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1. Introduction

By a near-ring we mean a right near-ring and R is a near-ring.
Andrunakievich and Rjabuhin [1] characterized the special radicals of
rings using modules. Booth, Groenewald and Veldsman [4] introduced
and studied equiprime near-rings. Using equiprime near-rings, Booth and
Groenewald [2] developed special radicals of near-rings and in [3] they
gave a characterization of special radicals of zero-symmetric near-rings
in terms of left modules of near-rings.

Srinivasa Rao and Siva Prasad [9, 10, 11, 12] introduced and studied
the right Jacobson radicals of type-0, 1, 2, and s for near-rings and showed
that unlike left Jacobson radicals these are relevant for the extension of
a form of Wedderburn–Artin theorem of rings involving matrix rings to
near-rings. Unlike in rings, the left and right Jacobson radicals of a near-
ring are not comparable. For example, in [13, 14] it is shown that the right
Jacobson radicals of near-rings of type-0, 1 and 2 are Kurosh–Amitsur
radicals (KA-radicals) in the class of all zero-symmetric near-rings but it
is well known that the left Jacobson radicals of type-0 and 1 are not KA-
radicals in the class of all zero-symmetric near-rings. Moreover, in [15, 8]
the right Jacobson radicals of type-0(e), 1(e), and 2(e) are introduced for
near-rings and showed that they are special radicals of near-rings. This
shows the important role played by the right modules of near-rings in
the development of structure theory of near-rings.

In this paper an equiprime right R-group is introduced. An ideal I
of R is equiprime if and only if I is the annihilator of an equiprime right
R-group. Using it special classes of near-ring right modules are intro-
duced. A characterization of the special radicals of near-rings in terms
of right modules of near-rings is presented which is similar to the char-
acterization of the special radicals of rings developed by Andrunakievich
and Rjabuhin [1]. Some special classes of near-ring right modules are
also presented.

2. Preliminaries

R stands for a right near-ring (not necessarily zero-symmetric) and
all notations and definitions will be as in [7].

We need the following definitions and results of [9] and [10].
A group (G, +) is called a right R-group if there is a mapping

((g, r) → gr) of G × R into G such that
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(i) (g + h)r = gr + hr, and
(ii) g(rs) = (gr)s, for all g, h ∈ G and r, s ∈ R.

A subgroup (normal subgroup) H of a right R-group of G is called an
R-subgroup (ideal) of G if hr ∈ H for all h ∈ H and r ∈ R.

Let G, H be right R-groups. A mapping f : G → H is called an
R-homomorphism if

(i) f(x + y) = f(x) + f(y) and
(ii) f(xr) = f(x)r for all x, y ∈ G and for all r ∈ R.

G is said to be R-isomorphic to H if there is a one-to-one R-homo-
morphism of G onto H .

An element g in a right R-group G is called distributive if g(r+s) =
= gr + gs for all r, s ∈ R.

Let G be a right R-group. An element g ∈ G is called a generator
of G if g is distributive and gR = G. G is said to be monogenic if G has
a generator.

A monogenic right R-group G is said to be a right R-group of type-0
if G is simple, that is, G has no non-trivial ideals and GR 6= {0}.

A right R-group G of type-0 is said to be of type-1 if G has exactly
two R-subgroups namely, {0} and G.

A right R-group G of type-0 is said to be of type-2 if gR = G for
all 0 6= g ∈ G.

A near-ring R is called an equiprime near-ring if 0 6= a ∈ R,
x, y ∈ R and arx = ary for all r ∈ R, implies x = y. An ideal I of
R is called equiprime if R/I is an equiprime near-ring.

It is known that a near-ring R is equiprime if and only if
1. x, y ∈ R and xRy = {0} implies x = 0 or y = 0.
2. If {0} 6= I is an invariant subnear-ring of R, x, y ∈ R and

ax = ay for all a ∈ I implies x = y.
Moreover, an equiprime near-ring is zero-symmetric.
If I is an ideal of R, then we denote it by I � R. A subset S of R

is left invariant if RS ⊆ S. By a radical class we mean a radical class in
the sense of Kurosh–Amitsur.

Let E be a class of near-rings. E is called regular, if {0} 6= I�R ∈ E
implies that 0 6= I/K ∈ E for some K � I. It is known that, if E is a
regular class, then UE = {R | R has no non-zero homomorphic image
in E} is a radical class, called the upper radical determined by E . The
subdirect closure of a class of near-rings E is the class E = {R | R is a
subdirect sum of near-rings from E}. A class E is called hereditary if
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I � R ∈ E implies I ∈ E . E is called c-hereditary if I is a left invariant
ideal of R ∈ E implies I ∈ E . It is clear that a hereditary class is a
regular class. If I � R and for every non zero ideal J of R, J ∩ I 6= {0},
then I is called an essential ideal of R and is denoted by I � ·R. A class
of near-rings E is called closed under essential extensions (essential left
invariant extensions) if I ∈ E , I � ·R (I is an essential ideal of R which
is left invariant) implies R ∈ E . A class of near-rings E is said to satisfy
condition (Fl) if K � I � R, and I is left invariant in R and I/K ∈ E ,
then K � R.

In [2], Booth and Groenewald defined special radicals for near-rings.
A class E consisting of equiprime near-rings is called a special class if it
is hereditary and closed under essential left invariant extensions. If R is
the upper radical in the class of all near-rings determined by a special
class of near-rings, then R is called a special radical. If R is a radical
class, then the class SR = {R | R(R) = {0}} is called the semisimple
class of R.

We also need the following theorem:

Theorem 2.1 (Th. 2.4 of [16]). Let E be a class of zero-symmetric near-
rings. If E is regular, closed under essential left invariant extensions
and satisfies condition (Fl), then R := UE is c-hereditary radical class
in the variety of all near-rings, SR = E and SR is hereditary. So,
R(R) = ∩{I � R | R/I ∈ E} for all near-rings R.

Remark 2.2. Since all ideals in a zero-symmetric near-ring are left in-
variant, under the hypothesis of Th. 2.1, in the variety of zero-symmetric
near-rings both R and SR are hereditary and hence the radical is ideal-
hereditary, that is, if I � R, then R(I) = I ∩R(R).

Proposition 2.3 (Prop. 3.3 of [4]). The class of all equiprime near-rings
is closed under essential left invariant extensions.

Proposition 2.4 (Cor. 2.4 of [4]). The class of all equiprime near-rings
satisfy condition (Fl).

3. Equiprime right R-groups

Throughout this section R stands for a right near-ring and not
necessarily zero-symmetric.

The annihilator of a right R-group G, denoted by (0 : G), is defined
as (0 : G) = {a ∈ R | Ga = {0}}.
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Proposition 3.1. Let G be a right R-group and G0 = {0}. Suppose that
I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) = {0}.
Then there is a largest ideal of R contained in (0 : G).

Proof. Since G0 = {0}, the zero ideal of R is contained in (0 : G).
Let I and J be ideals of R contained in (0 : G). By our assumption
I + J ⊆ (0 : G). From this we get that for any collection of ideals of
R contained in (0 : G) their sum is an ideal of R contained in (0 : G).
Therefore, the sum K of all ideals T of R such that T ⊆ (0 : G) is the
largest ideal of R contained in (0 : G). ♦

Definition 3.2. A right R-group G is said to be equiprime if:

(i) GR 6= {0} and G0 = {0};

(ii) I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =
= {0};

(iii) 0 6= g ∈ G, a, b ∈ R and gxa = gxb for all x ∈ R implies a− b ∈ P ,
where P is the largest ideal of R contained in (0 : G);

(iv) r, s ∈ R and r − s ∈ P implies gr = gs for all g ∈ G.

Note that if Rc is the constant part of R, and G is an equiprime
right R-group, then GRc = G(R0) = (GR)0 ⊆ G0 = {0}.

Also note that if G is an equiprime right R-group, then from condi-
tions (i) and (ii) it follows that there is a largest ideal P of R contained
in (0 : G).

If R is a ring, then an equiprime right R-group is a right prime
R-module [6].

Proposition 3.3. Let G be a right R-group satisfying conditions (i), (ii)
and (iii) of Def. 3.2. Then (0 : G) is an ideal of R.

Proof. Let P be the largest ideal of R contained in (0 : G). Let r ∈
∈ (0 : G). Let 0 6= g ∈ G. Now gxr = (gx)r = 0 = (gx)0 = gx0 for all
x∈R. Therefore, r = r − 0 ∈ P . Hence, P = (0 : G) is an ideal of R. ♦

Proposition 3.4. Let G be a right R-group satisfying conditions (i), (ii)
and (iv) of Def. 3.2 and P be the largest ideal of R contained in (0 : G).
Then the following are equivalent:

(a) G is an equiprime right R-group.
(b) (i) For 0 6= g ∈ G, c 6∈ (0 : G), gRc 6= {0}.

(ii) If {0} 6= H is a right R-subgroup of G, c, d ∈ R and
hc = hd for all h ∈ H, then c − d ∈ P .

Proof. (a)⇒ (b). Let 0 6= g ∈ G, c 6∈ (0 : G). Suppose that gRc = {0}.
Now gxc=0=gx0 for all x∈R. Since G is equiprime, c = c−0 ∈ (0 : G),
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a contradiction. So gRc 6= {0}. Suppose that {0} 6= H is a right R-
subgroup of G, a, b ∈ R and ha = hb for all h ∈ H . Let 0 6= h0 ∈ H .
Now h0xa = h0xb for all x ∈ R. Since G is equiprime, a−b ∈ (0 : G) = P .

(b) ⇒ (a). Let r ∈ (0 : G). Now gr = 0 = g0 for all g ∈ G. So
r = r − 0 ∈ P and hence P = (0 : G). Suppose that 0 6= g ∈ G, c, d ∈ R
and gxc = gxd for all x ∈ R. Let s ∈R\P . Then gRs 6= {0} and
hence gR 6= {0}. Let K be the subgroup of (G, +) generated by gR
:= {gr | r ∈ R}. Now K is a non-zero right R-subgroup of G. Since gxc =
= gxd for all x ∈ R, we get that kc = kd for all k ∈ K. Therefore,
c − d ∈ P . Hence, G is an equiprime right R-group. ♦

Proposition 3.5. Let Q be an equiprime ideal of R. Then (Q : R) =
= {r ∈ R | Rr ⊆ Q} = Q.

Proof. Since Rc ⊆ Q, we have that RQ ⊆ Q. So, Q ⊆ (Q : R). Let
y ∈ (Q : R). Now Ry ⊆ Q and R0 = Rc ⊆ Q. So, ry − r0 ∈ Q for all
r ∈ R. Since Q is an equiprime ideal of R, y = y − 0 ∈ Q. Therefore,
(Q : R) ⊆ Q and hence (Q : R) = Q. ♦

Proposition 3.6. Let Q be an ideal of R and Q 6= R. Then the following
are equivalent:

(i) Q is an equiprime ideal of R.
(ii) There is an equiprime right R-group G such that Q = (0 : G).

Proof. Let Q be an equiprime ideal of R. We show that the right R-
group G := R/Q is equiprime. We have (0 : G)=(Q : R)={r∈R | Rr ⊆
⊆ Q} = Q. If GR = {0}, then RR ⊂ Q. Since an equiprime ideal
is a prime ideal, we get that R ⊆ Q, a contradiction to Q 6= R. So,
GR 6= {0}. Since Rc ⊆ Q, G0 = {0}. Let I, J be ideals of R such that
GI = GJ = {0}. Then I ⊆ (Q : R), J ⊆ (Q : R). Since (Q : R) = Q is
an ideal of R, I + J ⊆ (Q : R), that is, G(I + J) = {0}. Let P be the
largest ideal of R contained in (0 : G). Let 0 6= r + Q ∈ R/Q, a, b ∈ R
and (r + Q)xa = (r + Q)xb for all x in R. Now rxa − rxb ∈ Q for all
x ∈ R. Since Q is equiprime and r 6∈ Q, we get that a − b ∈ Q. By
Prop. 3.5, P = Q. So, a − b ∈ P . Let r, s ∈ R and r − s ∈ (0 : G) = Q.
Let x + Q ∈ R/Q. xr = (x((r − s) + s) − xs) + xs = q + xs, where
q := x((r−s)+s)−xs ∈ Q. So, xr−xs ∈ Q and that (x+Q)r = (x+Q)s.
Therefore, G is an equiprime right R-group. On the other hand suppose
that G is an equiprime right R-group. Let T := (0 : G). We show that
the ideal T is an equiprime ideal of R. Let a ∈ R\T , b, c ∈ R and
axb − axc ∈ T for all x ∈ R. We get g ∈ G such that ga 6= 0. Now
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g(axb) = g(axc) and hence (ga)xb = (ga)xc for all x ∈ R. Since G is
equiprime, b − c ∈ T . Therefore, T is an equiprime ideal of R. ♦

Proposition 3.7. Let G be an equiprime right R-group and let {0} 6= H
be an R-subgroup of G. Then H is an equiprime right R-group and
(0 : G) = (0 : H).

Proof. Obviously, (0 : G) ⊆ (0 : H). Let a ∈ (0 : H)\(0 : G) and let
0 6= h ∈ H . Now hra = 0 = hr0 for all r ∈ R. Since G is an equiprime
right R-group, a = a − 0 ∈ (0 : G), a contradiction to a 6∈ (0 : G).
Therefore, (0 : G) = (0 : H). Let 0 6= t ∈ H, a, b ∈ R and txa = txb for all
x ∈ R. Since G is an equiprime right R-group, a− b ∈ (0 : G) = (0 : H).
It is an easy verification that the other conditions of an equiprime right
R-group are satisfied by H . Therefore, H is an equiprime right R-group.

♦

Theorem 3.8. Let I be an essential left invariant ideal of R and let G
be an equiprime right I-group. Then H := 〈GI〉s, the subgroup of (G, +)
generated by GI, is an equiprime right R-group and (0 : G)I = (0 : H)R.

Proof. Let H be the subgroup of (G, +) generated by GI. Clearly,
H is an I-subgroup of G. So by Prop. 3.7, H is an equiprime right I-
group and (0 : H)I = (0 : G)I . We show now that H is an equiprime
right R-group. Let h ∈ H , r ∈ R. Now h = δ1(g1s1) + δ2(g2s2)+
+ · · · + δk(gksk) for some si ∈ I, gi ∈ G, δi ∈ {1,−1}. Define
hr := δ1(g1(s1r)) + δ2(g2(s2r)) + · · · + δk(gk(skr)). We show that this
operation is well defined. Suppose that h has another representation as
h = λ1(h1t1) + λ2(h2t2) + · · · + λn(hntn), ti ∈ I, hi ∈ G, λi ∈ {1,−1}.
Let c ∈ I\(0 : G)I . Now ((δ1(g1(s1r)) + δ2(g2(s2r)) + · · · + δk(gk(skr)))
− (λ1(h1(t1r)) + λ2(h2(t2r)) + · · · + λn(hn(tnr))))ac = ((δ1(g1s1) +
+δ2(g2s2)+ · · ·+δk(gksk))−(λ1(h1t1)+λ2(h2t2)+ · · ·+λn(hntn)))(ra)c =
= 0(ra)c = 0 for all a ∈ I. Since G is an equiprime right I-group and
c 6∈ (0 : G)I , we get that δ1(g1(s1r)) + δ2(g2(s2r)) + · · · + δk(gk(skr)) =
= λ1(h1(t1r)) + λ2(h2(t2r)) + · · · + λn(hn(tnr)). So the operation is
well defined. It is an easy verification that H is a right R-group un-
der this operation. Clearly, the action of R on H is an extension of
the action of I on H . Since GI 6= {0}, we have ga 6= 0, for some
g ∈ G, a ∈ I. If (gI)I = {0}, then (ga)yb = 0 = (ga)y0 for all
y ∈ I, where b ∈ I\(0 : G)I . Since G is an equiprime right I-group,
b = b − 0 ∈ (0 : G)I , a contradiction. So, (gI)I 6= {0} and that
HR 6= {0}. We have H0 = {0}. Let J and K be ideals of R and
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HJ = HK = {0}. Now GIJ = GIK = {0}. So GJ⋆ = GK⋆ = {0},
where J⋆, K⋆ are ideals of I generated IJ and IK respectively. Now
G(J⋆ + K⋆) = {0}. For z ∈ I \ (0 : G)I , h ∈ H , j ∈ J , k ∈ K, and
x ∈ I, we have h(j + k)xz = h(jx + kx)z = 0z = 0 = h(j + k)x0.
Since G is an equiprime right I-group and z − 0 6∈ (0 : G)I , we have
that h(j + k) = 0. Therefore, H(J + K) = {0}. Let 0 6= h ∈ H and
h = δ1(g1s1) + δ2(g2s2) + · · ·+ δk(gksk), si ∈ I, gi ∈ G, δi ∈ {1,−1}. Let
P be the largest ideal of R contained in (0 : H)R. Let Q := (0 : G)I .
Since G is an equiprime right I-group, by Prop. 3.6, Q is an equiprime
ideal of I. So, I/Q is an equiprime near-ring. Therefore, by condition Fl,
Q is an ideal of R. Now it is clear that Q ⊆ P . Since I/Q is an essential
ideal of R/Q and I/Q is equiprime, R/Q is an equiprime near-ring. So,
Q is an equiprime ideal of R. Suppose that r, s ∈ R and hxr = hxs for
all x ∈ R. Fix v ∈ I. Now h(av)r = h(av)s for all a ∈ I and hence
ha(vr) = ha(vs) for all a ∈ I. Therefore, vr − vs ∈ (0 : G)I = Q.
Since Q is an equiprime ideal of R and I is a left invariant ideal of R,
r − s ∈ Q ⊆ P . Let p ∈ P and 0 6= g0 ∈ H . Now g0xp = 0 = g0x0
for all x ∈ R. As seen above p = p − 0 ∈ Q. Therefore, P = Q
and (0 : H)R = Q. Finally, let r1, r2 ∈ R and r1 − r2 ∈ P . We have
h = δ1(g1s1)+ δ2(g2s2)+ · · ·+ δk(gksk), si ∈ I, gi ∈ G, δi ∈ {1,−1}. Now
hr1 = hr2 if gi(sir1) = gi(sir2) for all i = 1, 2, . . . , k. Since r1 − r2 ∈ Q,
ar1 −ar2 = a((r1 − r2)+ r2)−ar2 ∈ Q for all a ∈ I. Now gar1 = gar2 for
all a ∈ I, g ∈ G. So, gi(sir1) = gi(sir2) and hence hr1 = hr2. Therefore,
H is an equiprime right R-group and (0 : G)I = (0 : H)R. ♦

Theorem 3.9. Let G be an equiprime right R-group and let I be a left
invariant ideal of R. If GI 6= {0}, then G is an equiprime right I-group.

Proof. Suppose that GI 6= {0}. Clearly, G is a right I-group and
G0 = {0}. Moreover, (0 : G)I = (0 : G)R ∩ I is an ideal of I. Let
0 6= g ∈ G, a, b ∈ I and gya = gyb for all y ∈ I. If gI = {0}, then
gxc = 0 = gx0 for all x ∈ R, c ∈ I with Gc 6= {0}. So c = c−0 ∈ (0 : G),
a contradiction. Therefore, gI 6= {0}. We have a d ∈ I such that gd 6= 0.
Now (gd)xa = (gd)xb for all x ∈ R. Therefore, a − b ∈ (0 : G)I . Let
u, v ∈ I and u − v ∈ (0 : G)I ⊆ (0 : G)R. So, gu = gv for all g ∈ G.
Therefore, G is an equiprime right I-group. ♦

Proposition 3.10. Let G be an equiprime right R-group and let I be an
ideal of R with GI = {0}. Then G is an equiprime right R/I-group.

Proof. Let r+I ∈ R/I and g ∈ G. Define g(r+I) := gr. If r+I = s+I,
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s ∈ R, then r−s ∈ I ⊆ (0 : G)R and hence hr = hs for all h ∈ G. So, the
above operation is well defined. Clearly, G is a right R/I-group. Since
GR 6= {0}, we get that G(R/I) 6= {0}. We have GI = {0}. Let J/I, K/I
be ideals of R/I and G(J/I) = G(K/I) = {0}. Now GJ = GK = {0}
and that G(J + K) = {0}. So, G(J/I + K/I) = {0}. Let P := (0 : G)R.
Now P is an ideal of R. So, (0 : G)R/I = P/I. Let 0 6= g0 ∈ G,
a, b ∈ R and g0(x + I)(a + I) = g0(x + I)(b + I) for all x ∈ R. Since
G is equiprime and g0xa = g0xb for all x ∈ R, we have that a − b ∈ P .
Therefore, (a + I) − (b + I) ∈ P/I. Let (r + I) − (s + I) ∈ P/I. Now
r − s ∈ P and that gr = gs for all g ∈ G. Therefore, g(r + I) = g(s + I)
for all g ∈ G. Hence, G is an equiprime right R/I-group. ♦

The following proposition is easy and its proof is omitted.

Proposition 3.11. Let I be an ideal of R and G be an equiprime right
R/I-group. Then G is an equiprime right R-group, where gr := g(r+ I).

4. Special classes of right modules of near-rings

In [1] Andrunakievich and Rjabuhin described special radicals of
rings in terms of modules. A similar characterization for special radi-
cals of zero-symmetric near-rings was given in terms of left modules of
near-rings by Booth and Groenewald [2]. In this section we give a char-
acterization for special radicals of near-rings in terms of right modules of
near-rings.

Let N be the class of all near-rings. Suppose that for every near-
ring R, there is a class MR of right R-groups. Let M = ∪R∈N MR.
Then M is called a special class of near-ring right modules if it satisfies
the following conditions:
M1. If G ∈ MR, then G is an equiprime right R-group.
M2. If G ∈ MI , I is an essential left invariant ideal of R, then 〈GI〉s,

the subgroup of (G, +) generated by GI, is in MR.
M3. If G∈MR, I is a left invariant ideal ofR and GI 6={0}, then G∈MI .
M4. If G ∈ MR, I is an ideal of R and GI = {0}, then G ∈ MR/I ,

where g(r + I) := gr for all r ∈ R, g ∈ G.
M5. If G ∈ MR/I , I is an ideal of R, then G ∈ MR, where gr := g(r+ I)

for all r ∈ R, g ∈ G.

Theorem 4.1. Let E := ∪R∈NER, where ER is the class of all equiprime
right R-groups. Then E is a special class of near-ring right modules.
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Proof. The proof follows from Th. 3.8 and Th. 3.9, and Prop. 3.10 and
Prop. 3.11. ♦

Let M be a special class of near-ring right modules and let R be a
near-ring. We define M(R) := ∩{(0 : G)R | G ∈ MR} and SM := {R ∈
∈ N | there is a G ∈ MR such that (0 : G)R = {0}} ∪ {0}.

Theorem 4.2. Let M be a special class of near-ring right modules.
Then SM is a special class of near-rings.

Proof. Let {0} 6= R ∈ SM. We get a G ∈ MR such that (0 : G)R = {0}.
By M1, G is an equiprime right R-group. Now by Prop. 3.6, {0} =
= (0 : G)R is an equiprime ideal of R. So R is an equiprime near-
ring. Let I be a non-zero (left invariant) ideal of R. Since (0 : G)R =
= {0}, we have that GI 6= {0}. So by M3, G ∈ MI . Now (0 : G)I =
= (0 : G)R ∩ I = {0} ∩ I = {0}. Therefore, I ∈ SM and hence SM is
hereditary. Now suppose that J is an essential left invariant ideal of a
near-ring T and J ∈ SM. We get a H ∈ MJ , such that (0 : H)J = {0}.
We have that H is an equiprime right J-group and HJ 6= {0}. Since M
is a special class, by M2 we get that K, the subgroup of (H, +) generated
by HJ , is in MT . Now we claim that (0 : K)T = (0 : H)J = {0}. Let
P := (0 : K)T . By Prop. 3.3 and Prop. 3.6, P is an equiprime ideal of T .
Since HJ = {0}, HJP = {0}. Also, since JP ⊆ J and (0 : H)J = {0},
JP = {0}. Suppose that P 6= {0}. Since J is an essential ideal of T ,
L := J ∩ P 6= {0}. Now JL = {0}. This is a contradiction to the fact
that J is an equiprime near-ring. So P = {0}. Therefore, T ∈ SM.
Hence, SM is a special class of near-rings. ♦

Proposition 4.3. Let M be a special class of near-ring right modules.
Suppose that I is an ideal of R. Then R/I ∈ SM if and only if I =
= (0 : G)R for some G ∈ MR.

Proof. Suppose that R/I ∈ SM. We get a G ∈ MR/I and (0 : G)R/I =
= {0}. Since M is a special class, G ∈ MR. Also, (0 : G)R = I as
(0 : G)R/I = {0}. On the other hand suppose that I = (0 : G)R, for
some G ∈ MR. Since I ⊆ (0 : G)R and M is a special class, G ∈ MR/I .
Moreover, (0 : G)R/I = {0} as I = (0 : G)R. ♦

Proposition 4.4. Let M be a special class of near-ring right modules.
Let R be the upper radical determined by the special class of near-rings
SM. Then R(R) = ∩{(0 : G)R | G ∈ MR}.

Proof. Since R is the upper radical determined by the hereditary class
of near-rings SM, R(R) = ∩{I | I is an ideal of R and R/I ∈ SM}. By
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Prop. 4.3, we get that R(R) = ∩{(0 : G)R | G ∈ MR}. ♦

Theorem 4.5. Let A be a special class of near-rings. For any near-
ring R, let MR = {G | G be an equiprime right R-group and
R/(0 : G)R ∈ A}. Let M := ∪R∈N MR. Then M is a special class
of near-ring right modules and A = SM.

Proof. (i) By definition, each G ∈ MR is an equiprime right R-group.
(ii) Let I be an essential left invariant ideal of R and G ∈ MI . Let

H := 〈GI〉s be the subgroup of (G, +) generated by GI. Since G is an
equiprime right I-group and I is an essential left invariant ideal of R, by
Th. 3.8, H is an equiprime right R-group and (0 : G)I = (0 : H)R. We
have I/(0 : G)I ∈ A. Now I/(0 : G)I is an essential left invariant ideal
of R/(0 : H)R. Therefore, R/(0 : H)R ∈ A and hence H ∈ MR.

(iii) Suppose now that G ∈ MR, J is a left invariant ideal of R
and GJ 6= {0}. By Th. 3.9, G is an equiprime right J-group. Moreover,
(0 : G)J = (0 : G)R ∩ J . Now J/(0 : G)J = J/((0 : G)R ∩ J) ≃
≃ (J + (0 : G)R)/(0 : G)R and (J + (0 : G)R)/(0 : G)R is a left invariant
ideal of R/(0 : G)R ∈ A. So J/(0 : G)J ∈ A and hence G ∈ MJ .

(iv) Assume that G ∈ MR, K is an ideal of R and GK = {0}. By
Prop. 3.10, G is an equiprime right R/K-group, where g(r + K) := gr.
Moreover, (0 : G)R/K = (0 : G)R/K. Now (R/K)/((0 : G)R/K) ≃
≃ R/(0 : G)R ∈ A. Therefore, G ∈ MR/K .

(v) Suppose now that P is an ideal of R and G ∈ MR/P . By
Prop. 3.11, G is an equiprime right R-group, where gr := g(r+P ). Also,
(0 : G)R/P = (0 : G)R/P . Now R/(0 : G)R ≃ (R/P )/((0 : G)R/P ) =
= (R/P )/(0 : G)R/P ∈ A. Therefore, G ∈ MR. Hence, M is a special
class of near-ring right modules. Clearly, SM ⊆ A. Let R ∈ A. Since
A is a class of equiprime near-rings, by Prop. 3.6, there is a faithful
equiprime right R-group G. We have R/(0 : G) = R ∈ A. Therefore,
R ∈ SM and hence A ⊆ SM. So, A = SM. ♦

5. Characterizations for some concrete special radi-

cals

In this section we present characterizations for some concrete spe-
cial radicals of near-rings.

Strongly equiprime near-rings, uniformly strongly equiprime near-
rings, and bounded strongly equiprime near-rings of bound one are in-
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troduced and studied in [5] and completely equiprime near-rings are in-
troduced and studied in [2].

An ideal P of a near-ring R is said to be (right) strongly equiprime
if for each a ∈ R\P , there is a finite subset Fa of R such that b, c ∈ R
and axb − axc ∈ P for all x ∈ Fa implies b − c ∈ P . A near-ring R is
said to be (right) strongly equiprime if {0} is a (right) strongly equiprime
ideal of R. The strongly equiprime radical of R, denoted by S(R), is the
intersection of all strongly equiprime ideals of R. Moreover, S is a special
radical in the class of all near-rings.

Definition 5.1. A right R-group G is said to be strongly equiprime if

(i) GR 6= {0} and G0 = {0};

(ii) I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =
= {0};

(iii) for each 0 6= g ∈ G there is a finite subset Fg of R such that a, b ∈ R
and gxa = gxb for all x ∈ Fg implies a − b ∈ P , where P is the
largest ideal of R contained in (0 : G);

(iv) r, s ∈ R and r − s ∈ P implies gr = gs for all g ∈ G.

Remark 5.2. Trivially, a strongly equiprime right R-group is equiprime.
So if G is a strongly equiprime right R-group, then (0 : G) is an equiprime
ideal of R.

Proposition 5.3. Let G be a right R-group. If G is strongly equiprime,
then (0 : G) is a strongly equiprime ideal of R.

Proof. Suppose that G is strongly equiprime. We have that R 6= (0 : G)
is an equiprime ideal of R. Let a ∈ R\(0 : G). Now we get a g ∈ G
such that ga 6= 0. So, there is a finite subset F of R such that b, c ∈ R
and (ga)xb = (ga)xc for all x ∈ F implies b − c ∈ (0 : G). Suppose that
y, z ∈ R and axy − axz ∈ (0 : G) for all x ∈ F . Now (ga)xy = (ga)xz
for all x ∈ F . Therefore, y − z ∈ (0 : G). Hence (0 : G) is a strongly
equiprime ideal of R. ♦

Proposition 5.4. Let P be an ideal of R. If P is strongly equiprime,
then there is a strongly equiprime right R-group G such that P = (0 : G).

Proof. Suppose that P is strongly equiprime. Now P is equiprime and
hence R/P is an equiprime right R-group under the operation (r+P )s :=
:= rs + P , r + P ∈ R/P , s ∈ R. Moreover, (0 : R/P ) = (P : R) = P as
P is equiprime. Let 0 6= a + P ∈ R/P . Now a ∈ R\P . We get a finite
subset F of R such that b, c ∈ R and axb−axc ∈ P for all x ∈ F implies
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b−c ∈ P . Suppose that y, z ∈ R and (a+P )xy = (a+P )xz for all x ∈ F .
Now axy − axz ∈ P for all x ∈ F . Therefore, y − z ∈ P = (0 : R/P ).
Hence R/P is a strongly equiprime right R-group and P = (0 : R/P ). ♦

Let HR := {G | G is a strongly equiprime right R-group} and
H := ∪R∈N HR.

Theorem 5.5. H is a special class of near-ring right modules.

Proof. (i) For each near-ring R, HR is the class of strongly equiprime
right R-groups. So each G ∈ HR is an equiprime right R-group.

(ii) Let I be an essential left invariant ideal of R and G be a strongly
equiprime right I-group. Let H be the subgroup of (G, +) generated by
the subset GI := {ga | g ∈ G, a ∈ I}. Since G is an equiprime right
I-group, by Th. 3.8, H is an equiprime right R-group and (0 : H)R =
= (0 : G)I , where (δ1(g1s1) + δ2(g2s2) + · · · + δk(gksk))r = δ1(g1(s1r))+
+δ2(g2(s2r)) + · · ·+ δk(gk(skr)), r ∈ R, gi ∈ G, si ∈ I, δi ∈ {1,−1}. Let
0 6= h ∈ H . Since G is strongly equiprime, we get a finite subset F of I
such that a, b ∈ I and hxa = hxb for all x ∈ F implies a − b ∈ (0 : G)I .
Now F ⊆ R. Suppose that r, s ∈ R and hxr = hxs for all x ∈ F . We
show that r − s ∈ (0 : H)R = (0 : G)I . Suppose that r − s 6∈ (0 : G)I .
By Lemma 3.2 of [4], there is a b ∈ I such that (r − s)b 6∈ (0 : G)I as
I/(0 : G)I is an essential left invariant ideal of R/(0 : G)I and I/(0 : G)I

is an equiprime near-ring. Now rb − sb 6∈ (0 : G)I . Since hxr = hxs
for all x ∈ F , hx(rb) = hx(sb) for all x ∈ F . So rb − sb ∈ (0 : G)I , a
contradiction to rb − sb 6∈ (0 : G)I . Hence, r − s ∈ (0 : H)R. Therefore,
H is a strongly equiprime right R-group.

(iii) Suppose now that G is a strongly equiprime right R-group and
I is a left invariant ideal of R with GI 6= {0}. By Th. 3.9, G is an
equiprime right I-group and (0 : G)I = (0 : G)R ∩ I. Let 0 6= g ∈ G.
Since G is an equiprime right I-group, gI 6= {0}. So, there is a c ∈ I
such that gc 6= 0. Since G is a strongly equiprime right R-group, we get
a finite subset F of R such that y, z ∈ R and (gc)xy = (gc)xz for all
x ∈ F implies y − z ∈ (0 : G)R. Now E := cF is a finite subset of I.
Suppose that a, b ∈ I and gxa = gxb for all x ∈ E. Now g(ct)a = g(ct)b
for all t ∈ F and (gc)ta = (gc)tb for all t ∈ F . So, a − b ∈ (0 : G) ∩ I.
Therefore, G is a strongly equiprime right I-group.

(iv) Suppose that G is a strongly equiprime right R-group and I is
an ideal of R contained (0 : G)R. We show that G is a strongly equiprime
R/I-group. Since G is an equiprime right R-group and I ⊆ (0 : G)R,
by Prop. 3.10, G is an equiprime right R/I-group, where g(r + I) := gr,
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g ∈ G, r ∈ R. Let 0 6= g ∈ G. We get a finite subset F of R such
that r, s ∈ R and gxr = gxs for all x ∈ F implies r − s ∈ (0 : G). Let
T = {x + I | x ∈ F}. Let a + I, b + I ∈ R/I and g(x + I)(a + I) =
= g(x + I)(b + I) for all x + I ∈ T . Now gxa = gxb for all x ∈ F . So,
a − b ∈ (0 : G) and that (a + I) − (b + I) ∈ (0 : G)R/I = (0 : G)R/I .
Therefore, G is a strongly equiprime right R/I-group.

(v) Similarly, if H is a strongly equiprime right R/I-group and I
is an ideal of R, then we can show that H is a strongly equiprime right
R-group. Hence, H is a special class of near-ring right modules. ♦

It is clear that H(R) = S(R) for all near-rings R.
An ideal P of R is called uniformly strongly equiprime if there is

a finite subset F of R such that a ∈ R\P, b, c ∈ R and axb − axc ∈ P
for all x ∈ F implies b − c ∈ P . A near-ring R is said to be uniformly
strongly equiprime if {0} is an uniformly strongly equiprime ideal of R.
The uniformly strongly equiprime radical of R, denoted by V(R), is the
intersection of all uniformly strongly equiprime ideals of R. V is a special
radical in the class of all near-rings.

Definition 5.6. A right R-group G is said to be uniformly strongly
equiprime if

(i) GR 6= {0} and G0 = {0};

(ii) I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =
= {0};

(iii) there is a finite subset F of R such that 0 6= g ∈ G, a, b ∈ R and
gxa = gxb for all x ∈ F implies a − b ∈ P , where P is the largest
ideal of R contained in (0 : G);

(iv) r, s ∈ R and r − s ∈ P implies gr = gs for all g ∈ G.

Let TR := {G | G is a uniformly strongly equiprime right R-group}
and T := ∪R∈N TR.

By using arguments similar to those used in strongly equiprime
right R-groups, we get the following:

Proposition 5.7. Let G be a right R-group. If G is uniformly strongly
equiprime, then (0 : G) is a uniformly strongly equiprime ideal of R.

Proposition 5.8. Let P be an ideal of R. If P is uniformly strongly
equiprime, then there is a uniformly strongly equiprime right R-group G
such that P = (0 : G).

Theorem 5.9. T is a special class of near-ring right modules.
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It is clear that T(R) = V(R) for all near-rings R.

An ideal P of R is called bounded strongly equiprime of bound one
if for each a ∈ R\P there is a k ∈ R such that b, c ∈ R and akb−akc ∈ P
implies b−c ∈ P . A near-ring R is said to be bounded strongly equiprime
of bound one if the zero ideal {0} is bounded strongly equiprime of bound
one. The bounded strongly equiprime radical of R of bound one, denoted
by W(R), is the intersection of all bounded strongly equiprime ideals of
R of bound one. W is a special radical in the class of all near-rings.

Definition 5.10. A right R-group G is said to be bounded strongly
equiprime of bound one if

(i) GR 6= {0} and G0 = {0};

(ii) I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =
= {0};

(iii) for each 0 6= g ∈ G there is an element k ∈ R such that a, b ∈ R
and gka = gkb implies a− b ∈ P , where P is the largest ideal of R
contained in (0 : G);

(iv) r, s ∈ R and r − s ∈ P implies gr = gs for all g ∈ G.

Let LR := {G | G is a bounded strongly equiprime right R-group
of bound one} and L := ∪R∈N LR.

By using arguments similar to those used in strongly equiprime
right R-groups, we get the following:

Proposition 5.11. Let G be a right R-group. If G is bounded strongly
equiprime of bound one, then (0 : G) is a bounded strongly equiprime
ideal of R of bound one.

Proposition 5.12. Let P be an ideal of R. If P is bounded strongly
equiprime of bound one, then there is a bounded strongly equiprime right
R-group G of bound one such that P = (0 : G).

Theorem 5.13. L is a special class of near-ring right modules.
It is clear that L(R) = W(R) for all near-rings R.
An ideal P of R is called completely equiprime if a ∈ R\P , b, c ∈

∈ R and ab − ac ∈ P implies b − c ∈ P . A near-ring R is said to be
completely equiprime if {0} is a completely equiprime ideal of R. The
completely equiprime radical of R, denoted by Ng(R), is the intersection
of all completely equiprime ideals of R. Ng is a KA-radical in the class
of all near-rings.

Definition 5.14. A right R-group G is said to be completely equiprime
if



110 R. Srinivasa Rao, Ch. Krishnaveni and K. Siva Prasad

(i) GR 6= {0} and G0 = {0};

(ii) I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =
= {0};

(iii) 0 6= g ∈ G, a, b ∈ R and ga = gb implies a − b ∈ P , where P is the
largest ideal of R contained in (0 : G);

(iv) r, s ∈ R and r − s ∈ P implies gr = gs for all g ∈ G.

Let CR := {G | G is a completely equiprime right R-group} and
C := ∪R∈N CR.

By using arguments similar to those used in strongly equiprime
right R-groups, we get the following:

Proposition 5.15. Let G be a right R-group. If G is completely equi-
prime, then (0 : G) is a completely equiprime ideal of R.

Proposition 5.16. Let P be an ideal of R. If P is completely equiprime,
then there is a completely equiprime right R-group G such that P =
= (0 : G).

Theorem 5.17. C is a special class of near-ring right modules.

It is clear that C(R) = Ng(R) for all near-rings R.
In [15] a right R-group of type-0(e) is introduced and in [8] right

R-groups of type-1(e) and 2(e) are introduced.
By Prop. 3.7 of [15], if G is a right R-group of type-0 and G0 = {0},

then there is a largest ideal of R contained in (0 : G) = {r ∈ R | Gr =
= {0}}.

Let G be a right R-group of type-0 and G0 = {0}. There is a largest
ideal P of R contained in (0 : G) = {r ∈ R | Gr = {0}}. G is said to be
a right R-group of type-0(e) if 0 6= g ∈ G, r1, r2 ∈ R and gxr1 = gxr2 for
all x ∈ R implies r1 − r2 ∈ P .

Let ν ∈ {1, 2}. Let G be a right R-group of type-ν. A right R-
group of type-ν is of type-0. By Prop. 3.2 of [8], G0 = {0}. There is a
largest ideal P of R contained in (0 : G) = {r ∈ R | Gr = {0}}. Then
G is said to be a right R-group of type-ν(e) if 0 6= g ∈ G, r1, r2 ∈ R and
gxr1 = gxr2 for all x ∈ R implies r1 − r2 ∈ P .

A right R-group of type-2(e) is of type-1(e) and a right R-group of
type-1(e) is of type-0(e).

Proposition 5.18. Let ν ∈ {0, 1, 2}. Let G be a right R-group of type-
ν(e). Then G is an equiprime right R-group.

Proof. Only the fourth condition in the definition of an equiprime right
R-group has to be verified. By Prop. 3.12 of [15], P := (0 : G) =
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= {r ∈ R | Gr = {0}} is an ideal of R. Let r, s ∈ R and r − s ∈ P . Let
g0 be a generator of G. Now g0R = G and g0(x + y) = g0x + g0y for all
x, y ∈ R. Let g ∈ G. We have g = g0t, for some t ∈ R. Now gr = g0tr =
= g0(t((r−s) + s)−ts + ts) = g0(t((r−s) + s)−ts) + g0ts = 0 + gs = gs.
Therefore, G is an equiprime right R-group. ♦

Let ν ∈ {0, 1, 2}. If G is a right R-group of type-ν(e), then (0 : G) =
= {r ∈ R | Gr = {0}} is an ideal of R and is called a right ν(e)-primitive
ideal of R. R is right ν(e)-primitive if {0} is a right ν(e)-primitive ideal
of R. The intersection of all right ν(e)-primitive ideals of R is the right
Jacobson radical of R of type-ν(e) and is denoted by Jr

ν(e)(R). In [15] and

[8] it is shown that Jr
ν(e) is a special radical in the class of all near-rings.

Let Gν, R := {G | G is a right R-group of type-ν(e)} and Gν :=
:= ∪R∈N Gν, R, ν ∈ {0, 1, 2}.

Clearly, M4 and M5 conditions in the definition of a special class
of near-ring right modules are satisfied by Gν . By Th. 3.28 of [15] and
Th. 3.32 of [8] we get that Gν satisfies condition M3.

Proposition 5.19. Let ν ∈ {0, 1, 2}, and I be an essential left invariant
ideal of R and let G be a right I-group of type-ν(e). Let H be the subgroup
of (G, +) generated by GI. Then H is a right R-group of type-ν(e) and
(0 : G)I = (0 : H)R.

Proof. From the proof of Th. 3.33 of [15] and Th. 3.36 of [8] it follows
that a faithful right I-group of type-ν(e) is a faithful right R-group of
type-ν(e). Since G is monogenic, H = G. Now J = (0 : G)I , is an
equiprime ideal of I. Clearly, G is a faithful right I/J-group of type-
ν(e), where g(a + J) := ga. Since J � I � R, I is left invariant and I/J
is equiprime, we get that J � R. Since I/J is an essential left invariant
ideal of R/J , G is a faithful right R/J-group of type-ν(e). Therefore, H
is a right R-group of type-ν(e) and (0 : H)R = J . ♦

From the above observations we have:

Theorem 5.20. Gν is a special class of near-ring right modules, ν ∈
∈ {0, 1, 2}.

It is clear that Gν(R) = Jr
ν(e)(R) for all near-rings R.
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