frac{1}{\varphi(k)} \cdot 2^{\omega(k)} \ll \frac{\operatorname{li} x}{(\log x)^{A}}
$$

if B is large enough. See Lemma 5 .

3.1.

$$
Y=(\log x)^{2 \varepsilon_{2}}, \quad H=\frac{1}{(\log x)^{\varepsilon_{2}}}, 0<\varepsilon_{2}<\frac{1}{2} .
$$

Let g_{1}, g_{2} be completely multiplicative,

$$
g_{1}(q)=\left\{\begin{array}{lll}
1+\frac{1}{q}, & \text { if } & q<Y \\
1, & \text { if } & q \geq Y
\end{array}, \quad g_{2}(q)= \begin{cases}1, & \text { if } \quad q<Y \\
1+\frac{1}{q}, & \text { if } \quad q \geq Y\end{cases}\right.
$$

for every prime q.

$$
\kappa(n)=\frac{\vartheta(n)}{n}=\prod_{p^{\alpha}| | n}\left(1+\frac{1}{p}\right)^{\alpha}=g_{1}(n) \cdot g_{2}(n)
$$

Observe that, from the known inequality $\pi(x, k, l)<C(\operatorname{li} x) / \varphi(k)$ if $k \leq \sqrt{x}$ (see (3) in Lemma 3), say, we have

$$
\begin{aligned}
\sum_{p \leq x} \log g_{2}(p+1) & \leq c \sum \pi\left(x, q^{a},-1\right) \frac{a}{q} \ll(\operatorname{li} x) \sum_{q>Y} \frac{1}{q^{2}} \ll \\
& \ll \frac{\operatorname{li} x}{Y \log Y}
\end{aligned}
$$

Hence

$$
\#\left\{p \leq x \mid \log g_{2}(p+1)>H\right\} \ll \frac{\text { li } x}{H Y \log Y}
$$

thus

$$
\#\left\{p \leq x \mid \log g_{2}(p+1)>H\right\} \ll \frac{\operatorname{li} x}{(\log x)^{\varepsilon_{2}}}
$$

This quantity is not bigger than the error term.
Let us observe:
1.) if $\vartheta(p+1) \leq x$, and $A_{Y}(p+1)=D$, then $(p+1) \kappa(D) \leq x$.
2.) if $(p+1) \kappa(D) \leq x, \quad \log g_{2}(p+1) \leq H$, and $\vartheta(p+1)>x$, then

$$
\begin{equation*}
(p+1) \kappa(D)>\frac{x}{g_{2}(p+1)} \geq x e^{-\log _{2}(p+1)} \geq x-\frac{c x}{H} \tag{3.4}
\end{equation*}
$$

and so

$$
\begin{equation*}
\frac{x}{\kappa(D)}-\frac{c x}{H \kappa(D)} \leq p+1 \leq \frac{x}{\kappa(D)} \tag{3.5}
\end{equation*}
$$

By sieve we obtain that the number of primes satisfying (3.5) is less than

$$
\frac{\operatorname{li} x}{H \kappa(D) \varphi(D)} .
$$

The sum of this quantity over those D for which $P(D) \leq t$ is $\mathcal{O}\left(\frac{(\log t) \operatorname{li} x}{H}\right)=\mathcal{O}\left(\frac{\varepsilon(\log \log x) \operatorname{li} x}{H}\right)$. Indeed,

$$
\begin{aligned}
\sum_{P(D) \leq t} \frac{1}{\kappa(D) \varphi(D)} & \leq \prod_{p \leq t}\left(1+\frac{1}{\kappa(p) \varphi(p)}+\frac{1}{\kappa\left(p^{2}\right) \varphi\left(p^{2}\right)}+\cdots\right) \leq \\
& \leq \prod_{p \leq t}\left(1+\frac{1}{p}+\frac{c}{p^{2}}\right) \leq \\
& \leq \exp \left(\sum_{p \leq t} \frac{1}{p}+c_{1}\right) \leq \\
& \leq c_{2} \log t
\end{aligned}
$$

Here c, c_{1}, c_{2} are absolute constants.
3.) Since $U(x \mid D) \leq \pi(x, D,-1)$, and $\pi(x, D,-1)<C \frac{\mathrm{lix}}{\varphi(D)}$ if $1 \leq D \leq \sqrt{x}$ (see Lemma 3), therefore

$$
\begin{equation*}
\sum_{\substack{D>x^{1 / 4} \\ P(D) \leq t}} U(x \mid D)<C \operatorname{li} x \sum_{\substack{x^{1 / 4}<D<x^{1 / 2} \\ P(D) \leq t}} \frac{1}{\varphi(D)}+x \sum_{\substack{x^{1 / 2} \leq D<x \\ P(D) \leq t}} \frac{1}{D} . \tag{3.6}
\end{equation*}
$$

Let

$$
\Psi(x, y)=\#\{n \leq x, P(n) \leq y\}
$$

It is known (see [9], Th. 1 in Ch. III. 5) that

$$
\left\{\begin{array}{l}
\Psi(x, y) \leq c x e^{-u / 2} \text { if } x \geq y \geq 2 \tag{3.7}\\
u=\frac{\log x}{\log y}
\end{array}\right.
$$

Then

$$
\begin{equation*}
\sum_{\substack{P(D) \leq t \\ V \leq D \leq 2 V}} 1 \leq c V \exp \left(-\frac{\log V}{2 \log t}\right) \leq c V \exp \left(\frac{-\log x}{8 \varepsilon \log \log x}\right) \tag{3.8}
\end{equation*}
$$

Subdividing the interval $\left[x^{1 / 4}, x^{1 / 2}\right)$, and $\left[x^{1 / 2}, x\right)$ into intervals of type $[V, 2 V)$ and observing that $1 / \varphi(D) \leq \frac{c \log \log x}{V}$ if $D \in[V, 2 V]$, we obtain that

$$
\sum_{\substack{D>x^{1 / 4} \\ P(D) \leq t}} U(x \mid D) \leq c \frac{\operatorname{li} x}{H}
$$

From (3.3) we obtain that

$$
\begin{equation*}
R(x)=\operatorname{li} x \sum_{\substack{D \leq x^{1 / 4} \\ P(D) \leq t}} \frac{\nu(D)}{\kappa(D)}+\mathcal{O}\left(\frac{(\log t) \operatorname{li} x}{H}\right) . \tag{3.9}
\end{equation*}
$$

To estimate the right-hand side of (3.9), observe that $\nu(D)=0$ if D is odd, furthermore that

$$
\nu(D)=\frac{1}{D} \prod_{\substack{p<t \\ p \nmid D}}\left(1-\frac{1}{p-1}\right)=\frac{1}{D} \prod_{\substack{p<t \\ p>2}}\left(1-\frac{1}{p-1}\right) \prod_{\substack{p \mid D \\ p>2}} \frac{1}{1-\frac{1}{p-1}} .
$$

Let h be multiplicative,
$h\left(2^{\alpha}\right)=\frac{1}{2^{\alpha}\left(1+\frac{1}{2}\right)^{\alpha}}=\frac{1}{3^{\alpha}}$
$h\left(p^{\alpha}\right)=\frac{1}{p^{\alpha}\left(1-\frac{1}{p-1}\right)\left(1+\frac{1}{p}\right)^{\alpha}}=\frac{p-1}{(p+1)^{\alpha}(p-2)} \quad$ if $3 \leq p<t \quad(p \in \mathcal{P})$,
and $h\left(p^{\alpha}\right)=0$ if $p \geq t$. Thus

$$
\frac{\nu(D)}{\kappa(D)}=L(t) h(D), \quad \text { if } \quad P(D) \leq t
$$

where

$$
\begin{equation*}
L(t)=\prod_{2<p \leq t}\left(1-\frac{1}{p-1}\right) \tag{3.10}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \sum_{P(D) \leq t} h(D)= \\
= & \left(1+\frac{1}{3}+\frac{1}{3^{2}}+\cdots\right) \prod_{3 \leq p \leq t}\left(1+\frac{(p-1)}{(p-2)(p+1)}\left(1+\frac{1}{p+1}+\frac{1}{(p+1)^{2}}+\cdots\right)\right)= \\
= & \frac{1}{2} \prod_{3 \leq p \leq t}\left(1+\frac{p-1}{p(p-2)}\right)
\end{aligned}
$$

and so

$$
\begin{align*}
S(t):=\sum_{P(D) \leq t} h(D) L(t) & =\frac{1}{2} \prod_{3 \leq p \leq t} \frac{(p-2)}{(p-1)} \frac{\left(p^{2}-p-1\right)}{p(p-2)}= \tag{3.11}\\
& =\frac{1}{2} \prod_{3 \leq p \leq t}\left(\frac{p^{2}-p-1}{p^{2}-p}\right)= \\
& =\frac{1}{2} \prod_{3 \leq p \leq t}\left(1-\frac{1}{p(p-1)}\right) .
\end{align*}
$$

Let

$$
\begin{equation*}
\tau=S(\infty)=\frac{1}{2} \prod_{3 \leq p}\left(1-\frac{1}{p(p-1)}\right) \tag{3.12}
\end{equation*}
$$

$$
\begin{aligned}
& S(t) \text { is a monoton decreasing function of } t \\
& 1 \leq \frac{S(t)}{S(\infty)}=\prod_{p>t}\left(1-\frac{1}{p(p-1)}\right)^{-1}<\exp \left(2 \sum_{p>t} \frac{1}{p(p-1)}\right)< \\
& <\exp \left(\frac{2}{t}\right)<1+\frac{4}{t}, \text { and so } \\
& \qquad S(t)=\tau+\mathcal{O}\left(\frac{1}{t}\right)
\end{aligned}
$$

Finally we observe that

$$
\begin{aligned}
& \sum_{\substack{D>x^{1 / 4} \\
P(D)<t}} \frac{\nu(D)}{\kappa(D)} \leq \\
& \leq \sum_{j=0}^{\infty} \frac{1}{2^{j} x^{1 / 4}} \psi\left(2^{j} x^{1 / 4}, t\right) \leq \\
& \leq c \sum_{j=0}^{\infty} \exp \left(-\frac{1}{2} \frac{\log 2^{j} x^{1 / 4}}{\log t}\right)=x \exp \left(-\frac{1}{8} \frac{\log x}{\log t}\right)\left(1-e^{-\frac{\log 2}{2 \log t}}\right)^{-1} \leq \\
& \leq c_{2} \exp (-\sqrt{\log x}), \text { say. }
\end{aligned}
$$

Thus

$$
\begin{aligned}
R(x)=\tau \operatorname{li} x+\mathcal{O}\left(\frac{\operatorname{li} x}{t}\right) & +\mathcal{O}(\operatorname{li} x \cdot \exp (-\sqrt{\log x}))+ \\
& +\mathcal{O}\left(\frac{(\log t) \cdot \operatorname{li} x}{H}\right)
\end{aligned}
$$

By choosing $\varepsilon<\varepsilon_{2}<\frac{1}{2}$, Th. 1 follows.
Th. 2 is a direct consequence of Lemma 1 and of Th. 1.
Acknowledgement. We acknowledge the support by a grant of Deutsche Forschungsgemeinschaft.

References

[1] BATEMAN, P. T.: The distribution of values of the Euler function, Acta Arithmetica 21 (1972), 329-345.
[2] SMATI, A.: Evaluation effective du nombre d'entiers n tels que $\varphi(n) \leq x$, Acta Arithmetica 61 (1992), 143-159.
[3] FAINLEIB, A. S.: A generalization of Esseen's inequality and its applications in probabilistic number theory (Russian), Izv. Akad. Nauk SSSR Ser. Math. 32 (1968), 859-879.
[4] ERDÖS, P.: Some remarks on Euler's φ and some related problems, Bull. Amer. Soc. 51 (1945), 540-544.
[5] BEURLING, A.: Analyse de la loi asymptotique de la distribution des nombres premiers generalisès, Acta Math. 68 (1937), 255-291.
[6] BREDIHIN, B. M.: The remainder term in the asymptotic formula for $\nu_{G}(x)$, Izv. Vyssh. Uchebn. Zaved. Math. 6 (1960), 40-49.
[7] HALBERSTAM, H. and RICHERT, H.: Sieve methods, Academic Press, London, 1974.
[8] HARDY, G. H. and RAMANUJAN, S.: The normal number of prime factors of a number n, Quart. Jour. Math. (Oxford) 48 (1917), 76-92.
[9] TENENBAUM, G.: Introduction to analytic and probabilistic number theory, Cambridge University Press, Cambridge, 1995.

