Mathematica Pannonica 22/1 (2011), 95–112

SPECIAL CLASSES OF RIGHT NEAR-RING RIGHT MODULES

Ravi Srinivasa Rao

Department of Mathematics, R. V. R. & J. C. College of Engineering, Chandramoulipuram, Chowdavaram, Guntur-522019, Andhra Pradesh, India

Cheruvu Krishnaveni

Department of Mathematics, Maris Stella College, Vijayawada-520008, Andhra Pradesh, India

K. Siva Prasad

Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522510, Guntur (Dist.), Andhra Pradesh, India

Received: December 2010

MSC 2000: 16 Y 30

 $Keywords\colon$ Special radicals, right $R\text{-}\mathrm{groups},$ special classes of near-ring right modules.

Abstract: Near-rings considered are right near-rings and R is a near-ring. In this paper an equiprime right R-group is introduced. An ideal I of R is equiprime if and only if I is the annihilator of an equiprime right R-group. Using it special classes of near-ring right modules are introduced. A characterization of the special radicals of near-rings in terms of right modules of near-rings is presented which is similar to the characterization of the special radicals of rings developed by Andrunakievich and Rjabuhin. Some special classes of near-ring right modules are also presented.

E-mail address: dr_ rsrao@yahoo.com

1. Introduction

By a near-ring we mean a right near-ring and R is a near-ring. Andrunakievich and Rjabuhin [1] characterized the special radicals of rings using modules. Booth, Groenewald and Veldsman [4] introduced and studied equiprime near-rings. Using equiprime near-rings, Booth and Groenewald [2] developed special radicals of near-rings and in [3] they gave a characterization of special radicals of zero-symmetric near-rings in terms of left modules of near-rings.

Srinivasa Rao and Siva Prasad [9, 10, 11, 12] introduced and studied the right Jacobson radicals of type-0, 1, 2, and s for near-rings and showed that unlike left Jacobson radicals these are relevant for the extension of a form of Wedderburn–Artin theorem of rings involving matrix rings to near-rings. Unlike in rings, the left and right Jacobson radicals of a nearring are not comparable. For example, in [13, 14] it is shown that the right Jacobson radicals of near-rings of type-0, 1 and 2 are Kurosh–Amitsur radicals (KA-radicals) in the class of all zero-symmetric near-rings but it is well known that the left Jacobson radicals of type-0 and 1 are not KAradicals in the class of all zero-symmetric near-rings. Moreover, in [15, 8] the right Jacobson radicals of type-0(e), 1(e), and 2(e) are introduced for near-rings and showed that they are special radicals of near-rings. This shows the important role played by the right modules of near-rings in the development of structure theory of near-rings.

In this paper an equiprime right R-group is introduced. An ideal I of R is equiprime if and only if I is the annihilator of an equiprime right R-group. Using it special classes of near-ring right modules are introduced. A characterization of the special radicals of near-rings in terms of right modules of near-rings is presented which is similar to the characterization of the special radicals of rings developed by Andrunakievich and Rjabuhin [1]. Some special classes of near-ring right modules are also presented.

2. Preliminaries

R stands for a right near-ring (not necessarily zero-symmetric) and all notations and definitions will be as in [7].

We need the following definitions and results of [9] and [10].

A group (G, +) is called a *right R-group* if there is a mapping $((g, r) \rightarrow gr)$ of $G \times R$ into G such that

(i) (g+h)r = gr + hr, and

(ii) g(rs) = (gr)s, for all $g, h \in G$ and $r, s \in R$.

A subgroup (normal subgroup) H of a right R-group of G is called an R-subgroup (ideal) of G if $hr \in H$ for all $h \in H$ and $r \in R$.

Let G, H be right R-groups. A mapping $f : G \to H$ is called an R-homomorphism if

(i) f(x+y) = f(x) + f(y) and

(ii) f(xr) = f(x)r for all $x, y \in G$ and for all $r \in R$.

G is said to be *R*-isomorphic to H if there is a one-to-one *R*-homomorphism of G onto H.

An element g in a right R-group G is called *distributive* if g(r+s) = gr + gs for all $r, s \in R$.

Let G be a right R-group. An element $g \in G$ is called a *generator* of G if g is distributive and gR = G. G is said to be *monogenic* if G has a generator.

A monogenic right *R*-group *G* is said to be a right *R*-group of type-0 if *G* is simple, that is, *G* has no non-trivial ideals and $GR \neq \{0\}$.

A right *R*-group *G* of type-0 is said to be of *type*-1 if *G* has exactly two *R*-subgroups namely, $\{0\}$ and *G*.

A right *R*-group *G* of type-0 is said to be of *type*-2 if gR = G for all $0 \neq g \in G$.

A near-ring R is called an *equiprime near-ring* if $0 \neq a \in R$, $x, y \in R$ and arx = ary for all $r \in R$, implies x = y. An ideal I of R is called *equiprime* if R/I is an equiprime near-ring.

It is known that a near-ring R is equiprime if and only if

1. $x, y \in R$ and $xRy = \{0\}$ implies x = 0 or y = 0.

2. If $\{0\} \neq I$ is an invariant subnear-ring of $R, x, y \in R$ and ax = ay for all $a \in I$ implies x = y.

Moreover, an equiprime near-ring is zero-symmetric.

If I is an ideal of R, then we denote it by $I \triangleleft R$. A subset S of R is *left invariant* if $RS \subseteq S$. By a radical class we mean a radical class in the sense of Kurosh–Amitsur.

Let \mathcal{E} be a class of near-rings. \mathcal{E} is called *regular*, if $\{0\} \neq I \triangleleft R \in \mathcal{E}$ implies that $0 \neq I/K \in \mathcal{E}$ for some $K \triangleleft I$. It is known that, if \mathcal{E} is a regular class, then $\mathcal{UE} = \{R \mid R \text{ has no non-zero homomorphic image}$ in $\mathcal{E}\}$ is a radical class, called the *upper radical* determined by \mathcal{E} . The *subdirect closure* of a class of near-rings \mathcal{E} is the class $\overline{\mathcal{E}} = \{R \mid R \text{ is a} \text{ subdirect sum of near-rings from } \mathcal{E}\}$. A class \mathcal{E} is called hereditary if $I \triangleleft R \in \mathcal{E}$ implies $I \in \mathcal{E}$. \mathcal{E} is called *c*-hereditary if I is a left invariant ideal of $R \in \mathcal{E}$ implies $I \in \mathcal{E}$. It is clear that a hereditary class is a regular class. If $I \triangleleft R$ and for every non zero ideal J of $R, J \cap I \neq \{0\}$, then I is called an *essential ideal* of R and is denoted by $I \triangleleft \cdot R$. A class of near-rings \mathcal{E} is called closed *under essential extensions (essential left invariant extensions)* if $I \in \mathcal{E}, I \triangleleft \cdot R$ (I is an essential ideal of R which is left invariant) implies $R \in \mathcal{E}$. A class of near-rings \mathcal{E} is said to satisfy condition (F_l) if $K \triangleleft I \triangleleft R$, and I is left invariant in R and $I/K \in \mathcal{E}$, then $K \triangleleft R$.

In [2], Booth and Groenewald defined special radicals for near-rings. A class \mathcal{E} consisting of equiprime near-rings is called a *special class* if it is hereditary and closed under essential left invariant extensions. If \mathcal{R} is the upper radical in the class of all near-rings determined by a special class of near-rings, then \mathcal{R} is called a *special radical*. If \mathcal{R} is a radical class, then the class $\mathcal{SR} = \{R \mid \mathcal{R}(R) = \{0\}\}$ is called the *semisimple class* of \mathcal{R} .

We also need the following theorem:

Theorem 2.1 (Th. 2.4 of [16]). Let \mathcal{E} be a class of zero-symmetric nearrings. If \mathcal{E} is regular, closed under essential left invariant extensions and satisfies condition (F_l) , then $\mathcal{R} := \mathcal{U}\mathcal{E}$ is c-hereditary radical class in the variety of all near-rings, $\mathcal{SR} = \overline{\mathcal{E}}$ and \mathcal{SR} is hereditary. So, $\mathcal{R}(R) = \cap \{I \lhd R \mid R/I \in \mathcal{E}\}$ for all near-rings R.

Remark 2.2. Since all ideals in a zero-symmetric near-ring are left invariant, under the hypothesis of Th. 2.1, in the variety of zero-symmetric near-rings both \mathcal{R} and \mathcal{SR} are hereditary and hence the radical is ideal-hereditary, that is, if $I \triangleleft R$, then $\mathcal{R}(I) = I \cap \mathcal{R}(R)$.

Proposition 2.3 (Prop. 3.3 of [4]). The class of all equiprime near-rings is closed under essential left invariant extensions.

Proposition 2.4 (Cor. 2.4 of [4]). The class of all equiprime near-rings satisfy condition (F_l) .

3. Equiprime right *R*-groups

Throughout this section R stands for a right near-ring and not necessarily zero-symmetric.

The annihilator of a right R-group G, denoted by (0:G), is defined as $(0:G) = \{a \in R \mid Ga = \{0\}\}.$

Proposition 3.1. Let G be a right R-group and $G0 = \{0\}$. Suppose that I, J are ideals of R and $GI = \{0\}$, $GJ = \{0\}$ implies $G(I + J) = \{0\}$. Then there is a largest ideal of R contained in (0 : G).

Proof. Since $G0 = \{0\}$, the zero ideal of R is contained in (0 : G). Let I and J be ideals of R contained in (0 : G). By our assumption $I + J \subseteq (0 : G)$. From this we get that for any collection of ideals of R contained in (0 : G) their sum is an ideal of R contained in (0 : G). Therefore, the sum K of all ideals T of R such that $T \subseteq (0 : G)$ is the largest ideal of R contained in (0 : G). \diamond

Definition 3.2. A right R-group G is said to be *equiprime* if:

- (i) $GR \neq \{0\}$ and $G0 = \{0\}$;
- (ii) *I*, *J* are ideals of *R* and $GI = \{0\}$, $GJ = \{0\}$ implies $G(I + J) = \{0\}$;
- (iii) $0 \neq g \in G$, $a, b \in R$ and gxa = gxb for all $x \in R$ implies $a b \in P$, where P is the largest ideal of R contained in (0:G);
- (iv) $r, s \in R$ and $r s \in P$ implies gr = gs for all $g \in G$.

Note that if R_c is the constant part of R, and G is an equiprime right R-group, then $GR_c = G(R0) = (GR)0 \subseteq G0 = \{0\}.$

Also note that if G is an equiprime right R-group, then from conditions (i) and (ii) it follows that there is a largest ideal P of R contained in (0:G).

If R is a ring, then an equiprime right R-group is a right prime R-module [6].

Proposition 3.3. Let G be a right R-group satisfying conditions (i), (ii) and (iii) of Def. 3.2. Then (0:G) is an ideal of R.

Proof. Let P be the largest ideal of R contained in (0:G). Let $r \in (0:G)$. Let $0 \neq g \in G$. Now gxr = (gx)r = 0 = (gx)0 = gx0 for all $x \in R$. Therefore, $r = r - 0 \in P$. Hence, P = (0:G) is an ideal of R. \diamond **Proposition 3.4.** Let G be a right R-group satisfying conditions (i), (ii) and (iv) of Def. 3.2 and P be the largest ideal of R contained in (0:G).

Then the following are equivalent:

- (a) G is an equiprime right R-group.
- (b) (i) For $0 \neq g \in G$, $c \notin (0:G)$, $gRc \neq \{0\}$.

(ii) If $\{0\} \neq H$ is a right R-subgroup of $G, c, d \in R$ and hc = hd for all $h \in H$, then $c - d \in P$.

Proof. (a) \Rightarrow (b). Let $0 \neq g \in G$, $c \notin (0:G)$. Suppose that $gRc = \{0\}$. Now gxc=0=gx0 for all $x \in R$. Since G is equiprime, $c=c-0 \in (0:G)$, a contradiction. So $gRc \neq \{0\}$. Suppose that $\{0\} \neq H$ is a right *R*-subgroup of $G, a, b \in R$ and ha = hb for all $h \in H$. Let $0 \neq h_0 \in H$. Now $h_0xa = h_0xb$ for all $x \in R$. Since *G* is equiprime, $a-b \in (0:G) = P$.

(b) \Rightarrow (a). Let $r \in (0 : G)$. Now gr = 0 = g0 for all $g \in G$. So $r = r - 0 \in P$ and hence P = (0 : G). Suppose that $0 \neq g \in G, c, d \in R$ and gxc = gxd for all $x \in R$. Let $s \in \mathbb{R} \setminus P$. Then $gRs \neq \{0\}$ and hence $gR \neq \{0\}$. Let K be the subgroup of (G, +) generated by gR := $\{gr \mid r \in R\}$. Now K is a non-zero right R-subgroup of G. Since gxc = gxd for all $x \in R$, we get that kc = kd for all $k \in K$. Therefore, $c - d \in P$. Hence, G is an equiprime right R-group. \diamond

Proposition 3.5. Let Q be an equiprime ideal of R. Then $(Q : R) = \{r \in R \mid Rr \subseteq Q\} = Q$.

Proof. Since $R_c \subseteq Q$, we have that $RQ \subseteq Q$. So, $Q \subseteq (Q : R)$. Let $y \in (Q : R)$. Now $Ry \subseteq Q$ and $R0 = R_c \subseteq Q$. So, $ry - r0 \in Q$ for all $r \in R$. Since Q is an equiprime ideal of $R, y = y - 0 \in Q$. Therefore, $(Q : R) \subseteq Q$ and hence (Q : R) = Q. \diamond

Proposition 3.6. Let Q be an ideal of R and $Q \neq R$. Then the following are equivalent:

(i) Q is an equiprime ideal of R.

(ii) There is an equiprime right R-group G such that Q = (0:G).

Proof. Let Q be an equiprime ideal of R. We show that the right Rgroup G := R/Q is equiprime. We have $(0:G) = (Q:R) = \{r \in R \mid Rr \subseteq R\}$ $\subseteq Q$ = Q. If $GR = \{0\}$, then $RR \subset Q$. Since an equiprime ideal is a prime ideal, we get that $R \subseteq Q$, a contradiction to $Q \neq R$. So, $GR \neq \{0\}$. Since $R_c \subseteq Q$, $G0 = \{0\}$. Let I, J be ideals of R such that $GI = GJ = \{0\}$. Then $I \subseteq (Q:R), J \subseteq (Q:R)$. Since (Q:R) = Q is an ideal of $R, I + J \subseteq (Q : R)$, that is, $G(I + J) = \{0\}$. Let P be the largest ideal of R contained in (0:G). Let $0 \neq r + Q \in R/Q$, $a, b \in R$ and (r+Q)xa = (r+Q)xb for all x in R. Now $rxa - rxb \in Q$ for all $x \in R$. Since Q is equiprime and $r \notin Q$, we get that $a - b \in Q$. By Prop. 3.5, P = Q. So, $a - b \in P$. Let $r, s \in R$ and $r - s \in (0 : G) = Q$. Let $x + Q \in R/Q$. xr = (x((r - s) + s) - xs) + xs = q + xs, where $q := x((r-s)+s) - xs \in Q$. So, $xr - xs \in Q$ and that (x+Q)r = (x+Q)s. Therefore, G is an equiprime right R-group. On the other hand suppose that G is an equiprime right R-group. Let T := (0:G). We show that the ideal T is an equiprime ideal of R. Let $a \in R \setminus T$, $b, c \in R$ and $axb - axc \in T$ for all $x \in R$. We get $g \in G$ such that $ga \neq 0$. Now

g(axb) = g(axc) and hence (ga)xb = (ga)xc for all $x \in R$. Since G is equiprime, $b - c \in T$. Therefore, T is an equiprime ideal of R. \diamond

Proposition 3.7. Let G be an equiprime right R-group and let $\{0\} \neq H$ be an R-subgroup of G. Then H is an equiprime right R-group and (0:G) = (0:H).

Proof. Obviously, $(0:G) \subseteq (0:H)$. Let $a \in (0:H) \setminus (0:G)$ and let $0 \neq h \in H$. Now hra = 0 = hr0 for all $r \in R$. Since G is an equiprime right R-group, $a = a - 0 \in (0:G)$, a contradiction to $a \notin (0:G)$. Therefore, (0:G) = (0:H). Let $0 \neq t \in H$, $a, b \in R$ and txa = txb for all $x \in R$. Since G is an equiprime right R-group, $a - b \in (0:G) = (0:H)$. It is an easy verification that the other conditions of an equiprime right R-group. $A = a - b \in (0:H)$. Therefore, H is an equiprime right R-group.

Theorem 3.8. Let I be an essential left invariant ideal of R and let Gbe an equiprime right I-group. Then $H := \langle GI \rangle_s$, the subgroup of (G, +)generated by GI, is an equiprime right R-group and $(0:G)_I = (0:H)_R$. **Proof.** Let H be the subgroup of (G, +) generated by GI. Clearly, H is an I-subgroup of G. So by Prop. 3.7, H is an equiprime right Igroup and $(0: H)_I = (0: G)_I$. We show now that H is an equiprime right R-group. Let $h \in H$, $r \in R$. Now $h = \delta_1(g_1s_1) + \delta_2(g_2s_2) + \delta_2(g_2s_2)$ $+\cdots + \delta_k(g_k s_k)$ for some $s_i \in I, g_i \in G, \delta_i \in \{1, -1\}$. Define $hr := \delta_1(g_1(s_1r)) + \delta_2(g_2(s_2r)) + \dots + \delta_k(g_k(s_kr)).$ We show that this operation is well defined. Suppose that h has another representation as $h = \lambda_1(h_1t_1) + \lambda_2(h_2t_2) + \dots + \lambda_n(h_nt_n), \ t_i \in I, \ h_i \in G, \ \lambda_i \in \{1, -1\}.$ Let $c \in I \setminus (0:G)_I$. Now $((\delta_1(g_1(s_1r)) + \delta_2(g_2(s_2r)) + \dots + \delta_k(g_k(s_kr)))$ $-(\lambda_1(h_1(t_1r)) + \lambda_2(h_2(t_2r)) + \dots + \lambda_n(h_n(t_nr))))ac = ((\delta_1(g_1s_1) + \dots + \lambda_n(h_n(t_nr))))ac$ $+\delta_2(g_2s_2) + \dots + \delta_k(g_ks_k)) - (\lambda_1(h_1t_1) + \lambda_2(h_2t_2) + \dots + \lambda_n(h_nt_n)))(ra)c =$ = 0(ra)c = 0 for all $a \in I$. Since G is an equiprime right I-group and $c \notin (0:G)_I$, we get that $\delta_1(g_1(s_1r)) + \delta_2(g_2(s_2r)) + \cdots + \delta_k(g_k(s_kr)) =$ $= \lambda_1(h_1(t_1r)) + \lambda_2(h_2(t_2r)) + \cdots + \lambda_n(h_n(t_nr))$. So the operation is well defined. It is an easy verification that H is a right R-group under this operation. Clearly, the action of R on H is an extension of the action of I on H. Since $GI \neq \{0\}$, we have $ga \neq 0$, for some $g \in G, a \in I$. If $(gI)I = \{0\}$, then (ga)yb = 0 = (ga)y0 for all $y \in I$, where $b \in I \setminus \{0 : G\}_I$. Since G is an equiprime right I-group, $b = b - 0 \in (0 : G)_I$, a contradiction. So, $(gI)I \neq \{0\}$ and that $HR \neq \{0\}$. We have $H0 = \{0\}$. Let J and K be ideals of R and

 $HJ = HK = \{0\}$. Now $GIJ = GIK = \{0\}$. So $GJ^* = GK^* = \{0\}$, where J^{\star} , K^{\star} are ideals of I generated IJ and IK respectively. Now $G(J^{\star} + K^{\star}) = \{0\}$. For $z \in I \setminus (0 : G)_I$, $h \in H$, $j \in J$, $k \in K$, and $x \in I$, we have h(j + k)xz = h(jx + kx)z = 0z = 0 = h(j + k)x0. Since G is an equiprime right I-group and $z - 0 \notin (0 : G)_I$, we have that h(j+k) = 0. Therefore, $H(J+K) = \{0\}$. Let $0 \neq h \in H$ and $h = \delta_1(g_1s_1) + \delta_2(g_2s_2) + \dots + \delta_k(g_ks_k), s_i \in I, g_i \in G, \delta_i \in \{1, -1\}.$ Let P be the largest ideal of R contained in $(0:H)_R$. Let $Q := (0:G)_I$. Since G is an equiprime right I-group, by Prop. 3.6, Q is an equiprime ideal of I. So, I/Q is an equiprime near-ring. Therefore, by condition F_l , Q is an ideal of R. Now it is clear that $Q \subseteq P$. Since I/Q is an essential ideal of R/Q and I/Q is equiprime, R/Q is an equiprime near-ring. So, Q is an equiprime ideal of R. Suppose that $r, s \in R$ and hxr = hxs for all $x \in R$. Fix $v \in I$. Now h(av)r = h(av)s for all $a \in I$ and hence ha(vr) = ha(vs) for all $a \in I$. Therefore, $vr - vs \in (0 : G)_I = Q$. Since Q is an equiprime ideal of R and I is a left invariant ideal of R, $r-s \in Q \subseteq P$. Let $p \in P$ and $0 \neq g_0 \in H$. Now $g_0 x p = 0 = g_0 x 0$ for all $x \in R$. As seen above $p = p - 0 \in Q$. Therefore, P = Qand $(0: H)_R = Q$. Finally, let $r_1, r_2 \in R$ and $r_1 - r_2 \in P$. We have $h = \delta_1(g_1s_1) + \delta_2(g_2s_2) + \dots + \delta_k(g_ks_k), s_i \in I, g_i \in G, \delta_i \in \{1, -1\}.$ Now $hr_1 = hr_2$ if $g_i(s_ir_1) = g_i(s_ir_2)$ for all i = 1, 2, ..., k. Since $r_1 - r_2 \in Q$, $ar_1 - ar_2 = a((r_1 - r_2) + r_2) - ar_2 \in Q$ for all $a \in I$. Now $gar_1 = gar_2$ for all $a \in I$, $g \in G$. So, $g_i(s_i r_1) = g_i(s_i r_2)$ and hence $hr_1 = hr_2$. Therefore, H is an equiprime right R-group and $(0:G)_I = (0:H)_R$.

Theorem 3.9. Let G be an equiprime right R-group and let I be a left invariant ideal of R. If $GI \neq \{0\}$, then G is an equiprime right I-group. **Proof.** Suppose that $GI \neq \{0\}$. Clearly, G is a right I-group and $G0 = \{0\}$. Moreover, $(0:G)_I = (0:G)_R \cap I$ is an ideal of I. Let $0 \neq g \in G$, $a, b \in I$ and gya = gyb for all $y \in I$. If $gI = \{0\}$, then gxc = 0 = gx0 for all $x \in R, c \in I$ with $Gc \neq \{0\}$. So $c = c - 0 \in (0:G)$, a contradiction. Therefore, $gI \neq \{0\}$. We have a $d \in I$ such that $gd \neq 0$. Now (gd)xa = (gd)xb for all $x \in R$. Therefore, $a - b \in (0:G)_I$. Let $u, v \in I$ and $u - v \in (0:G)_I \subseteq (0:G)_R$. So, gu = gv for all $g \in G$. Therefore, G is an equiprime right I-group. \diamond

Proposition 3.10. Let G be an equiprime right R-group and let I be an ideal of R with $GI = \{0\}$. Then G is an equiprime right R/I-group. **Proof.** Let $r+I \in R/I$ and $g \in G$. Define g(r+I) := gr. If r+I = s+I,

 $s \in R$, then $r - s \in I \subseteq (0:G)_R$ and hence hr = hs for all $h \in G$. So, the above operation is well defined. Clearly, G is a right R/I-group. Since $GR \neq \{0\}$, we get that $G(R/I) \neq \{0\}$. We have $GI = \{0\}$. Let J/I, K/I be ideals of R/I and $G(J/I) = G(K/I) = \{0\}$. Now $GJ = GK = \{0\}$ and that $G(J + K) = \{0\}$. So, $G(J/I + K/I) = \{0\}$. Let $P := (0:G)_R$. Now P is an ideal of R. So, $(0:G)_{R/I} = P/I$. Let $0 \neq g_0 \in G$, $a, b \in R$ and $g_0(x + I)(a + I) = g_0(x + I)(b + I)$ for all $x \in R$. Since G is equiprime and $g_0xa = g_0xb$ for all $x \in R$, we have that $a - b \in P$. Therefore, $(a + I) - (b + I) \in P/I$. Let $(r + I) - (s + I) \in P/I$. Now $r - s \in P$ and that gr = gs for all $g \in G$. Therefore, g(r + I) = g(s + I) for all $g \in G$. Hence, G is an equiprime right R/I-group. \diamond

The following proposition is easy and its proof is omitted.

Proposition 3.11. Let I be an ideal of R and G be an equiprime right R/I-group. Then G is an equiprime right R-group, where gr := g(r+I).

4. Special classes of right modules of near-rings

In [1] Andrunakievich and Rjabuhin described special radicals of rings in terms of modules. A similar characterization for special radicals of zero-symmetric near-rings was given in terms of left modules of near-rings by Booth and Groenewald [2]. In this section we give a characterization for special radicals of near-rings in terms of right modules of near-rings.

Let \mathcal{N} be the class of all near-rings. Suppose that for every nearring R, there is a class \mathcal{M}_R of right R-groups. Let $\mathcal{M} = \bigcup_{R \in \mathcal{N}} \mathcal{M}_R$. Then \mathcal{M} is called a *special class of near-ring right modules* if it satisfies the following conditions:

M1. If $G \in \mathcal{M}_R$, then G is an equiprime right R-group.

- M2. If $G \in \mathcal{M}_I$, I is an essential left invariant ideal of R, then $\langle GI \rangle_s$, the subgroup of (G, +) generated by GI, is in \mathcal{M}_R .
- M3. If $G \in \mathcal{M}_R$, I is a left invariant ideal of R and $GI \neq \{0\}$, then $G \in \mathcal{M}_I$. M4. If $G \in \mathcal{M}_R$, I is an ideal of R and $GI = \{0\}$, then $G \in \mathcal{M}_{R/I}$,

where g(r+I) := gr for all $r \in R, g \in G$.

M5. If $G \in \mathcal{M}_{R/I}$, I is an ideal of R, then $G \in \mathcal{M}_R$, where gr := g(r+I) for all $r \in R$, $g \in G$.

Theorem 4.1. Let $\mathcal{E} := \bigcup_{R \in \mathcal{N}} \mathcal{E}_R$, where \mathcal{E}_R is the class of all equiprime right *R*-groups. Then \mathcal{E} is a special class of near-ring right modules.

Proof. The proof follows from Th. 3.8 and Th. 3.9, and Prop. 3.10 and Prop. 3.11. \diamond

Let \mathcal{M} be a special class of near-ring right modules and let R be a near-ring. We define $\mathcal{M}(R) := \cap \{(0:G)_R \mid G \in \mathcal{M}_R\}$ and $\mathcal{S}_{\mathcal{M}} := \{R \in \mathcal{N} \mid \text{there is a } G \in \mathcal{M}_R \text{ such that } (0:G)_R = \{0\}\} \cup \{0\}.$

Theorem 4.2. Let \mathcal{M} be a special class of near-ring right modules. Then $\mathcal{S}_{\mathcal{M}}$ is a special class of near-rings.

Proof. Let $\{0\} \neq R \in \mathcal{S}_{\mathcal{M}}$. We get a $G \in \mathcal{M}_R$ such that $(0:G)_R = \{0\}$. By M1, G is an equiprime right R-group. Now by Prop. 3.6, $\{0\}$ = $= (0 : G)_R$ is an equiprime ideal of R. So R is an equiprime nearring. Let I be a non-zero (left invariant) ideal of R. Since $(0:G)_R =$ $= \{0\},$ we have that $GI \neq \{0\}$. So by M3, $G \in \mathcal{M}_I$. Now $(0:G)_I =$ $= (0:G)_R \cap I = \{0\} \cap I = \{0\}$. Therefore, $I \in \mathcal{S}_M$ and hence \mathcal{S}_M is hereditary. Now suppose that J is an essential left invariant ideal of a near-ring T and $J \in \mathcal{S}_{\mathcal{M}}$. We get a $H \in \mathcal{M}_J$, such that $(0:H)_J = \{0\}$. We have that H is an equiprime right J-group and $HJ \neq \{0\}$. Since \mathcal{M} is a special class, by M2 we get that K, the subgroup of (H, +) generated by HJ, is in \mathcal{M}_T . Now we claim that $(0:K)_T = (0:H)_J = \{0\}$. Let $P := (0:K)_T$. By Prop. 3.3 and Prop. 3.6, P is an equiprime ideal of T. Since $HJ = \{0\}, HJP = \{0\}$. Also, since $JP \subseteq J$ and $(0:H)_J = \{0\}, HJP =$ $JP = \{0\}$. Suppose that $P \neq \{0\}$. Since J is an essential ideal of T, $L := J \cap P \neq \{0\}$. Now $JL = \{0\}$. This is a contradiction to the fact that J is an equiprime near-ring. So $P = \{0\}$. Therefore, $T \in \mathcal{S}_{\mathcal{M}}$. Hence, $\mathcal{S}_{\mathcal{M}}$ is a special class of near-rings. \Diamond

Proposition 4.3. Let \mathcal{M} be a special class of near-ring right modules. Suppose that I is an ideal of R. Then $R/I \in S_{\mathcal{M}}$ if and only if $I = (0:G)_R$ for some $G \in \mathcal{M}_R$.

Proof. Suppose that $R/I \in \mathcal{S}_{\mathcal{M}}$. We get a $G \in \mathcal{M}_{R/I}$ and $(0:G)_{R/I} = \{0\}$. Since \mathcal{M} is a special class, $G \in \mathcal{M}_R$. Also, $(0:G)_R = I$ as $(0:G)_{R/I} = \{0\}$. On the other hand suppose that $I = (0:G)_R$, for some $G \in \mathcal{M}_R$. Since $I \subseteq (0:G)_R$ and \mathcal{M} is a special class, $G \in \mathcal{M}_{R/I}$. Moreover, $(0:G)_{R/I} = \{0\}$ as $I = (0:G)_R$. \diamond

Proposition 4.4. Let \mathcal{M} be a special class of near-ring right modules. Let \mathcal{R} be the upper radical determined by the special class of near-rings $\mathcal{S}_{\mathcal{M}}$. Then $\mathcal{R}(R) = \cap \{(0:G)_R \mid G \in \mathcal{M}_R\}.$

Proof. Since \mathcal{R} is the upper radical determined by the hereditary class of near-rings $\mathcal{S}_{\mathcal{M}}$, $\mathcal{R}(R) = \cap \{I \mid I \text{ is an ideal of } R \text{ and } R/I \in \mathcal{S}_{\mathcal{M}}\}$. By

Prop. 4.3, we get that $\mathcal{R}(R) = \cap \{(0:G)_R \mid G \in \mathcal{M}_R\}.$

Theorem 4.5. Let \mathcal{A} be a special class of near-rings. For any nearring R, let $\mathcal{M}_R = \{G \mid G \text{ be an equiprime right } R\text{-group and} R/(0:G)_R \in \mathcal{A}\}$. Let $\mathcal{M} := \bigcup_{R \in \mathcal{N}} \mathcal{M}_R$. Then \mathcal{M} is a special class of near-ring right modules and $\mathcal{A} = \mathcal{S}_{\mathcal{M}}$.

Proof. (i) By definition, each $G \in \mathcal{M}_R$ is an equiprime right *R*-group.

(ii) Let I be an essential left invariant ideal of R and $G \in \mathcal{M}_I$. Let $H := \langle GI \rangle_s$ be the subgroup of (G, +) generated by GI. Since G is an equiprime right I-group and I is an essential left invariant ideal of R, by Th. 3.8, H is an equiprime right R-group and $(0:G)_I = (0:H)_R$. We have $I/(0:G)_I \in \mathcal{A}$. Now $I/(0:G)_I$ is an essential left invariant ideal of $R/(0:H)_R$. Therefore, $R/(0:H)_R \in \mathcal{A}$ and hence $H \in \mathcal{M}_R$.

(iii) Suppose now that $G \in \mathcal{M}_R$, J is a left invariant ideal of Rand $GJ \neq \{0\}$. By Th. 3.9, G is an equiprime right J-group. Moreover, $(0:G)_J = (0:G)_R \cap J$. Now $J/(0:G)_J = J/((0:G)_R \cap J) \simeq$ $\simeq (J + (0:G)_R)/(0:G)_R$ and $(J + (0:G)_R)/(0:G)_R$ is a left invariant ideal of $R/(0:G)_R \in \mathcal{A}$. So $J/(0:G)_J \in \mathcal{A}$ and hence $G \in \mathcal{M}_J$.

(iv) Assume that $G \in \mathcal{M}_R$, K is an ideal of R and $GK = \{0\}$. By Prop. 3.10, G is an equiprime right R/K-group, where g(r + K) := gr. Moreover, $(0 : G)_{R/K} = (0 : G)_R/K$. Now $(R/K)/((0 : G)_R/K) \simeq$ $\simeq R/(0 : G)_R \in \mathcal{A}$. Therefore, $G \in \mathcal{M}_{R/K}$.

(v) Suppose now that P is an ideal of R and $G \in \mathcal{M}_{R/P}$. By Prop. 3.11, G is an equiprime right R-group, where gr := g(r+P). Also, $(0:G)_{R/P} = (0:G)_R/P$. Now $R/(0:G)_R \simeq (R/P)/((0:G)_R/P) =$ $= (R/P)/(0:G)_{R/P} \in \mathcal{A}$. Therefore, $G \in \mathcal{M}_R$. Hence, \mathcal{M} is a special class of near-ring right modules. Clearly, $\mathcal{S}_{\mathcal{M}} \subseteq \mathcal{A}$. Let $R \in \mathcal{A}$. Since \mathcal{A} is a class of equiprime near-rings, by Prop. 3.6, there is a faithful equiprime right R-group G. We have $R/(0:G) = R \in \mathcal{A}$. Therefore, $R \in \mathcal{S}_{\mathcal{M}}$ and hence $\mathcal{A} \subseteq \mathcal{S}_{\mathcal{M}}$. So, $\mathcal{A} = \mathcal{S}_{\mathcal{M}}$.

5. Characterizations for some concrete special radicals

In this section we present characterizations for some concrete special radicals of near-rings.

Strongly equiprime near-rings, uniformly strongly equiprime nearrings, and bounded strongly equiprime near-rings of bound one are introduced and studied in [5] and completely equiprime near-rings are introduced and studied in [2].

An ideal P of a near-ring R is said to be *(right) strongly equiprime* if for each $a \in R \setminus P$, there is a finite subset F_a of R such that $b, c \in R$ and $axb - axc \in P$ for all $x \in F_a$ implies $b - c \in P$. A near-ring R is said to be *(right) strongly equiprime* if $\{0\}$ is a (right) strongly equiprime ideal of R. The strongly equiprime radical of R, denoted by $\mathcal{S}(R)$, is the intersection of all strongly equiprime ideals of R. Moreover, \mathcal{S} is a special radical in the class of all near-rings.

Definition 5.1. A right R-group G is said to be strongly equiprime if

- (i) $GR \neq \{0\}$ and $G0 = \{0\}$;
- (ii) *I*, *J* are ideals of *R* and $GI = \{0\}$, $GJ = \{0\}$ implies $G(I + J) = \{0\}$;
- (iii) for each $0 \neq g \in G$ there is a finite subset F_g of R such that $a, b \in R$ and gxa = gxb for all $x \in F_g$ implies $a - b \in P$, where P is the largest ideal of R contained in (0:G);
- (iv) $r, s \in R$ and $r s \in P$ implies gr = gs for all $g \in G$.

Remark 5.2. Trivially, a strongly equiprime right R-group is equiprime. So if G is a strongly equiprime right R-group, then (0:G) is an equiprime ideal of R.

Proposition 5.3. Let G be a right R-group. If G is strongly equiprime, then (0:G) is a strongly equiprime ideal of R.

Proof. Suppose that G is strongly equiprime. We have that $R \neq (0:G)$ is an equiprime ideal of R. Let $a \in R \setminus (0:G)$. Now we get a $g \in G$ such that $ga \neq 0$. So, there is a finite subset F of R such that $b, c \in R$ and (ga)xb = (ga)xc for all $x \in F$ implies $b - c \in (0:G)$. Suppose that $y, z \in R$ and $axy - axz \in (0:G)$ for all $x \in F$. Now (ga)xy = (ga)xz for all $x \in F$. Therefore, $y - z \in (0:G)$. Hence (0:G) is a strongly equiprime ideal of R. \Diamond

Proposition 5.4. Let P be an ideal of R. If P is strongly equiprime, then there is a strongly equiprime right R-group G such that P = (0:G). **Proof.** Suppose that P is strongly equiprime. Now P is equiprime and hence R/P is an equiprime right R-group under the operation (r+P)s := $:= rs + P, r + P \in R/P, s \in R$. Moreover, (0:R/P) = (P:R) = P as P is equiprime. Let $0 \neq a + P \in R/P$. Now $a \in R \setminus P$. We get a finite subset F of R such that $b, c \in R$ and $axb - axc \in P$ for all $x \in F$ implies $b-c \in P$. Suppose that $y, z \in R$ and (a+P)xy = (a+P)xz for all $x \in F$. Now $axy - axz \in P$ for all $x \in F$. Therefore, $y - z \in P = (0 : R/P)$. Hence R/P is a strongly equiprime right *R*-group and P = (0 : R/P).

Let $\mathbb{H}_R := \{G \mid G \text{ is a strongly equiprime right } R\text{-group}\}$ and $\mathbb{H} := \bigcup_{R \in \mathcal{N}} \mathbb{H}_R$.

Theorem 5.5. \mathbb{H} is a special class of near-ring right modules.

Proof. (i) For each near-ring R, \mathbb{H}_R is the class of strongly equiprime right R-groups. So each $G \in \mathbb{H}_R$ is an equiprime right R-group.

(ii) Let I be an essential left invariant ideal of R and G be a strongly equiprime right I-group. Let H be the subgroup of (G, +) generated by the subset $GI := \{ga \mid g \in G, a \in I\}$. Since G is an equiprime right I-group, by Th. 3.8, H is an equiprime right R-group and $(0:H)_R =$ $= (0:G)_I$, where $(\delta_1(g_1s_1) + \delta_2(g_2s_2) + \dots + \delta_k(g_ks_k))r = \delta_1(g_1(s_1r)) + \delta_2(g_2s_2) + \dots + \delta_k(g_ks_k)r = \delta_1(g_1(s_1r)) + \delta_2(g_2s_2) + \delta_1(g_1(s_1r)) + \delta_2(g_2s_2)r = \delta_1(g_1(s_1r)) + \delta_2(g_1(s_1r))r = \delta_1(g_1(s_1r))r = \delta_1(g_1(s_1r))r$ $+\delta_2(g_2(s_2r)) + \cdots + \delta_k(g_k(s_kr)), r \in R, g_i \in G, s_i \in I, \delta_i \in \{1, -1\}.$ Let $0 \neq h \in H$. Since G is strongly equiprime, we get a finite subset F of I such that $a, b \in I$ and hxa = hxb for all $x \in F$ implies $a - b \in (0:G)_I$. Now $F \subseteq R$. Suppose that $r, s \in R$ and hxr = hxs for all $x \in F$. We show that $r - s \in (0:H)_R = (0:G)_I$. Suppose that $r - s \notin (0:G)_I$. By Lemma 3.2 of [4], there is a $b \in I$ such that $(r-s)b \notin (0:G)_I$ as $I/(0:G)_I$ is an essential left invariant ideal of $R/(0:G)_I$ and $I/(0:G)_I$ is an equiprime near-ring. Now $rb - sb \notin (0:G)_I$. Since hxr = hxsfor all $x \in F$, hx(rb) = hx(sb) for all $x \in F$. So $rb - sb \in (0:G)_I$, a contradiction to $rb - sb \notin (0:G)_I$. Hence, $r - s \in (0:H)_R$. Therefore, H is a strongly equiprime right R-group.

(iii) Suppose now that G is a strongly equiprime right R-group and I is a left invariant ideal of R with $GI \neq \{0\}$. By Th. 3.9, G is an equiprime right I-group and $(0:G)_I = (0:G)_R \cap I$. Let $0 \neq g \in G$. Since G is an equiprime right I-group, $gI \neq \{0\}$. So, there is a $c \in I$ such that $gc \neq 0$. Since G is a strongly equiprime right R-group, we get a finite subset F of R such that $y, z \in R$ and (gc)xy = (gc)xz for all $x \in F$ implies $y - z \in (0:G)_R$. Now E := cF is a finite subset of I. Suppose that $a, b \in I$ and gxa = gxb for all $x \in E$. Now g(ct)a = g(ct)b for all $t \in F$ and (gc)ta = (gc)tb for all $t \in F$. So, $a - b \in (0:G) \cap I$. Therefore, G is a strongly equiprime right I-group.

(iv) Suppose that G is a strongly equiprime right R-group and I is an ideal of R contained $(0:G)_R$. We show that G is a strongly equiprime R/I-group. Since G is an equiprime right R-group and $I \subseteq (0:G)_R$, by Prop. 3.10, G is an equiprime right R/I-group, where g(r+I) := gr, $g \in G, r \in R$. Let $0 \neq g \in G$. We get a finite subset F of R such that $r, s \in R$ and gxr = gxs for all $x \in F$ implies $r - s \in (0:G)$. Let $T = \{x + I \mid x \in F\}$. Let $a + I, b + I \in R/I$ and g(x + I)(a + I) = g(x + I)(b + I) for all $x + I \in T$. Now gxa = gxb for all $x \in F$. So, $a - b \in (0:G)$ and that $(a + I) - (b + I) \in (0:G)_R/I = (0:G)_{R/I}$. Therefore, G is a strongly equiprime right R/I-group.

(v) Similarly, if H is a strongly equiprime right R/I-group and I is an ideal of R, then we can show that H is a strongly equiprime right R-group. Hence, \mathbb{H} is a special class of near-ring right modules. \Diamond

It is clear that $\mathbb{H}(R) = \mathcal{S}(R)$ for all near-rings R.

An ideal P of R is called *uniformly strongly equiprime* if there is a finite subset F of R such that $a \in R \setminus P, b, c \in R$ and $axb - axc \in P$ for all $x \in F$ implies $b - c \in P$. A near-ring R is said to be *uniformly* strongly equiprime if $\{0\}$ is an uniformly strongly equiprime ideal of R. The *uniformly strongly equiprime radical of* R, denoted by $\mathcal{V}(R)$, is the intersection of all uniformly strongly equiprime ideals of R. \mathcal{V} is a special radical in the class of all near-rings.

Definition 5.6. A right R-group G is said to be uniformly strongly equiprime if

- (i) $GR \neq \{0\}$ and $G0 = \{0\}$;
- (ii) *I*, *J* are ideals of *R* and $GI = \{0\}$, $GJ = \{0\}$ implies $G(I + J) = \{0\}$;
- (iii) there is a finite subset F of R such that $0 \neq g \in G$, $a, b \in R$ and gxa = gxb for all $x \in F$ implies $a b \in P$, where P is the largest ideal of R contained in (0:G);
- (iv) $r, s \in R$ and $r s \in P$ implies gr = gs for all $g \in G$.

Let $\mathbb{T}_R := \{ G \mid G \text{ is a uniformly strongly equiprime right } R\text{-group} \}$ and $\mathbb{T} := \bigcup_{R \in \mathcal{N}} \mathbb{T}_R.$

By using arguments similar to those used in strongly equiprime right R-groups, we get the following:

Proposition 5.7. Let G be a right R-group. If G is uniformly strongly equiprime, then (0:G) is a uniformly strongly equiprime ideal of R.

Proposition 5.8. Let P be an ideal of R. If P is uniformly strongly equiprime, then there is a uniformly strongly equiprime right R-group G such that P = (0:G).

Theorem 5.9. \mathbb{T} is a special class of near-ring right modules.

It is clear that $\mathbb{T}(R) = \mathcal{V}(R)$ for all near-rings R.

An ideal P of R is called bounded strongly equiprime of bound one if for each $a \in R \setminus P$ there is a $k \in R$ such that $b, c \in R$ and $akb-akc \in P$ implies $b-c \in P$. A near-ring R is said to be bounded strongly equiprime of bound one if the zero ideal $\{0\}$ is bounded strongly equiprime of bound one. The bounded strongly equiprime radical of R of bound one, denoted by $\mathcal{W}(R)$, is the intersection of all bounded strongly equiprime ideals of R of bound one. \mathcal{W} is a special radical in the class of all near-rings.

Definition 5.10. A right R-group G is said to be bounded strongly equiprime of bound one if

- (i) $GR \neq \{0\}$ and $G0 = \{0\}$;
- (ii) *I*, *J* are ideals of *R* and $GI = \{0\}$, $GJ = \{0\}$ implies $G(I + J) = \{0\}$;
- (iii) for each $0 \neq g \in G$ there is an element $k \in R$ such that $a, b \in R$ and gka = gkb implies $a - b \in P$, where P is the largest ideal of R contained in (0:G);
- (iv) $r, s \in R$ and $r s \in P$ implies gr = gs for all $g \in G$.

Let $\mathbb{L}_R := \{ G \mid G \text{ is a bounded strongly equiprime right } R$ -group of bound one $\}$ and $\mathbb{L} := \bigcup_{R \in \mathcal{N}} \mathbb{L}_R$.

By using arguments similar to those used in strongly equiprime right R-groups, we get the following:

Proposition 5.11. Let G be a right R-group. If G is bounded strongly equiprime of bound one, then (0 : G) is a bounded strongly equiprime ideal of R of bound one.

Proposition 5.12. Let P be an ideal of R. If P is bounded strongly equiprime of bound one, then there is a bounded strongly equiprime right R-group G of bound one such that P = (0:G).

Theorem 5.13. \mathbb{L} is a special class of near-ring right modules.

It is clear that $\mathbb{L}(R) = \mathcal{W}(R)$ for all near-rings R.

An ideal P of R is called *completely equiprime* if $a \in R \setminus P$, $b, c \in R$ and $ab - ac \in P$ implies $b - c \in P$. A near-ring R is said to be *completely equiprime* if $\{0\}$ is a completely equiprime ideal of R. The *completely equiprime radical of* R, denoted by $\mathcal{N}_g(R)$, is the intersection of all completely equiprime ideals of R. \mathcal{N}_g is a KA-radical in the class of all near-rings.

Definition 5.14. A right R-group G is said to be *completely equiprime* if

- (i) $GR \neq \{0\}$ and $G0 = \{0\};$
- (ii) *I*, *J* are ideals of *R* and $GI = \{0\}$, $GJ = \{0\}$ implies $G(I + J) = \{0\}$;
- (iii) $0 \neq g \in G$, $a, b \in R$ and ga = gb implies $a b \in P$, where P is the largest ideal of R contained in (0:G);
- (iv) $r, s \in R$ and $r s \in P$ implies gr = gs for all $g \in G$.

Let $\mathbb{C}_R := \{ G \mid G \text{ is a completely equiprime right } R\text{-group} \}$ and $\mathbb{C} := \bigcup_{R \in \mathcal{N}} \mathbb{C}_R.$

By using arguments similar to those used in strongly equiprime right R-groups, we get the following:

Proposition 5.15. Let G be a right R-group. If G is completely equiprime, then (0:G) is a completely equiprime ideal of R.

Proposition 5.16. Let P be an ideal of R. If P is completely equiprime, then there is a completely equiprime right R-group G such that P = (0:G).

Theorem 5.17. \mathbb{C} is a special class of near-ring right modules.

It is clear that $\mathbb{C}(R) = \mathcal{N}_a(R)$ for all near-rings R.

In [15] a right *R*-group of type-0(e) is introduced and in [8] right *R*-groups of type-1(e) and 2(e) are introduced.

By Prop. 3.7 of [15], if G is a right R-group of type-0 and $G0 = \{0\}$, then there is a largest ideal of R contained in $(0:G) = \{r \in R \mid Gr = \{0\}\}$.

Let G be a right R-group of type-0 and $G0 = \{0\}$. There is a largest ideal P of R contained in $(0:G) = \{r \in R \mid Gr = \{0\}\}$. G is said to be a right R-group of type-0(e) if $0 \neq g \in G$, $r_1, r_2 \in R$ and $gxr_1 = gxr_2$ for all $x \in R$ implies $r_1 - r_2 \in P$.

Let $\nu \in \{1, 2\}$. Let G be a right R-group of type- ν . A right R-group of type- ν is of type-0. By Prop. 3.2 of [8], $G0 = \{0\}$. There is a largest ideal P of R contained in $(0:G) = \{r \in R \mid Gr = \{0\}\}$. Then G is said to be a right R-group of type- $\nu(e)$ if $0 \neq g \in G$, $r_1, r_2 \in R$ and $gxr_1 = gxr_2$ for all $x \in R$ implies $r_1 - r_2 \in P$.

A right *R*-group of type-2(e) is of type-1(e) and a right *R*-group of type-1(e) is of type-0(e).

Proposition 5.18. Let $\nu \in \{0, 1, 2\}$. Let G be a right R-group of type- $\nu(e)$. Then G is an equiprime right R-group.

Proof. Only the fourth condition in the definition of an equiprime right R-group has to be verified. By Prop. 3.12 of [15], P := (0 : G) =

 $= \{r \in R \mid Gr = \{0\}\} \text{ is an ideal of } R. \text{ Let } r, s \in R \text{ and } r - s \in P. \text{ Let } g_0 \text{ be a generator of } G. \text{ Now } g_0R = G \text{ and } g_0(x+y) = g_0x + g_0y \text{ for all } x, y \in R. \text{ Let } g \in G. \text{ We have } g = g_0t, \text{ for some } t \in R. \text{ Now } gr = g_0tr = g_0(t((r-s)+s)-ts+ts) = g_0(t((r-s)+s)-ts) + g_0ts = 0 + gs = gs. \text{ Therefore, } G \text{ is an equiprime right } R\text{-group. } \diamond$

Let $\nu \in \{0, 1, 2\}$. If G is a right R-group of type- $\nu(e)$, then $(0:G) = \{r \in R \mid Gr = \{0\}\}$ is an ideal of R and is called a *right* $\nu(e)$ -primitive ideal of R. R is *right* $\nu(e)$ -primitive if $\{0\}$ is a right $\nu(e)$ -primitive ideal of R. The intersection of all right $\nu(e)$ -primitive ideals of R is the *right Jacobson radical of R of type*- $\nu(e)$ and is denoted by $J_{\nu(e)}^{r}(R)$. In [15] and [8] it is shown that $J_{\nu(e)}^{r}$ is a special radical in the class of all near-rings.

Let $\mathbb{G}_{\nu, R} := \{ G \mid G \text{ is a right } R \text{-group of type-}\nu(e) \}$ and $\mathbb{G}_{\nu} := \bigcup_{R \in \mathcal{N}} \mathbb{G}_{\nu, R}, \nu \in \{0, 1, 2\}.$

Clearly, M4 and M5 conditions in the definition of a special class of near-ring right modules are satisfied by \mathbb{G}_{ν} . By Th. 3.28 of [15] and Th. 3.32 of [8] we get that \mathbb{G}_{ν} satisfies condition M3.

Proposition 5.19. Let $\nu \in \{0, 1, 2\}$, and I be an essential left invariant ideal of R and let G be a right I-group of type- $\nu(e)$. Let H be the subgroup of (G, +) generated by GI. Then H is a right R-group of type- $\nu(e)$ and $(0:G)_I = (0:H)_R$.

Proof. From the proof of Th. 3.33 of [15] and Th. 3.36 of [8] it follows that a faithful right *I*-group of type- $\nu(e)$ is a faithful right *R*-group of type- $\nu(e)$. Since *G* is monogenic, H = G. Now $J = (0 : G)_I$, is an equiprime ideal of *I*. Clearly, *G* is a faithful right I/J-group of type- $\nu(e)$, where g(a + J) := ga. Since $J \triangleleft I \triangleleft R$, *I* is left invariant and I/Jis equiprime, we get that $J \triangleleft R$. Since I/J is an essential left invariant ideal of R/J, *G* is a faithful right R/J-group of type- $\nu(e)$. Therefore, *H* is a right *R*-group of type- $\nu(e)$ and $(0 : H)_R = J$. \Diamond

From the above observations we have:

Theorem 5.20. \mathbb{G}_{ν} is a special class of near-ring right modules, $\nu \in \{0, 1, 2\}$.

It is clear that $\mathbb{G}_{\nu}(R) = J^r_{\nu(e)}(R)$ for all near-rings R.

Acknowledgement. The first author would like to thank the Management of the Nagarjuna Education Society, Guntur, for providing necessary facilities.

References

- ANDRUNAKIEVICH, V. A. and RJABUHIN, YU. M.: Special modules and special radicals, *Sov. Math. Dokl.* 3 (1962), 1790–1793.
- [2] BOOTH, G. L. and GROENEWALD, N. J.: Special radicals of near-rings, *Math. Japonica* 37 (1992), no. 4, 701–706.
- [3] BOOTH, G. L. and GROENEWALD, N. J.: Special radicals of near-rings modules, Quaest. Math. 15 (1992), 127–137.
- [4] BOOTH, G. L. GROENEWALD, N. J. and VELDSMAN, S.: A Kurosh–Amitsur prime radical for near-rings, *Comm. Algebra* 18 (1990), no. 9, 3111–3122.
- [5] BOOTH, G. L. GROENEWALD, N. J. and VELDSMAN, S.: Strongly equiprime near-rings, *Quaest. Math.* 14 (1991), 483–490.
- [6] GARDNER, B. J. and WIEGANDT, R.: Radical theory of rings, Marcel Dekker, Inc., New York, 2004.
- [7] PILZ, G.: Near-rings, revised ed., North-Holland, Amsterdam, 1983.
- [8] SRINIVASA RAO, R. and SIVA PRASAD, K.: Hereditary right Jacobson radicals of type-1(e) and 2(e) for right near-rings, submitted for publication.
- [9] SRINIVASA RAO, R. and SIVA PRASAD, K.: A radical for right near-rings: The right Jacobson radical of type 0, Int. J. Math. Math. Sci. 2006 (2006), no. 16, 1–13, Article ID 68595.
- [10] SRINIVASA RAO, R. and SIVA PRASAD, K.: Two more radicals for right near-rings: The right Jacobson radicals of type-1 and 2, *Kyungpook Math. J.* 46 (2006), no. 4, 603–613.
- [11] SRINIVASA RAO, R. and SIVA PRASAD, K.: A radical for right near-rings: The right Jacobson radical of type-s, *Southeast Asian Bull. Math.* **32** (2008), no. 3, 509–519.
- [12] SRINIVASA RAO, R. and SIVA PRASAD, K.: Right semisimple right nearrings, Southeast Asian Bull Math. 33 (2009), no. 6, 1189–1205.
- [13] SRINIVASA RAO, R., SIVA PRASAD, K. and SINIVAS, T.: Kurosh–Amitsur right Jacobson radical of type-0 for right near-rings, *Int. J. Math. Math. Sci.* 2008, no. 1, 1–6, Article ID 741609.
- [14] SRINIVASA RAO, R., SIVA PRASAD, K. and SINIVAS, T.: Kurosh-Amitsur right Jacobson radicals of type-1 and 2 for right near-rings, *Result. Math.* 51 (2008), no. 3-4, 309–317.
- [15] SRINIVASA RAO, R., SIVA PRASAD, K. and SINIVAS, T.: Hereditary right Jacobson radical of type-0(e) for right near-rings, *Beitr. Algebra Geom.* 50 (2009), no. 1, 11–23.
- [16] VELDSMAN, S.: Modulo-constant ideal-hereditary radicals of near-rings, Quaest. Math. 11 (1988), no. 3, 253–278.