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Abstract: A classic matrix ring result is that the n x n full matrix ring over
a ring is (von Neumann) regular if and only if the base ring is regular. The
near-ring version of the aforementioned property has attracted many near-ring
theorists since the introduction of matrix near-rings by Meldrum and van der
Walt in the 80’s. In this note, we study the transfer of regularity between a
base near-ring and its m X m matrix near-ring extension. A partial answer is
provided to the question. We show that if the n x n full matrix near-ring over
a near-ring with identity is regular, so are any m x m full matrix near-rings
over the same base near-ring, 1 < m < n.

1. Introduction

In this note, a near-ring is a right zero-symmetric near-ring [5] with
identity. For convenience, we shall use R to denote a near-ring. A near-
ring (or ring) is called regular if for every element a of the near-ring (or
ring), there exists an element b such that aba = a. An important property
of matrix ring is that the n x n full matrix ring over a ring with identity
is regular if and only if the base ring is regular (see Th. 2.14 of [4]). Note
the Brown and McCoy [2] showed this is true for rings without identity
(see also [6]).

We denote by M, (R) the n x n matrix near-ring over R. (We
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refer the readers to [1] and [3] for more on matrix near-rings.) Sup-
pose p is a reflexive and transitive relation on {1,2,--- ,n}. Then we
let M,,(p, R) (see [7]) be the subnear-ring of M, (R) generated by the
elementary matrix functions {f/; : R" — R"|r € R, (i,j) € p} where
fr(ur,ug, -+ ,uy) = (0,---,0,ru;,0,---,0) such that ru; is in the i-th
position. In this note, we investigate the transfer of regularity between a
near-ring R and the n x n matrix near-ring over R. We show that if the
n X n matrix near-ring M, (R) is regular, then each M,,(R) is regular,
1 < m < n. However, the author does not know if the converse is true
in general.

2. Results

We begin our quest with the following technical result.
Lemma 2.1. Let K C {1,2,---,n}. Thene =Y, [ is an idempo-
tent and a distributive element of M, (R).
Proof. It is easy to see that if 1 # j, we have f; B+ [ A = f5 A+ f; B for
any r, s € R and any matrices A, B € M, (R). Therefore, e is distributive.
By Th. 2.2 of [1], we have e an idempotent. ¢

Lemma 2.2. Ife is an idempotent and a distributive element of R, then
eRe is a subnear-ring of R. In addition, if R is reqular, then so is eRe.
Proof. The proof is a routine exercise. ¢

Theorem 2.3. Suppose M,(p, R) is reqular where p is a reflexive and
transitive relation on the set {1,2,--+ ,n}. Then R is regular.
Proof. Let e = f};. Observe that e is a distributive element of M,,(p, R).
Then eM,(p, R)e is a regular subnear-ring of M, (p, R) by Lemma 2.2.
Let A € eM, (B, R)e. We have Ae = f +---+ for for some a; € R by
Lemma 3.7 of [3]. Since Ae = A, we conclude that A = f} +---+ fo7.
Furthermore, eA = f{,(fi{ + -+ f27) = fit by Lemma 3.1(5) of [3].
Hence A = f{}. Immediately we see that A = 0 if and only if a; = 0.
Note also that f@ + b, = fi™ and f& - fh, = f#. Therefore R is
isomorphic to eM, (p, R)e, and we have R is regular. ¢

We shall use the notions of “molars” and “incisors”, introduced in
[7] for matrices, to extend the above result. If @, v € R", we define @ ~; v
if and only if 7;u = ;0 for all j such that (i,j) € p, where 7; denotes
the j-th coordinate projection function. Furthermore, let:

W ={fi|lr e R,1<i,j<n}.
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We make the following distinction among the f/;’s in an expression:

(1) If E =ay € W, then a, is an incisor in E.
(2) Let A = ajaz---a, and E = djay---a; be expressions of some

matrices. If a, € W, then a; is a molar in
(A)(E) = (amraz - ay)(aidy - - ag).

q
If aj, € W, then aj}, is an incisor (resp. a molar) in (A)(F) if aj, is
an incisor (resp. a molar) in F, 1 < h <gq.

(3) Let A and E be as in (2). If a;, € W, then ay, is an incisor (resp. a
molar) in A+ E = ajay - - - a, + ajay - - - ag, if ai is an incisor (resp.
amolar) in A, 1 <k <p. If aj, € W, then a}, is an incisor (resp. a
molar) in A+ F if @}, is an incisor (resp. a molar) in £, 1 < h <gq.

We proceed the extension by first proving the following important
result (Th. 2.4) of structural matrix near-rings. Given p on {1,2,--- n}.
Let m be any non-empty subset of {1,2,---,n} of size m satisfying the
following condition. For any two elements a, b of m, we have

(a,b) and (b,a) € p.

Furthermore, we let

pm = {(a,b)]a,b € m}| J{(z,2)[1 <z <n}.

Clearly, we have p; C p an equivalence relation on {1,2,---  n}.
For example, if n = 3 and

p= {(17 1)a (2> 2)) (37 3)? (17 2)? (27 1)7 (17 3)}>

then m can only be one of the following four sets:
{1}, {2}, {3}, and {1,2}.

For each of the first 3 sets (each is of size 1), the equivalence relation
pm 1s clearly {(1,1),(2,2),(3,3)}. However, if m = {1,2} (of size 2), we

have

P = {(17 1)a (27 2)) (37 3)) (1> 2)) (2> 1)}
Theorem 2.4. Given p a reflexive and transitive relation on {1,2,--- n}.
Suppose m is a subset of {1,2,---,n} as described before. Let e =
=Y iem [i- Then eM,(p, R)e is generated as a subnear-ring of M,(R)
by the set

{fijlr € R,i and j € m}.

Furthermore, eM,(p, R)e is isomorphic to M, (R).
Proof. We proceed by proving a sequence of claims. We stipulate that
@ and v are elements of R"™ in the following.
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Claim 1. eM,(p, R)e C M, (pm, R) where pz = {(a,b) € p:a,bem}J
U{(z,2) : 1 <2 <n}.

Proof of Claim 1. In view of [7], it suffices to show that for any
A € eM,(p, R)e, we have:

(mju = m;v for all j such that (i,j) € ps) implies (m;Au = m;Av)
whenever 1 <4 <n.

Note that f} € eM,,(p, R)e for any i € m. Let A € eM,(p, R)e. We
fix an integer ¢ where 1 <1 < n. Suppose also that m;u = 7;0 whenever
(1,7) € pm- I i &€ m, then i = j and we have

mjAu = mjeAu = 0 and m;Av = m;eAv = 0.
If © € m, then we have m;u = m;v for all j € m. That is to say

(Zhem f}%h)ﬂ = (Zhem fﬁh)ﬁ. Therefore,
m AU = WiA(Z f;h)ﬂ = WiA(Z féh)@ = mAv.

hem hem
This shows that A € M,(pm, R), and thus eM,(p, R)e C M,(pm, R).
This proves the claim.
Claim 2. Each matrix of eM,,(p, R)e has a formal expression containing
only the elements of the form f]; where i, j € m.
Proof of Claim 2. As an immediate consequence of Claim 1, we have
that each matrix of eM, (p, R)e has a formal expression containing only
the elements of the forms fi; where (i, j) € pm.

In view of the proof of Th. 2.8 of [7], a matrix U € eM,(p, R)e can
be written as U = U] 4+ --- 4+ U], and each U] has a formal expression
E! € E,(R) where E,(R) is the set of all formal expressions representing
matrices of M, (R). (Note a matrix of M, (R) may have multiple formal
expressions.) Furthermore, each E! satisfies the following conditions:

(1) if f7, is a molar, then every f;, in E! satisfies that h = k = 1;

(2) if f7, is an incisor, then every f;, in E! satisfies that h = 1.
From the fact that m;Uu = 0 for u € R" and i ¢ m, we have U/=0.
Therefore, we can assume that U has a formal expression ) .. Ei. Fur-
thermore, if f/; with ¢ € m is a molar in some E7, j € m, then we must
have i = j. This is impossible. If f}; with i ¢ m is an incisor in F%, j € m,
then since mUu = 0 whenever i ¢ m, we can replace f7; by ]OZ As a
consequence, we can assume that each E, j € m, contains only terms of
the forms fi; with 7, 7 € m. This proves Claim 2.

Claim 3. eM,(p, R)e is isomorphic to M,,(R).
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Proof of Claim 3. We show that the natural correspondence between
formal expressions E,,(R) and E,(R) induces the desired isomorphism.
Recall that the set m has m elements. Let a: {1,2,--- ;m} — m such
that 1 < ¢ < j < m if and only if a(i) < «a(j). It is clear that « is
determined uniquely by the set m. Define a map ® : E,,(R) — E,(R)
such that:

(1) @ maps fj; € En(R) into [}, € En(R);

(2)if A, B € E,,(N), we have ®(A + B) = &(A) + &(B); and

(3)if A, B € E,,(INV), we have ®(AB) = ®(A)P(B).
Since ® takes a formal expression of E,,(R) into a formal expression
of E,(R), it is well-defined. Suppose U € M,,(R) an m x m matrix
and £ € E,,(R) a formal expression of U. Note that E consists of
expressions of the form f/.,1 < 4,5 < m. Then the map ® induces a
map ¢ : M,,,(R) — eM,(p, R)e such that ¢(U) is equal to the matrix in
M,,(R) realizing the expression ®(F) € E,(R). From Claim 2, we have
that ¢(U) € eM,(p, R)e if ¢ is well-defined. We are to show ¢ is well-
defined. Let Ei, By € E,,(R) representing the same matrix U € M,,(R).
Let also Vi and Vo, € M, (R) be the matrices realizing the expressions
®(FE;) and ®(E,), respectively. Suppose @ = (uy,us, -+ ,u,) € R" and
W = (uy,ug, -+ ,Uy) € R™. Then:

Wj‘/i(ﬂ) = WjU(?_L/) and Wj‘/é(ﬂ) = WjU(?_L/)
where 7 € m. We also have that:
m;Vi(a) = 0 and m;Va(u) =0

for j € m. Therefore, we have V; = V5.

Suppose A, B € M,,(R) such that ¢(A) = ¢(B), i.e. p(A)(u) =
= ¢(B)(u). We then have:

AU = Ty O(A) (ur, ug, - -+ U, 0,- -+ ,0)
if 1 <i < m. However,
U~y (up,ugy -+ Uy, 0,---,0) € R"
if 1 <4 < m. This implies:
WZQS(A)(TL) = WiQS(A)(ub Uz, =+ 5 Um, 0,--- aO)
= AU, )
if 1 <14 < m. Similarly, we have:
mip(B)(u) = mB(u, -+ )

if 1 <4 < m. Therefore, we have A = B. That is to say ¢ is an injection.
The surjectivity follows the definition easily. Moreover,
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9(A+ B) = ¢(A) +¢(B) and ¢(AB) = ¢(A)o(B).
In other words, M,,(R) is isomorphic to eM,(p, R)e. &

Observed that Th. 2.3 is now an immediate consequence of Lem-
ma 2.2 and the above result by taking the set m = {1} and p the universal
relation on {1,2,--- ,n}. Furthermore, we have the following result.
Theorem 2.5. Let 1 < m < n. If M,(R) is regular, then M,,(R) is
reqular.

Proof. Let p be the universal relation on {1,2,--- n} and m the
set {1,2,---,m}. Then the result follows by invoking Lemma 2.2 and
Th.2.4. §

The author does not know whether the converse of Th. 2.5 is true.

We conclude this note with the following conjecture.

Conjecture 2.6. There exists a reqular zero-symmetric near-ring R with
identity that Ms(R) is not regular.
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