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Abstract: A classic matrix ring result is that the n × n full matrix ring over
a ring is (von Neumann) regular if and only if the base ring is regular. The
near-ring version of the aforementioned property has attracted many near-ring
theorists since the introduction of matrix near-rings by Meldrum and van der
Walt in the 80’s. In this note, we study the transfer of regularity between a
base near-ring and its n × n matrix near-ring extension. A partial answer is
provided to the question. We show that if the n × n full matrix near-ring over
a near-ring with identity is regular, so are any m × m full matrix near-rings
over the same base near-ring, 1 ≤ m ≤ n.

1. Introduction

In this note, a near-ring is a right zero-symmetric near-ring [5] with
identity. For convenience, we shall use R to denote a near-ring. A near-
ring (or ring) is called regular if for every element a of the near-ring (or
ring), there exists an element b such that aba = a. An important property
of matrix ring is that the n× n full matrix ring over a ring with identity
is regular if and only if the base ring is regular (see Th. 2.14 of [4]). Note
the Brown and McCoy [2] showed this is true for rings without identity
(see also [6]).

We denote by Mn(R) the n × n matrix near-ring over R. (We
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refer the readers to [1] and [3] for more on matrix near-rings.) Sup-
pose ρ is a reflexive and transitive relation on {1, 2, · · · , n}. Then we
let Mn(ρ, R) (see [7]) be the subnear-ring of Mn(R) generated by the
elementary matrix functions {f r

ij : Rn → Rn|r ∈ R, (i, j) ∈ ρ} where
f r

ij(u1, u2, · · · , un) = (0, · · · , 0, ruj, 0, · · · , 0) such that ruj is in the i-th
position. In this note, we investigate the transfer of regularity between a
near-ring R and the n× n matrix near-ring over R. We show that if the
n × n matrix near-ring Mn(R) is regular, then each Mm(R) is regular,
1 ≤ m ≤ n. However, the author does not know if the converse is true
in general.

2. Results

We begin our quest with the following technical result.

Lemma 2.1. Let K ⊆ {1, 2, · · · , n}. Then e =
∑

i∈K f 1
ii is an idempo-

tent and a distributive element of Mn(R).

Proof. It is easy to see that if i 6= j, we have f r
ilB+f s

jkA = f s
jkA+f r

ilB for
any r, s ∈ R and any matrices A, B ∈ Mn(R). Therefore, e is distributive.
By Th. 2.2 of [1], we have e an idempotent. ♦

Lemma 2.2. If e is an idempotent and a distributive element of R, then

eRe is a subnear-ring of R. In addition, if R is regular, then so is eRe.

Proof. The proof is a routine exercise. ♦

Theorem 2.3. Suppose Mn(ρ, R) is regular where ρ is a reflexive and

transitive relation on the set {1, 2, · · · , n}. Then R is regular.

Proof. Let e = f 1
11. Observe that e is a distributive element of Mn(ρ, R).

Then eMn(ρ, R)e is a regular subnear-ring of Mn(ρ, R) by Lemma 2.2.
Let A ∈ eMn(B, R)e. We have Ae = fa1

11 + · · · + fan

n1 for some ai ∈ R by
Lemma 3.7 of [3]. Since Ae = A, we conclude that A = fa1

11 + · · · + fan

n1 .
Furthermore, eA = f 1

11(f
a1

11 + · · · + fan

n1 ) = fa1

11 by Lemma 3.1(5) of [3].
Hence A = fa1

11 . Immediately we see that A = 0 if and only if a1 = 0.
Note also that fa

11 + f b
11 = fa+b

11 and fa
11 · f b

11 = fab
11 . Therefore R is

isomorphic to eMn(ρ, R)e, and we have R is regular. ♦

We shall use the notions of “molars” and “incisors”, introduced in
[7] for matrices, to extend the above result. If ū, v̄ ∈ Rn, we define ū ∼i v̄

if and only if πj ū = πj v̄ for all j such that (i, j) ∈ ρ, where πj denotes
the j-th coordinate projection function. Furthermore, let:

W = {f r
ij|r ∈ R, 1 ≤ i, j ≤ n}.
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We make the following distinction among the f r
ij’s in an expression:

(1) If E = a1 ∈ W , then a1 is an incisor in E.

(2) Let A = a1a2 · · ·ap and E = a′

1a
′

2 · · ·a
′

q be expressions of some
matrices. If ak ∈ W , then ak is a molar in

(A)(E) = (a1a2 · · ·ap)(a
′

1a
′

2 · · ·a
′

q).

If a′

h ∈ W , then a′

h is an incisor (resp. a molar) in (A)(E) if a′

h is
an incisor (resp. a molar) in E, 1 ≤ h ≤ q.

(3) Let A and E be as in (2). If ak ∈ W , then ak is an incisor (resp. a
molar) in A + E = a1a2 · · ·ap + a′

1a
′

2 · · ·a
′

q if ak is an incisor (resp.
a molar) in A, 1 ≤ k ≤ p. If a′

h ∈ W , then a′

h is an incisor (resp. a
molar) in A + E if a′

h is an incisor (resp. a molar) in E, 1 ≤ h ≤ q.

We proceed the extension by first proving the following important
result (Th. 2.4) of structural matrix near-rings. Given ρ on {1, 2, · · · , n}.
Let m̄ be any non-empty subset of {1, 2, · · · , n} of size m satisfying the
following condition. For any two elements a, b of m̄, we have

(a, b) and (b, a) ∈ ρ.

Furthermore, we let

ρm̄ = {(a, b)|a, b ∈ m̄}
⋃

{(x, x)|1 ≤ x ≤ n}.

Clearly, we have ρm̄ ⊆ ρ an equivalence relation on {1, 2, · · · , n}.
For example, if n = 3 and

ρ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3)},

then m̄ can only be one of the following four sets:
{1}, {2}, {3}, and {1, 2}.

For each of the first 3 sets (each is of size 1), the equivalence relation
ρm̄ is clearly {(1, 1), (2, 2), (3, 3)}. However, if m̄ = {1, 2} (of size 2), we
have

ρm̄ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}.

Theorem 2.4.Given ρ a reflexive and transitive relation on {1, 2, · · ·, n}.
Suppose m̄ is a subset of {1, 2, · · · , n} as described before. Let e =
=

∑

i∈m̄ f 1
ii. Then eMn(ρ, R)e is generated as a subnear-ring of Mn(R)

by the set

{f r
ij |r ∈ R, i and j ∈ m̄}.

Furthermore, eMn(ρ, R)e is isomorphic to Mm(R).

Proof. We proceed by proving a sequence of claims. We stipulate that
ū and v̄ are elements of Rn in the following.
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Claim 1. eMn(ρ, R)e ⊆ Mn(ρm̄, R) where ρm̄ = {(a, b) ∈ ρ : a, b ∈ m̄}
⋃

⋃

{(x, x) : 1 ≤ x ≤ n}.

Proof of Claim 1. In view of [7], it suffices to show that for any
A ∈ eMn(ρ, R)e, we have:

(πj ū = πj v̄ for all j such that (i, j) ∈ ρm̄) implies (πiAū = πiAv̄)
whenever 1 ≤ i ≤ n.

Note that f 1
ii ∈ eMn(ρ, R)e for any i ∈ m̄. Let A ∈ eMn(ρ, R)e. We

fix an integer i where 1 ≤ i ≤ n. Suppose also that πj ū = πj v̄ whenever
(i, j) ∈ ρm̄. If i 6∈ m̄, then i = j and we have

πjAū = πjeAū = 0 and πjAv̄ = πjeAv̄ = 0.

If i ∈ m̄, then we have πj ū = πj v̄ for all j ∈ m̄. That is to say
(

∑

h∈m̄ f 1
hh

)

ū =
(

∑

h∈m̄ f 1
hh

)

v̄. Therefore,

πiAū = πiA

(

∑

h∈m̄

f 1
hh

)

ū = πiA

(

∑

h∈m̄

f 1
hh

)

v̄ = πiAv̄.

This shows that A ∈ Mn(ρm̄, R), and thus eMn(ρ, R)e ⊆ Mn(ρm̄, R).
This proves the claim.

Claim 2. Each matrix of eMn(ρ, R)e has a formal expression containing
only the elements of the form f r

ij where i, j ∈ m̄.

Proof of Claim 2. As an immediate consequence of Claim 1, we have
that each matrix of eMn(ρ, R)e has a formal expression containing only
the elements of the forms f r

ij where (i, j) ∈ ρm̄.
In view of the proof of Th. 2.8 of [7], a matrix U ∈ eMn(ρ, R)e can

be written as U = U ′

1 + · · · + U ′

n, and each U ′

i has a formal expression
E ′

i ∈ En(R) where En(R) is the set of all formal expressions representing
matrices of Mn(R). (Note a matrix of Mn(R) may have multiple formal
expressions.) Furthermore, each E ′

i satisfies the following conditions:

(1) if f r
hk is a molar, then every f r

hk in E ′

i satisfies that h = k = i;
(2) if f r

hk is an incisor, then every f r
hk in E ′

i satisfies that h = i.

From the fact that πiUū = 0 for ū ∈ Rn and i 6∈ m̄, we have U ′

i =0.
Therefore, we can assume that U has a formal expression

∑

i∈m̄
E ′

i. Fur-
thermore, if f r

ii with i ∈ m̄ is a molar in some E ′

j, j ∈ m̄, then we must
have i = j. This is impossible. If f r

ji with i 6∈ m̄ is an incisor in E ′

j , j ∈ m̄,
then since πiUū = 0 whenever i 6∈ m̄, we can replace f r

ji by f 0
ji. As a

consequence, we can assume that each E ′

j, j ∈ m̄, contains only terms of
the forms f r

ij with i, j ∈ m̄. This proves Claim 2.

Claim 3. eMn(ρ, R)e is isomorphic to Mm(R).
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Proof of Claim 3. We show that the natural correspondence between
formal expressions Em(R) and En(R) induces the desired isomorphism.
Recall that the set m̄ has m elements. Let α : {1, 2, · · · , m} → m̄ such
that 1 ≤ i < j ≤ m if and only if α(i) < α(j). It is clear that α is
determined uniquely by the set m̄. Define a map Φ : Em(R) → En(R)
such that:

(1) Φ maps f r
ij ∈ Em(R) into f r

α(i)α(j) ∈ En(R);

(2) if A, B ∈ Em(N), we have Φ(A + B) = Φ(A) + Φ(B); and

(3) if A, B ∈ Em(N), we have Φ(AB) = Φ(A)Φ(B).

Since Φ takes a formal expression of Em(R) into a formal expression
of En(R), it is well-defined. Suppose U ∈ Mm(R) an m × m matrix
and E ∈ Em(R) a formal expression of U . Note that E consists of
expressions of the form f r

ij, 1 ≤ i, j ≤ m. Then the map Φ induces a
map φ : Mm(R) → eMn(ρ, R)e such that φ(U) is equal to the matrix in
Mn(R) realizing the expression Φ(E) ∈ En(R). From Claim 2, we have
that φ(U) ∈ eMn(ρ, R)e if φ is well-defined. We are to show φ is well-
defined. Let E1, E2 ∈ Em(R) representing the same matrix U ∈ Mm(R).
Let also V1 and V2 ∈ Mn(R) be the matrices realizing the expressions
Φ(E1) and Φ(E2), respectively. Suppose ū = (u1, u2, · · · , un) ∈ Rn and
ū′ = (u1, u2, · · · , um) ∈ Rm. Then:

πjV1(ū) = πjU(ū′) and πjV2(ū) = πjU(ū′)

where j ∈ m̄. We also have that:
πjV1(ū) = 0 and πjV2(ū) = 0

for j 6∈ m̄. Therefore, we have V1 = V2.
Suppose A, B ∈ Mm(R) such that φ(A) = φ(B), i.e. φ(A)(ū) =

= φ(B)(ū). We then have:

πiAū′ = πα(i)φ(A)(u1, u2, · · · , um, 0, · · · , 0)

if 1 ≤ i ≤ m. However,
ū ∼i (u1, u2, · · · , um, 0, · · · , 0) ∈ Rn

if 1 ≤ i ≤ m. This implies:

πiφ(A)(ū) = πiφ(A)(u1, u2, · · · , um, 0, · · · , 0)

= πiA(u1, · · · , um)

if 1 ≤ i ≤ m. Similarly, we have:
πiφ(B)(ū) = πiB(u1, · · · , um)

if 1 ≤ i ≤ m. Therefore, we have A = B. That is to say φ is an injection.
The surjectivity follows the definition easily. Moreover,
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φ(A + B) = φ(A) + φ(B) and φ(AB) = φ(A)φ(B).

In other words, Mm(R) is isomorphic to eMn(ρ, R)e. ♦

Observed that Th. 2.3 is now an immediate consequence of Lem-
ma 2.2 and the above result by taking the set m̄ = {1} and ρ the universal
relation on {1, 2, · · · , n}. Furthermore, we have the following result.

Theorem 2.5. Let 1 ≤ m ≤ n. If Mn(R) is regular, then Mm(R) is

regular.

Proof. Let ρ be the universal relation on {1, 2, · · · , n} and m̄ the
set {1, 2, · · · , m}. Then the result follows by invoking Lemma 2.2 and
Th. 2.4. ♦

The author does not know whether the converse of Th. 2.5 is true.
We conclude this note with the following conjecture.

Conjecture 2.6. There exists a regular zero-symmetric near-ring R with

identity that M2(R) is not regular.
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