Mathematica Pannonica 22/1 (2011), 113–118

ON REGULARITY OF MATRIX NEAR-RINGS

K. S. Enoch Lee

Mathematics Department, Auburn University Montgomery, P.O. Box 244023, Montgomery, AL 36124-4023, USA

Received: October 2010

MSC 2000: 16 Y 30

Keywords: Regular near-rings, matrix near-rings.

Abstract: A classic matrix ring result is that the $n \times n$ full matrix ring over a ring is (von Neumann) regular if and only if the base ring is regular. The near-ring version of the aforementioned property has attracted many near-ring theorists since the introduction of matrix near-rings by Meldrum and van der Walt in the 80's. In this note, we study the transfer of regularity between a base near-ring and its $n \times n$ matrix near-ring extension. A partial answer is provided to the question. We show that if the $n \times n$ full matrix near-ring over a near-ring with identity is regular, so are any $m \times m$ full matrix near-rings over the same base near-ring, $1 \le m \le n$.

1. Introduction

In this note, a near-ring is a right zero-symmetric near-ring [5] with identity. For convenience, we shall use R to denote a near-ring. A nearring (or ring) is called *regular* if for every element a of the near-ring (or ring), there exists an element b such that aba = a. An important property of matrix ring is that the $n \times n$ full matrix ring over a ring with identity is regular if and only if the base ring is regular (see Th. 2.14 of [4]). Note the Brown and McCoy [2] showed this is true for rings without identity (see also [6]).

We denote by $M_n(R)$ the $n \times n$ matrix near-ring over R. (We

E-mail address: elee4@aum.edu

K. S. Enoch Lee

refer the readers to [1] and [3] for more on matrix near-rings.) Suppose ρ is a reflexive and transitive relation on $\{1, 2, \dots, n\}$. Then we let $M_n(\rho, R)$ (see [7]) be the subnear-ring of $M_n(R)$ generated by the elementary matrix functions $\{f_{ij}^r : R^n \to R^n | r \in R, (i, j) \in \rho\}$ where $f_{ij}^r(u_1, u_2, \dots, u_n) = (0, \dots, 0, ru_j, 0, \dots, 0)$ such that ru_j is in the *i*-th position. In this note, we investigate the transfer of regularity between a near-ring R and the $n \times n$ matrix near-ring over R. We show that if the $n \times n$ matrix near-ring $M_n(R)$ is regular, then each $M_m(R)$ is regular, $1 \leq m \leq n$. However, the author does not know if the converse is true in general.

2. Results

We begin our quest with the following technical result.

Lemma 2.1. Let $K \subseteq \{1, 2, \dots, n\}$. Then $e = \sum_{i \in K} f_{ii}^1$ is an idempotent and a distributive element of $M_n(R)$.

Proof. It is easy to see that if $i \neq j$, we have $f_{il}^r B + f_{jk}^s A = f_{jk}^s A + f_{il}^r B$ for any $r, s \in R$ and any matrices $A, B \in M_n(R)$. Therefore, e is distributive. By Th. 2.2 of [1], we have e an idempotent. \diamond

Lemma 2.2. If e is an idempotent and a distributive element of R, then eRe is a subnear-ring of R. In addition, if R is regular, then so is eRe. **Proof.** The proof is a routine exercise. \Diamond

Theorem 2.3. Suppose $M_n(\rho, R)$ is regular where ρ is a reflexive and transitive relation on the set $\{1, 2, \dots, n\}$. Then R is regular.

Proof. Let $e = f_{11}^1$. Observe that e is a distributive element of $M_n(\rho, R)$. Then $eM_n(\rho, R)e$ is a regular subnear-ring of $M_n(\rho, R)$ by Lemma 2.2. Let $A \in eM_n(B, R)e$. We have $Ae = f_{11}^{a_1} + \cdots + f_{n1}^{a_n}$ for some $a_i \in R$ by Lemma 3.7 of [3]. Since Ae = A, we conclude that $A = f_{11}^{a_1} + \cdots + f_{n1}^{a_n}$. Furthermore, $eA = f_{11}^1(f_{11}^{a_1} + \cdots + f_{n1}^{a_n}) = f_{11}^{a_1}$ by Lemma 3.1(5) of [3]. Hence $A = f_{11}^{a_1}$. Immediately we see that A = 0 if and only if $a_1 = 0$. Note also that $f_{11}^a + f_{11}^b = f_{11}^{a+b}$ and $f_{11}^a \cdot f_{11}^b = f_{11}^{ab}$. Therefore R is isomorphic to $eM_n(\rho, R)e$, and we have R is regular. \diamond

We shall use the notions of "molars" and "incisors", introduced in [7] for matrices, to extend the above result. If $\bar{u}, \bar{v} \in \mathbb{R}^n$, we define $\bar{u} \sim_i \bar{v}$ if and only if $\pi_j \bar{u} = \pi_j \bar{v}$ for all j such that $(i, j) \in \rho$, where π_j denotes the *j*-th coordinate projection function. Furthermore, let:

$$W = \{ f_{ij}^r | r \in R, 1 \le i, j \le n \}.$$

We make the following distinction among the f_{ij}^r 's in an expression:

- (1) If $E = a_1 \in W$, then a_1 is an *incisor* in E.
- (2) Let $A = a_1 a_2 \cdots a_p$ and $E = a'_1 a'_2 \cdots a'_q$ be expressions of some matrices. If $a_k \in W$, then a_k is a *molar* in

 $(A)(E) = (a_1 a_2 \cdots a_p)(a'_1 a'_2 \cdots a'_q).$

If $a'_h \in W$, then a'_h is an incisor (resp. a molar) in (A)(E) if a'_h is an incisor (resp. a molar) in $E, 1 \leq h \leq q$.

(3) Let A and E be as in (2). If $a_k \in W$, then a_k is an incisor (resp. a molar) in $A + E = a_1 a_2 \cdots a_p + a'_1 a'_2 \cdots a'_q$ if a_k is an incisor (resp. a molar) in $A, 1 \leq k \leq p$. If $a'_h \in W$, then a'_h is an incisor (resp. a molar) in A + E if a'_h is an incisor (resp. a molar) in $E, 1 \leq h \leq q$.

We proceed the extension by first proving the following important result (Th. 2.4) of structural matrix near-rings. Given ρ on $\{1, 2, \dots, n\}$. Let \overline{m} be any non-empty subset of $\{1, 2, \dots, n\}$ of size m satisfying the following condition. For any two elements a, b of \overline{m} , we have

$$(a, b)$$
 and $(b, a) \in \rho$.

Furthermore, we let

$$\rho_{\bar{m}} = \{(a,b) | a, b \in \bar{m}\} \bigcup \{(x,x) | 1 \le x \le n\}.$$

Clearly, we have $\rho_{\bar{m}} \subseteq \rho$ an equivalence relation on $\{1, 2, \cdots, n\}$.

For example, if n = 3 and

 $\rho = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3)\},\$

then \bar{m} can only be one of the following four sets:

 $\{1\}, \{2\}, \{3\}, \text{ and } \{1, 2\}.$

For each of the first 3 sets (each is of size 1), the equivalence relation $\rho_{\bar{m}}$ is clearly $\{(1,1), (2,2), (3,3)\}$. However, if $\bar{m} = \{1,2\}$ (of size 2), we have

 $\rho_{\bar{m}} = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}.$

Theorem 2.4. Given ρ a reflexive and transitive relation on $\{1, 2, \dots, n\}$. Suppose \bar{m} is a subset of $\{1, 2, \dots, n\}$ as described before. Let $e = \sum_{i \in \bar{m}} f_{ii}^1$. Then $eM_n(\rho, R)e$ is generated as a subnear-ring of $M_n(R)$ by the set

 $\{f_{ij}^r | r \in R, i \text{ and } j \in \overline{m}\}.$

Furthermore, $eM_n(\rho, R)e$ is isomorphic to $M_m(R)$.

Proof. We proceed by proving a sequence of claims. We stipulate that \bar{u} and \bar{v} are elements of R^n in the following.

Claim 1. $eM_n(\rho, R)e \subseteq M_n(\rho_{\bar{m}}, R)$ where $\rho_{\bar{m}} = \{(a, b) \in \rho : a, b \in \bar{m}\} \bigcup \bigcup \{(x, x) : 1 \le x \le n\}.$

Proof of Claim 1. In view of [7], it suffices to show that for any $A \in eM_n(\rho, R)e$, we have:

 $(\pi_j \bar{u} = \pi_j \bar{v} \text{ for all } j \text{ such that } (i, j) \in \rho_{\bar{m}}) \text{ implies } (\pi_i A \bar{u} = \pi_i A \bar{v})$ whenever $1 \leq i \leq n$.

Note that $f_{ii}^1 \in eM_n(\rho, R)e$ for any $i \in \overline{m}$. Let $A \in eM_n(\rho, R)e$. We fix an integer i where $1 \leq i \leq n$. Suppose also that $\pi_j \overline{u} = \pi_j \overline{v}$ whenever $(i, j) \in \rho_{\overline{m}}$. If $i \notin \overline{m}$, then i = j and we have

 $\pi_j A \bar{u} = \pi_j e A \bar{u} = 0$ and $\pi_j A \bar{v} = \pi_j e A \bar{v} = 0$.

If $i \in \bar{m}$, then we have $\pi_j \bar{u} = \pi_j \bar{v}$ for all $j \in \bar{m}$. That is to say $\left(\sum_{h \in \bar{m}} f_{hh}^1\right) \bar{u} = \left(\sum_{h \in \bar{m}} f_{hh}^1\right) \bar{v}$. Therefore,

$$\pi_i A \bar{u} = \pi_i A \left(\sum_{h \in \bar{m}} f_{hh}^1 \right) \bar{u} = \pi_i A \left(\sum_{h \in \bar{m}} f_{hh}^1 \right) \bar{v} = \pi_i A \bar{v}.$$

This shows that $A \in M_n(\rho_{\bar{m}}, R)$, and thus $eM_n(\rho, R)e \subseteq M_n(\rho_{\bar{m}}, R)$. This proves the claim.

Claim 2. Each matrix of $eM_n(\rho, R)e$ has a formal expression containing only the elements of the form f_{ij}^r where $i, j \in \overline{m}$.

Proof of Claim 2. As an immediate consequence of Claim 1, we have that each matrix of $eM_n(\rho, R)e$ has a formal expression containing only the elements of the forms f_{ij}^r where $(i, j) \in \rho_{\bar{m}}$.

In view of the proof of Th. 2.8 of [7], a matrix $U \in eM_n(\rho, R)e$ can be written as $U = U'_1 + \cdots + U'_n$, and each U'_i has a formal expression $E'_i \in \mathbb{E}_n(R)$ where $\mathbb{E}_n(R)$ is the set of all formal expressions representing matrices of $M_n(R)$. (Note a matrix of $M_n(R)$ may have multiple formal expressions.) Furthermore, each E'_i satisfies the following conditions:

(1) if f_{hk}^r is a molar, then every f_{hk}^r in E'_i satisfies that h = k = i;

(2) if f_{hk}^r is an incisor, then every f_{hk}^r in E'_i satisfies that h = i.

From the fact that $\pi_i U \bar{u} = 0$ for $\bar{u} \in \mathbb{R}^n$ and $i \notin \bar{m}$, we have $U'_i = 0$. Therefore, we can assume that U has a formal expression $\sum_{i \in \bar{m}} E'_i$. Furthermore, if f^r_{ii} with $i \in \bar{m}$ is a molar in some E'_j , $j \in \bar{m}$, then we must have i = j. This is impossible. If f^r_{ji} with $i \notin \bar{m}$ is an incisor in E'_j , $j \in \bar{m}$, then since $\pi_i U \bar{u} = 0$ whenever $i \notin \bar{m}$, we can replace f^r_{ji} by f^0_{ji} . As a consequence, we can assume that each E'_j , $j \in \bar{m}$, contains only terms of the forms f^r_{ij} with $i, j \in \bar{m}$. This proves Claim 2.

Claim 3. $eM_n(\rho, R)e$ is isomorphic to $M_m(R)$.

116

Proof of Claim 3. We show that the natural correspondence between formal expressions $\mathbb{E}_m(R)$ and $\mathbb{E}_n(R)$ induces the desired isomorphism. Recall that the set \overline{m} has m elements. Let $\alpha : \{1, 2, \dots, m\} \to \overline{m}$ such that $1 \leq i < j \leq m$ if and only if $\alpha(i) < \alpha(j)$. It is clear that α is determined uniquely by the set \overline{m} . Define a map $\Phi : \mathbb{E}_m(R) \to \mathbb{E}_n(R)$ such that:

- (1) Φ maps $f_{ij}^r \in \mathbb{E}_m(R)$ into $f_{\alpha(i)\alpha(j)}^r \in \mathbb{E}_n(R)$;
- (2) if $A, B \in \mathbb{E}_m(N)$, we have $\Phi(A + B) = \Phi(A) + \Phi(B)$; and
- (3) if $A, B \in \mathbb{E}_m(N)$, we have $\Phi(AB) = \Phi(A)\Phi(B)$.

Since Φ takes a formal expression of $\mathbb{E}_m(R)$ into a formal expression of $\mathbb{E}_n(R)$, it is well-defined. Suppose $U \in M_m(R)$ an $m \times m$ matrix and $E \in \mathbb{E}_m(R)$ a formal expression of U. Note that E consists of expressions of the form $f_{ij}^r, 1 \leq i, j \leq m$. Then the map Φ induces a map $\phi : M_m(R) \to eM_n(\rho, R)e$ such that $\phi(U)$ is equal to the matrix in $M_n(R)$ realizing the expression $\Phi(E) \in \mathbb{E}_n(R)$. From Claim 2, we have that $\phi(U) \in eM_n(\rho, R)e$ if ϕ is well-defined. We are to show ϕ is welldefined. Let $E_1, E_2 \in \mathbb{E}_m(R)$ representing the same matrix $U \in M_m(R)$. Let also V_1 and $V_2 \in M_n(R)$ be the matrices realizing the expressions $\Phi(E_1)$ and $\Phi(E_2)$, respectively. Suppose $\bar{u} = (u_1, u_2, \cdots, u_n) \in \mathbb{R}^n$ and $\bar{u}' = (u_1, u_2, \cdots, u_m) \in \mathbb{R}^m$. Then:

$$\pi_j V_1(\bar{u}) = \pi_j U(\bar{u}')$$
 and $\pi_j V_2(\bar{u}) = \pi_j U(\bar{u}')$

where $j \in \overline{m}$. We also have that:

$$V_1(\bar{u}) = 0$$
 and $\pi_j V_2(\bar{u}) = 0$

for $j \notin \overline{m}$. Therefore, we have $V_1 = V_2$.

Suppose $A, B \in M_m(R)$ such that $\phi(A) = \phi(B)$, i.e. $\phi(A)(\bar{u}) = \phi(B)(\bar{u})$. We then have:

$$\pi_i A \bar{u}' = \pi_{\alpha(i)} \phi(A)(u_1, u_2, \cdots, u_m, 0, \cdots, 0)$$

if $1 \leq i \leq m$. However,

$$\bar{u} \sim_i (u_1, u_2, \cdots, u_m, 0, \cdots, 0) \in \mathbb{R}^n$$

if $1 \le i \le m$. This implies: $\pi_i \phi(A)(\bar{u}) = \pi_i \phi(A)(u_1, u_2, \cdots, u_m, 0, \cdots, 0)$ $= \pi_i A(u_1, \cdots, u_m)$

if $1 \leq i \leq m$. Similarly, we have:

$$\pi_i \phi(B)(\bar{u}) = \pi_i B(u_1, \cdots, u_m)$$

if $1 \le i \le m$. Therefore, we have A = B. That is to say ϕ is an injection. The surjectivity follows the definition easily. Moreover, $\phi(A+B) = \phi(A) + \phi(B)$ and $\phi(AB) = \phi(A)\phi(B)$.

In other words, $M_m(R)$ is isomorphic to $eM_n(\rho, R)e$.

Observed that Th. 2.3 is now an immediate consequence of Lemma 2.2 and the above result by taking the set $\bar{m} = \{1\}$ and ρ the universal relation on $\{1, 2, \dots, n\}$. Furthermore, we have the following result.

Theorem 2.5. Let $1 \le m \le n$. If $M_n(R)$ is regular, then $M_m(R)$ is regular.

Proof. Let ρ be the universal relation on $\{1, 2, \dots, n\}$ and \overline{m} the set $\{1, 2, \dots, m\}$. Then the result follows by invoking Lemma 2.2 and Th. 2.4. \diamond

The author does not know whether the converse of Th. 2.5 is true. We conclude this note with the following conjecture.

Conjecture 2.6. There exists a regular zero-symmetric near-ring R with identity that $M_2(R)$ is not regular.

References

- ABBASI, S. J. and MELDRUM, J. D. P.: On Matrix near-rings, *Mathematica Pannonica* 2/2 (1991), 107–113.
- [2] BROWN, B. and MCCOY, N. H.: The maximal regular ideal of a ring, Proceedings of the American Mathematical Society 1 (2) (1950), 165–171.
- [3] MELDRUM, J. D. P. and VAN DER WALT, A. P. J.: Matrix near-rings, Arch. Math. 47 (1986), 312–319.
- [4] VON NEUMANN, J.: Continuous geometry, Princeton University Press, Princeton, 1998.
- [5] G. PILZ, G.: Near-rings (revised ed.), North-Holland, Amsterdam, 1983.
- [6] SZÁSZ, F. A.: Radicals of Rings, John Wiley & Sons, New York, 1981.
- [7] VAN DER WALT, A. P. J. and VAN WYK, L.: The J₂-radical in structural matrix near-rings, J. of Algebra 123 (1) (1989), 248–161.