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Abstract: In the article we start with three positive real numbers R0, r0, d0

such that R0 > r0 + d0 and establish certain relations which can be obtained
by means of these numbers. As will be seen, many interesting properties of
bicentric polygons can be relatively easily established using these relations.
They are as a key for many problems concerning bicentric polygons. The
article is a complement to the article [8].

1. Introduction

In the article we restrict ourselves to the case where conics are
circles. Here will be stated one of the main results given in the article.
First about some terms and notation which will be used.

A polygon A1 . . . An is called chordal polygon if there is a cir-
cle which contains each of the points (vertices) A1, . . . , An. A polygon
A1 . . . An is called tangential polygon if there is a circle such that seg-
ments A1A2, . . . , AnA1 are tangential segments of the circle.
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A polygon which is both chordal and tangential is shortly called
bicentric polygon. If A1 . . . An is a bicentric polygon then it is usually
that radius of its circumcircle is denoted by R, radius of incircle by r and
distance between centers of circumcircle and incircle by d.

The first one that was concerned with bicentric polygons is German
mathematician Nicolaus Fuss (1755–1826). He found relations (condi-
tions) for bicentric quadrilaterals, pentagons, hexagons, heptagons and
octagons. Here we list only these for bicentric quadrilaterals, hexagons
and octagons

(R2 − d2)2 = 2r2(R2 + d2),(1.1a)

3p4q4 − 2p2q2r2(p2 + q2) − r4(p2 − q2)2 = 0,(1.1b)

[r2(p2 + q2) − p2q2]4 − 16p4q4r4(p2 − r2)(q2 − r2) = 0,(1.1c)

where p = R + d, q = R − d.
The corresponding relation for triangle is given by Euler and it

reads as follows

(1.1d) R2 − d2 − 2Rr = 0.

Of course, if A1 . . . An is a given bicentric n-gon then its circumcircle
and incircle can be constructed as follows. The intersection of the lines of
symmetry of the two consecutive sides (angles) is center C of circumcircle
(center I of incircle). Thus |CA1| = R and distance of I from A1A2 is r.

Although Fuss found relation for R, r, d only for bicentric n-gons,
4 ≤ n ≤ 8, it is in his honor to call such relations Fuss’ relations also in
the case n > 8.

The very remarkable theorem concerning bicentric polygons is given
by French mathematician Poncelet (1788–1867). This theorem, so called
Poncelet’s closure theorem for circles, can be stated as follows.

Let C1 and C2 be two circles, where C2 is inside of C1. If there
is a bicentric n-gon A1 . . . An such that C1 is its circumcircle and C2

its incircle then for every point P1 on C1 there are points P1, . . . Pn on
C1 such that P1, . . . Pn is a bicentric n-gon whose circumcircle is C1 and
incircle C2. Thus, in this case we can construct a bicentric polygon whose
circumcircle is C1 and incircle C2 and point P1 is one of its vertices.

Although this famous Poncelet’s closure theorem dates from nine-
teenth century, many mathematicians have been working on number of
problems in connection with this theorem. In this article we deal with
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certain important properties and relations in this connection. The main
results refer to Fuss’ relations.

Let, for brevity, Fuss’ relation for bicentric n-gons be denoted by

(1.2) Fn(R, r, d) = 0.

Let (R0, r0, d0) ∈ R3
+ be a solution of Fuss’ relation (1.2) that is, let

Fn(R0, r0, d0) = 0. Then by Poncelet’s closure theorem there is a class

(1.3) Cn(R0, r0, d0)

of bicentric n-gons such that all n-gons from this class have the same
circumcircle and same incircle. Let circumcircle be denoted by C1 and
incircle C2. Then for every point P1 on C1 there are points P2, . . . , Pn on
C1 such that there exits a bicentric n-gon P1 . . . Pn from the class (1.3)
whose circumcircle is C1 and incircle C2.

Figure 1. tM =
√

(R0 + d0)2 − r2
0, tm =

√

(R0 − d0)2 − r2
0 .

Important role in the following will play lengths tm and tM given
by

(1.4) tm =
√

(R0 − d0)2 − r2
0, tM =

√

(R0 + d0)2 − r2
0.

See Fig. 1, where by C1 is denoted circumcircle of the polygons from the
class (1.3) and by C2 is denoted incircle of the polygons from this class.

The lengths tM and tm can be called maximal and minimal tangent
lengths of the class (1.3).



52 M. Radić

From Poncelet’s closure theorem it is clear that the following holds.
If t1 is any given length such that tm ≤ t1 ≤ tM , where tm and tM are
given by (1.4), then there is a bicentric n-gon from the class (1.3) such
that its first tangent has the length t1. In [5, Lemma 1] it is proved that
for calculation of tangent lengths of bicentric polygons can be used the
following formula

(1.5) (t2)1,2 =
(R2

0 − d2
0)t1 ± r0

√
D1

r2
0 + t21

,

where D1 = (t2M − t21)(t
2
1 − t2m). If t1 is given then its consequent is (t2)1

or (t2)2.
Concerning signs + and − in expression ±

√
Di it does not matter,

since for each integer i such that 1 < i < n, the following is valid

(1.6) ti+1 =
(R2

0 − d2
0)ti + r0

√
Di

r2
0 + t2i

⇐⇒ ti−1 =
(R2

0 − d2
0)ti − r0

√
Di

r2
0 + t2i

.

Using this property the following algorithm can be used. Let t1 be
any given length such that tm ≤ t1 ≤ tM where tm and tM are given
by (1.4). Then there exists a bicentric n-gon A1 . . . An from the class
Cn(R0, d0, r0) such that its first tangent has the length t1. The other its
tangent length can be calculated as follows.

For t2 can be used (t2)1 or (t2)2 given by (1.5). Depending on
which of (t2)1 and (t2)2 is taken for t2 we get ordering of tangent lengths
t1, . . . , tn clockwise or counterclockwise. Let (t2)1 be taken for t2, that is
let

(1.7) t2 =
(R2

0 − d2
0)t1 + r0

√
D1

r2
0 + t21

.

The following notation will be used

(1.8) Di = (t2M − t2i )(t
2
i − t2m), i = 1, . . . , n.

Let t+i+2 and t−i+2 be given by

(1.9) t+i+2 =
(R2

0−d2
0)ti+1+r0

√
Di+1

r2
0 + t2i+1

, t−i+2 =
(R2

0−d2
0)ti+1−r0

√
Di+1

r2
0 + t2i+1

.

Then, since by (1.6) it holds

(1.10)
{

t+i+2, t
−

i+2

}

= {ti, ti+2} ,
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we have the following equality t+i+2 · t−i+2 = ti · ti+2, from which it follows

(1.11) ti+2 =
t+i+2t

−

i+2

ti
.

So we have the following sequence

(1.12) t1, t2,
t+3 t−3
t1

,
t+4 t−4
t2

and so on,

where for t2 can be taken t2 given by (1.7).
Although the closure in Poncelet’s closure theorem is a topological

property, the formula (1.5), as can be seen, may be very useful in some
problems concerning bicentric polygons. So in Th. 2 it plays a very
important role.

For brevity in the following expression we shall often use the term n-
closure. In short about this. Let (R, r, d) be a triple such that (R, r, d)∈
∈ R

3
+ and R > r + d. Let n ≥ 3 be an integer. Then it will be said

that the triple (R, r, d) has the property that there exists n-closure with
rotation number 1 for n if there exists a bicentric n-gon A1 . . . An such
that

R: radius of the circumcircle of A1 . . . An ,
r: radius of the incircle of A1 . . . An ,
d: distance between centers of circumcircle and incircle,

2
∑n

i=1
arctan ti

r
= 360◦,

where t1, . . . , tn are tangent lengths of the n-gon A1 . . . An.
Now we state one of the main results in the article which will be

later proved as Th. 2.
Let (R0, r0, d0) be a triple such that (R0, r0, d0) ∈ R

3
+ and R0 >

> r0 + d0. Let (R1, r1, d1) be a triple given by

R2
1 = R0

(

R0 + r0 +
√

(R0 + r0)2 − d2
0

)

,

r2
1 = (R0 + r0)

2 − d2
0,

d2
1 = R0

(

R0 + r0 −
√

(R0 + r0)2 − d2
0

)

.

Then the following holds good. If the triple (R0, r0, d0) has the property
that there exists n-closure with rotation number 1 for n then the triple
(R1, r1, d1) has the property that there exists 2n-closure with rotation
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number 1 for 2n. In other words, if Cn(R0, r0, d0) is a class of bicen-
tric n-gons then C2n(R1, r1, d1) is a class of bicentric 2n-gons. Thus, if
(R0, r0, d0) is a solution of Fuss’ relation Fn(R, r, d) = 0 then (R1, r1, d1)
is a solution of Fuss’ relation F2n(R, r, d) = 0. More about this will be
in Th. 2.

Th. 2 is rather involved and in its proof we shall use some results
given in [5] and [7]. From [5] we shall use Th. 1 here written as Th. A
which reads as follows.

Theorem A. Let C1 and C2 be any given two circles in the same plane
such that C2 is inside of C1 and let A1, A2, A3 be any given three different
points on C1 such that there are points T1 and T2 on C2 with the property

(1.13a) |A1A2| = t1 + t2, |A2A3| = t2 + t3,

where

(1.13b) t1 = |A1T1| , t2 = |T1A2| , t3 = |T2A3| .

Then

(1.14a) |A1A3| = k(t1 + t3),

where

(1.14b) k =
2rR

R2 − d2
,

R = radius of C1, r = radius of C2, d = |IO|, I is center of C2 and O is
center of C1. (See Fig. 2.)

Before stating Th. 1 from [7] we state definition of characteristic
point concerning two circles.

Let C1 and C2 be any given two circles such that C2 is (complete)
inside C1. Let R = radius of C1, r = radius of C2, d = |IO|, where I is
center of C2 and O is center of C1. Let xOy be co-ordinate system which
origin is center O of C1 and positive part of the x-axis contains center I

of C2.
Let by S(s, 0) be denoted the point where s is given by

(1.15) s =
R2 + d2 − r2 −

√

(R2 + d2 − r2)2 − 4R2d2

2d
.

This point will be called characteristic point of the circles C1 and C2.
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Figure 2 Figure 3

Here let us remark that

(1.16a) 2(R2 + d2 − r2) = t2M + t2m, (R2 + d2 − r2)2 − 4R2d2 = t2M t2m,

where

(1.16b) t2M = (R + d)2 − r2, t2m = (R − d)2 − r2.

Thus relation (1.15) can be written as

(1.17) s =
(tM − tm)2

4d
.

In the case when d = 0 can be taken s = 0 since
limd→0

∂
∂d

(tM − tm)2

4
= 0.

As will be seen the following theorem is trivially valid for d = 0.

Theorem B. Let C1 and C2 be any given two circles such that C2 is
inside of C1 and let R = radius of C1, r = radius of C2, d = |IO|, I

is center of C2 and O is center of C1. Let xOy be coordinate system as
before described. (See Fig. 3.) Let S(s, 0) be point such that s is given by
(1.17). Let PQ be any given chord of the circle C1 such that it contains
point S(s, 0). Let PT1 and QT2 be tangents drawn from P and Q to C2

and let

(1.18) t1 = |PT1| , t̂1 = |QT2| .

Finally, let P , Q, T1 and T2 in relation to given coordinate system
be given by
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P (u1, v1), Q(u2, v2), T1(x1, y1), T2(x2, y2).

Then

(1.19) t1t̂1 = tmtM ,

that is,
[

(u1 − x1)
2 + (v1 − y1)

2
] [

(u2 − x2)
2 + (v2 − y2)

2
]

− t2mt2M = 0.

2. Certain relations obtained starting with three pos-

itive real numbers and their use in research of bi-

centric polygons

First we prove the following theorem in which we state one al-
gorithm relatively very simple and very useful in research of bicentric
polygons. It has the key role in proving Th. 2.

Theorem 1. Let (R0, r0, d0) be a triple such that (R0, r0, d0) ∈ R
3
+ and

R0 > r0 + d0. Let (R1, r1, d1) and (R2, r2, d2) be triples given by

R2
1 = R0

(

R0 + r0 +
√

(R0 + r0)2 − d2
0

)

,(2.1a)

r2
1 = (R0 + r0)

2 − d2
0,(2.1b)

d2
1 = R0

(

R0 + r0 −
√

(R0 + r0)2 − d2
0

)

,(2.1c)

and

R2
2 = R0

(

R0 − r0 +
√

(R0 − r0)2 − d2
0

)

,(2.1d)

r2
2 = (R0 − r0)

2 − d2
0,(2.1e)

d2
2 = R0

(

R0 − r0 −
√

(R0 − r0)2 − d2
0

)

.(2.1f)

Then

R1 > r1 + d1, R2 > r2 + d2,(2.2a)

R1d1 = R2d2 = R0d0,(2.2b)

R2
1 + d2

1 − r2
1 = R2

2 + d2
2 − r2

2 = R2
0 + d2

0 − r2
0,(2.2c)
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R2
1 − d2

1

2r1

=
R2

2 − d2
2

2r2

= R0,(2.2d)

2R1d1r1

R2
1 − d2

1

=
2R2d2r2

R2
2 − d2

2

= d0,(2.2e)

−
(

R2
1 + d2

1 − r2
1

)

+

(

R2
1 − d2

1

2r1

)2

+

(

2R1d1r1

R2
1 − d2

1

)2

(2.2f)

= −
(

R2
2 + d2

2 − r2
2

)

+

(

R2
2 − d2

2

2r2

)2

+

(

2R2d2r2

R2
2 − d2

2

)2

= r2
0.

where

(2.2g) r1r2 = tM tm, t2M = (R0 + d0)
2 − r2

0, t2m = (R0 − d0)
2 − r2

0.

Proof. First we prove that R1 > r1 + d1. Using relations (2.1) we can
write

(R1 − d1)
2 = R2

1 + d2
1 − 2R1d1 = 2R0(R0 + d0) − 2R0d0.

Thus
(R1−d1)

2 > 2R0(R0+r0)−2R0d0−
(

(R0 − d0)
2 − r2

0

)

= (R0+r0)
2−d2

0 = r2
1.

So from (R1 − d1)
2 > r2

1 it follows R1 > r1 + d1.
In the same way can be proved that R2 > r2 + d2.
The other relations given by (2.2) can be also straightforwardly

obtained from relations (2.1). ♦

Corollary 1.1. Let Ri, ri, di, i = 0, 1, 2, be as in Th. 1. Then
(R1, r1, d1) and (R2, r2, d2) are two solutions of the system in R, r, d

given by

Rd = R0d0,(2.3a)

R2 + d2 − r2 = R2
0 + d2

0 − r2
0,(2.3b)

R2 − d2 = 2R0r.(2.3c)

Corollary 1.2. Let Ri, ri, di, i = 0, 1, 2, be as in Th. 1. Then

(R0 − d0)
2 − r2

0 = (R1 − d1)
2 − r2

1 = (R2 − d2)
2 − r2

2,(2.4a)

(R0 + d0)
2 − r2

0 = (R1 + d1)
2 − r2

1 = (R2 + d2)
2 − r2

2.(2.4b)

In other words, minimal and maximal tangent length are the same for
each triple (R0, r0, d0), (R1, r1, d1) and (R2, r2, d2).
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Now it will be shown how we can proceed using the following algo-
rithm.

Let i1, . . . , ik, ik+1 be any given integers from the set {1, 2}. Let
for brevity, the sequence i1, . . . , ik be denoted by u and the sequence
i1, . . . , ik, ik+1 be denoted by v. Then, if ik+1 = 1,

R2
v = Ru

(

Ru + ru +
√

(Ru + ru)2 − d2
u

)

,(2.5a)

r2
v = (Ru + ru)

2 − d2
u,(2.5b)

d2
v = Ru

(

Ru + ru −
√

(Ru + ru)2 − d2
u

)

.(2.5c)

But if ik+1 = 2, then

R2
v = Ru

(

Ru − ru +
√

(Ru − ru)2 − d2
u

)

,(2.6a)

r2
v = (Ru − ru)

2 − d2
u,(2.6b)

d2
v = Ru

(

Ru − ru −
√

(Ru − ru)2 − d2
u

)

.(2.6c)

For example, we have

R2
1,1 = R1

(

R1 + r1 +
√

(R1 + r1)2 − d2
1

)

,

R2
1,2 = R1

(

R1 − r1 +
√

(R1 − r1)2 − d2
1

)

,

R2
1,2,1 = R1,2

(

R1,2 + r1,2 +
√

(R1,2 + r1,2)2 − d2
1,2

)

,

R2
1,2,2 = R1,2

(

R1,2 − r1,2 +
√

(R1,2 − r1,2)2 − d2
1,2

)

.

Let for brevity, instead of sequences i1, . . . , ik and i1, . . . , ik, ik+1 be
written integers i1 . . . ik and i1 . . . ikik+1. So, instead of R1,1 and R1,2 can
be written R11 and R12.

Concerning indices, let us remark that the situation is in some way
connected with the fact that there are 2k integers with k digits from the
set {1, 2}. So, if k = 3, we have indices

111, 112, 121, 122, 211, 212, 221, 222

and we have
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Figure 4

R2
111 = R11

(

R11 + r11 +
√

(R11 + r11)2 − d2
11

)

and so on. See Fig. 4.
Now we can state the following corollary of Th. 1.

Corollary 1.3. Let R0, r0, d0 be as in Th. 1 and let Rv, rv, dv be given
by (2.5) or (2.6). Then for every v ∈ {1, 2, 11, 12, 21, 22, 111, 112, . . .}
we have

Rv > rv + dv,(2.7a)

Rvdv = R0d0,(2.7b)

R2
v + d2

v − r2
v = R2

0 + d2
0 − r2

0,(2.7c)

R2
v − d2

v

2rv

= Ru,
2Rvdvrv

R2
v − d2

v

= du,(2.7d)

−
(

R2
v + d2

v − r2
v

)

+

(

R2
v − d2

v

2rv

)2

+

(

2Rvdvrv

R2
v − d2

v

)2

= r2
u.(2.7e)

ru1ru2 = tM tm, t2M = (Ru + du)
2 − r2

u, t2m = (Ru − du)
2 − r2

u.(2.7f)

The proof is in the same way as the proof of relations (2.2).
Now we state the following conjecture.

Conjecture 1. Let (R0, r0, d0) and (R1, r1, d1) be as in Th. 1. Then the
following holds good. If the triple (R0, r0, d0) has the property that there
exists n-closure with rotation number 1 for n then the triple (R1, r1, d1)
has the property that there exists 2n-closure with rotation number 1 for 2n.

This conjecture will be shown as a true one. First we prove the
following theorem where using some algebraic procedures can be, by the
way, obtained many interesting relations very useful in investigation of
bicentric n-gons.
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Theorem 2. Conj. 1 is a true one for each integer n, 3 ≤ n ≤ 9.

Proof. Let t1 be any given length (in fact positive number) such that

(2.8) tm ≤ t1 ≤ tM ,

where

(2.9) t2M = (R0 + d0)
2 − r2

0, t2m = (R0 − d0)
2 − r2

0.

Let starting from t1 and using triple (R0, r0, d0) and formula (1.5), we
get tangent lengths

(2.10) t1, t2, t3, . . . , tn, tn+1,

where tn+1 = t1. Then starting from t1 and using triple (R1, r1, d1) and
formula (1.5), we get tangent lengths

(2.11a) t̂1, t̂2, t̂3, . . . , t̂2n−1, t̂2n, t̂2n+1,

where t̂2n+1 = t̂1 and

(2.11b) t̂2i−1 = ti, i = 1, 2, 3, . . . , n.

Here let us remark that we can take t̂1 = t1 also in starting from
(R1, r1, d1) since by Cor. 1.2 it is valid

(R0 − d0)
2 − r2

0 = (R1 − d1)
2 − r2

1, (R0 + d0)
2 − r2

0 = (R1 + d1)
2 − r2

1.

For brevity and simplicity of calculation we can take t1 = tM since
by Poncelet’s closure theorem the following is valid. If there exists a
tangent length t such that tm ≤ t ≤ tM with property that there exists
n-closure then there exists n-closure for every tangent length t1 such that
tm ≤ t1 ≤ tM .

(i1) The proof that t2 = t̂3. Starting from t1 = tM and using
formula (1.5) it can be found that

t2 =
R0 − d0

R0 + d0

tM ,(2.12a)

t̂2 =
R1 − d1

R1 + d1

tM .(2.12b)

Now by the rule given by sequence (1.12) we have

(2.13) t̂3 =
(R2

1 − d2
1)

2t̂22 − r2
1D2

(

r2
1 + t̂22

)2
tM

,
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where D2 = (t2M − t̂22)(t̂
2
2 − t2m), that is, notation (1.8) is used. It is easy

to show that t̂3 can be written as

(2.14) t̂3 =
(R2

1 − d2
1)

2 − 4R1d1r
2
1

(R2
1 − d2

1)
2
+ 4R1d1r

2
1

tM .

Since by (2.2d), (2.2e) and (2.2f) hold relations

(2.15a) R0 =
R2

1 − d2
1

2r1

, d0 =
2R1d1r1

R2
1 − d2

1

,

(2.15b) r0 =

√

− (R2
1 + d2

1 − r2
1) +

(

R2
1 − d2

1

2r1

)2

+

(

2R1d1r1

R2
1 − d2

1

)2

,

it is easy to see that t2 can be written as

t2 =
(R2

1 − d2
1)

2 − 4R1d1r
2
1

(R2
1 − d2

1)
2
+ 4R1d1r

2
1

tM .

This proves that t̂3 = t2.
Here let us remark that the proof that t̂3 = t2 is not difficult even

by hand (without using computer algebra). It will not be so in the proofs
that t̂5 = t3, t̂7 = t4 and so on.

For brevity, in the expressions of tangent lengths t3, t4, t5 we use
quantities p0 and q0 given by

p0 =
R0 + d0

r0

, q0 =
R0 − d0

r0

.

Also, for tangent lengths t̂2, . . . , t̂9 we use

p =
R1 + d1

r1

, q =
R1 − d1

r1

.

(i2) The proof that t̂5 = t3. Starting from t2 given by (2.12a) and
using rule (1.12) we get

(2.16a) t3 =
p2

0q
2
0 − p2

0 + q2
0

p2
0q

2
0 + p2

0 − q2
0

tM .

Now starting from t̂3 given by (2.14) and using rule (1.12) we get

(2.16b) t̂4 =
q (p4q4 + 2p4q2 − 3p4 − 2p2q4 + 2p2q2 + q4)

p (p4q4 − 2p4q2 + p4 + 2p2q4 + 2p2q2 − 3q4)
tM ,
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(2.16c) t̂5 =
ν5

δ5

tM ,

where
ν5 = p8q8 − 4p8q6 + 6p8q4 − 4p8q2 + p8 + 4p6q8 + 4p6q6 − 4p6q4−

− 4p6q2 − 10p4q8 + 4p4q6 + 6p4q4 + 4p2q8 − 4p2q6 + q8,

δ5 = p8q8 + 4p8q6 − 10p8q4 + 4p8q2 + p8 − 4p6q8 + 4p6q6 + 4p6q4−
− 4p6q2 + 6p4q8 − 4p4q6 + 6p4q4 − 4p2q8 − 4p2q6 + q8.

Replacing R0, d0, r0 in t3 by expressions for R0, d0, r0 given by (2.15) we
find that t̂5 = t3.

In quite the same way can be proceeded and found that t̂7 = t4,
t̂9 = t5, . . . , t̂17 = t9. Thus for n = 9 and 2n = 18 the sequences (2.10)
and (2.11a) can be written as

t1, t2, t3, t4, t5, t6, t7, t8, t9

t̂1, t̂3, t̂5, t̂7, t̂9, t̂11, t̂13, t̂15, t̂17

where

t̂i = ti −
i − 1

2
, i = 1, 3, 5, . . . , 17

and t1, t2, . . . , t9 are tangent lengths of bicentric 9-gon and t̂1, t̂3, . . . , t̂17
are tangent lengths of bicentric 18-gon which have odd indices. (Of
course, for every integer n ≥ 3 each of the sequence t1, t2, . . . , tn and
t̂1, t̂3, . . . , t̂2n−1 has n member.)

We found that for the proof that, say, t̂19 = t10 needs a computer
with larger capacity than usual (standard) computer has. Here let us
remark that Conj. 1 will be later proved generally using Th. 3 and Th. A
and Th. B. ♦

Now, concerning sequences (2.10) and (2.11a), let us point out some
of n-closures. Let the triple (R0, r0, d0) has 3-closure, that is after t1,
t2, t3 appears t4 = t1. Then the triple (R1, d1, r1) has 6-closure since
t̂7 = t4 = t1. Also can be easily seen that for n = 4, 5, 6, 7, 8, 9 it is
valid. If the triple (R0, r0, d0) has n-closure then the triple (R1, r1, d1)
has 2n-closure.

Here are some important corollaries of Th. 2 where we restrict our-
selves to 3 ≤ n ≤ 9.

Corollary 2.1. Let (R0, r0, d0) and (R1, r1, d1) be as in Th. 1. Let
the triple (R1, r1, d1) has the property that there exists 2n-closure with
rotation number 1 for 2n. Then the triple (R0, r0, d0) has the property
that there exists n-closure with rotation number 1 for n.



Certain relations obtained 63

Thus, if and only if the triple (R0, r0, d0) has the property that there
exists n-closure with rotation number 1 for n then the triple (R1, r1, d1)
has the property that there exists 2n-closure with rotation number 1 for
2n.

Corollary 2.2. Let t̂2, t̂4, . . . , t̂2n, be tangent lengths with even indices in
the sequence (2.11a). Then these tangent lengths can be obtained starting
from t̂2 and using triple (R0, r0, d0).

Proof. Starting from t̂2 instead of t̂1 we get tangent lengths

t̂2, t̂3, t̂4, . . . , t̂2n−1, t̂2n, t̂1

which are the same as tangent lengths given by (2.11a), but now t̂2, t̂4,
. . . , t̂2n are first, third, . . . ,(2n − 1)-th (as before t̂1, t̂3, . . . , t̂2n−1). ♦

Thus there are bicentric n-gons A1 . . . An and B1 . . . Bn from the
class Cn(R0, r0, d0) such that t̂1, t̂3, . . . , t̂2n−1 are tangent lengths of the n-
gon A1 . . . An and t̂2, t̂4, . . . , t̂2n are tangent lengths of the n-gon B1 . . . Bn.
Such n-gons can be called conjugate bicentric n-gons. (More about this
will be later.)

Before stating some other corollaries of Th. 2 here are some exam-
ples concerning tangent lengths in the sequence (2.11a).

Example 1. Let R0 =5, r0 =2.1, d0 =2. Then the triple (R0, r0, d0) is a
solution of Euler’s relation (1.1d). Since in this case tm =2.142428529 . . .

and tM = 6.67757441 . . . we can take for t1, say, t1 = 4. Using for-
mula (1.5) we get

t2 = 2.257285250 . . . , t3 = 5.973973936 . . . .

For bicentric hexagon, where R1 = 8.340410221 . . . , r1 = 6.812488532...,
d1 = 1.198981792 . . . , we can also take t̂1 = t1 = 4 (since holds (2.4)).
Using formula (1.5) we get

t̂2 = 2.394758676 . . . , t̂3 = t2, t̂4 = 3.576556479 . . . ,

t̂5 = t3, t̂6 = 6.337801531 . . . .

Example 2. Let R0 = 7, r0 = 4.8, d0 = 1. Then the triple (R0, r0, d0) is
a solution of Fuss’ relation (1.1a). Since in this case tm = 3.6, tM = 6.4
we can take t1 = 5. Using formula (1.5) we get

t2 = 3.610778912 . . . , t3 = 4.608, t4 = 6.380894692 . . . .

For bicentric octagon, where R1 = 12.841450671..., r1 = 11.757550765...,
d1 = 0.545109752 . . . , we can also take t̂1 = t1 = 5. Using formula (1.5)
we get
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t̂2 = 4.043395991 . . . , t̂3 = t2, t̂4 = 3.814401072 . . . , t̂5 = t3

t̂6 = 5.698180452 . . . , t̂7 = t4, t̂8 = 6.040266757 . . . .

Corollary 2.3. If and only if Fn(R0, r0, d0) = 0 then F2n(R1, r1, d1) = 0.

Proof. Let R1, r1, d1 in F2n(R1, r1, d1) = 0 be replaced, respectively by
√

R0

(

R0 + r0 +
√

(R0 + r0)2 − d2
0

)

,

√

(R0 + r0)2 − d2
0,

√

R0

(

R0 + r0 −
√

(R0 + r0)2 − d2
0

)

then we get relation Fn(R0, r0, d0) = 0.
Conversely, if R0, r0, d0 in Fn(R0, r0, d0) be replaced by expressions

for R0, r0, d0 given by (2.15) we get Fuss; relations F2n(R1, r1, d1) = 0.
It can be easily check using computer algebra. In the case when n

is small it is not difficult to check even by hand, without using computer
algebra. ♦

Notice 1. As can be seen, Cor. 2.3 can be very useful concerning Fuss’
relations.

Corollary 2.4. Let n ≥ 4 be an even integer and let the triple (R0, r0, d0)
has the property that for every bicentric n-gon A1 . . . An from the class
Cn(R0, r0, d0) it is valid

(2.17) titi+ n

2
= tmtM , i = 1, . . . ,

n

2
,

where t1, . . . , tn are tangent lengths of the n-gon A1 . . . An and tm and tM
are given by (2.9). Then triple (R1, r1, d1) also has this property, that is,
for every bicentric 2n-gon B1 . . . B2n from the class C2n(R1, r1, d1) it is
valid

(2.18) uiui+n = tmtM , i = 1, . . . , n,

where u1, . . . , u2n are tangent lengths of the 2n-gon B1 . . . B2n.

Proof. This corollary follows from Cor. 2.1 and Cor. 2.2. See Fig. 5a.
If there are n

2
vertices between Ai and Ai+ n

2
then there are n vertices

between Bi and Bi+n. See also Fig. 5b where 2n = 8. ♦

Here are some examples.

Example 3. Let n = 4. Then, as it is well known, relations (2.17) are
valid. Thus, for 2n = 8, 16, 32, . . . relations (2.18) are also valid.
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Figure 5

Example 4. Let n = 6. The proof that holds (2.17) can be as follows.
In the case when n = 6 it is not difficult to show that tangent

lengths are given by

tm ≤ t1 ≤ tM , t3 =
(R2

0−d2
0)t1−r0

√
D1

r2
0 + t21

, t5 =
(R2

0−d2
0)t1+r0

√
D1

r2
0 + t21

,

t2 =
(R2

1 − d2
1)t1 − r1

√
D1

r2
1 + t21

, t4 =
(R2

1 − d2
1)t3 + r1

√
D3

r2
1 + t23

,

t6 =
(R2

1 − d2
1)t1 + r1

√
D1

r2
1 + t21

.

To prove that, say t2t5 = tmtM , we need to prove that

t2t5 =
(R2

1 − d2
1)t1 − r1

√
D1

r2
1 + t21

· (R2
0 − d2

0)t1 + r0

√
D1

r2
0 + t21

= tmtM .

Since hold relations R2
1 − d2

1 = 2R0r1 and 2R0r0 = R2
0 − d2

0 given
by (2.3c) and (1.1d) we can write

t2t5 =
r0r1 (4R2

0t
2
1 − D1)

(r2
1 + t21)(r

2
0 + t21)

=
r0r1 (r2

1 + t21) (r2
0 + t21)

(r2
1 + t21)(r

2
0 + t21)

= r0r1 = tmtM . (See (2.7f).)

Now, let for brevity in the following expression, tangent length
t̂1, t̂3, . . . , t̂2n−1 and t̂2, t̂4, . . . , t̂2n in the sequence (2.11a) be called conju-
gate tangent lengths concerning the same triple (R1, r1, d1).

The following conjecture is strongly suggested.
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Conjecture 2. Let t1, t3, . . . , t2n−1 and t2, t4, . . . t2n be conjugate tangent
lengths concerning triple (R1, r1, d1) and let also u1, u3, . . . , u2n−1 and
u2, u4, . . . , u2n be conjugate tangent lengths concerning triple (R1, r1, d1).
Then

(2.19)

(

n
∑

i=1

t2i−1

)(

n
∑

i=1

t2i

)

=

(

n
∑

i=1

u2i−1

)(

n
∑

i=1

u2i

)

.

We have found that this conjecture is a true one for many numerical
examples and that using computer algebra it is not difficult to prove it
generally for 2n = 6 and 2n = 8. In the case when 2n = 6 we have found
that
(2.20a)

(

3
∑

i=1

t2i−1

)(

3
∑

i=1

t2i

)

=

= 5tM tm + 2tM

√

2R0r0 + 2r0d0 − r2
0 + 2tm

√

2R0r0 − 2r0d0 − r2
0

where t2M = (R0 + d0)
2 − r2

0, t2m = (R0 − d0)
2 − r2

0.
In the case when 2n = 8 it holds

(2.20b)

(

4
∑

i=1

t2i−1

)(

4
∑

i=1

t2i

)

= 4
√

(R2
0 − d2

0)(3R
2
0 − d2

0 + 2r2
0).

Conjugate tangent lengths here defined are very connected with conju-
gate bicentric n-gons whose definition is based on Cor. 2.2. Namely,
if A1 . . . An is a given bicentric n-gon from the class Cn(R0, r0, d0) and
t1, t3, . . . , t2n−1 are its tangent lengths,then conjugate bicentric n-gon
to the n-gon A1 . . . An can be found by calculation of tangent lengths
t2, t4, . . . , t2n such that t2 be calculated using t1 and the triple (R1, r1, d1),
then using triple (R0, r0, d0) can be calculated tangent lengths t4, . . . , t2n.

So for every integer n ≥ 3 for which Conj. 2 is true the following is
valid. Any two conjugate bicentric n-gons from the class Cn(R0, r0, d0)
have the same product of theirs perimeters. Thus, they also have the
same product of theirs areas. From this it is clear that bicentric n-
gon with maximal perimeter is conjugate to the bicentric n-gon with
minimal perimeter. Of course, both of them must be from the same class
Cn(R0, r0, d0).

The following conjecture is also strongly suggested.
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Conjecture 3. Let A1 . . . An and B1 . . . Bn be polygons from the class
Cn(R0, r0, d0) such that one has maximal perimeter and the other has
minimal perimeter. Then each of these polygons is axially symmetric in
relation to the axis OI where O is center of circumcircle and I is center
of incircle. That one has maximal perimeter which has maximal tangent
length tM .

The proof for n = 3 is given in [4]. The proof for n = 4 can be
as follows. Let A1 A2 A3 A4 be a bicentric quadrilateral from the class
C4(R0, r0, d0). Denote by P (t1) its perimeter. Thus, P (t1) = t1 + t2+
+t3 + t4, that is,

P (t1) = t1 +
(R2

0 − d2
0)t1 + r0

√
D1

r2
0 + t21

+
r2

t1
+

(R2
0 − d2

0)t1 − r0

√
D1

r2
0 + t21

or

P (t1) = t1 +
2(R2

0 − d2
0)t1

r2
0 + t21

+
r2
0

t1
.

From d

dt1
P (t1) = 0 we obtain the equation which can be written as

(

t21 − r2
0

) (

t41 − 2
(

R2
0 − r2

0 − d2
0

)

t21 + r4
0

)

= 0.

Its positive roots are given by

(t1)1 = r0, (t1)2,3 = R2
0 − d2

0 − r2
0 ±

√

(R2
0 − r2

0 − d2
0)

2 − r4
0.

It can be found that d2

dt2
1

P (t1) < 0 for (t1)1 and d2

dt2
1

P (t1) > 0 for both of

(t1)2 and (t1)3.
Here let us remark that the first quadrilateral has tangent lengths

tM , r0, tm, r0 and the second has tangent lengths (t1)2, (t1)3, (t1)2, (t1)3.
It seems that Conj. 3 can be without difficulties proved for some

other small n, say, for n = 6 and n = 8.
Now we prove the following theorem as one of the main results in

the article.

Theorem 3. Let R0, r0, d0 be any given positive numbers such that
R0 > r0 + d0 and let R1, r1, d1 be positive numbers given by

R2
1 = R0

(

R0 + r0 +
√

(R0 + r0)2 − d2
0

)

, r2
1 = (R0 + r0)

2 − d2
0,

(2.21a)

d2
1 = R0

(

R0 + r0 −
√

(R0 + r0)2 − d2
0

)

.(2.21b)
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Let R̂1, r̂1, d̂1 be given by

(2.22) R̂1 =
1

c
R1, r̂1 =

1

c
r1, d̂1 =

1

c
d1,

where

(2.23) c =

√

R0 + r0 +
√

(R0 + r0)2 − d2
0

R0

,

that is, c = R1

R0

and 1

c
= R0

R1

. (Thus R̂1 = R0). Further, let C1, C2 and

K̂1, K̂2 be circles in the same plane such that
R0: radius of C1, r0: radius of C2,
d0: distance between centers of C1 and C2,
R̂1: radius of K̂1, r̂1: radius of K̂2,
d̂1: distance between centers of K̂1 and K̂2,

where K̂1 is concentric to C1 and equal to C1 (since R̂1 = R0).
Finally, let P (u, v) be any given point on the circle C1 and let by

|PT1| and |PT2| be denoted, respectively, lengths of the tangents drawn
from P to K̂2 and from P to C2. Then

(2.24) c |PT1| = |PT2| .

Proof. The proof easily follows from Th. A and Th. B. ♦

Here is an example.

Example 5. Let R0 = 6, r0 = 4, d0 = 1 and let P (−2, 5.65685425 . . . ).
Then
R̂1 =6, r̂1 =5.456612823 . . . , d̂1 =0.300753772 . . . , c = 1.823452514 . . .

x1 = 0.733417674 . . . , y1 = 5.439432451 . . . ,

x2 = 2.58870939 . . . , y2 = 3.670967512 . . . ,

|PT1| = 2.742051134 . . . , |PT2| = 5, c |PT1| = |PT2| .
Now we state some corollaries of Th. 3.

Theorem 4. From Th. 3 and Th. A and Th. B it follows Conj. 1.

Proof. We can without loss of generality consider the case when, say,
2n = 8, since there exists a complete analogy. So we start from a triple
(R0, r0, d0) which is a (positive) solution of Fuss’ relation F4(R, r, d) = 0.
In this case, using Th. B stated in Introduction, we have the situation
shown in Fig. 6, where
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Figure 6

R0 = 7, r0 = 4.8, d0 = 1,(2.25)

R1 = 12.841450672 . . . , r1 = 11.757550765 . . . , d1 = 0.545109755 . . . ,

(2.26)

R̂1 = R0, r̂1 = 6.546477218 . . . , d̂1 = 0.303511221 . . . ,(2.27)

c = 1.796011867 . . . , s = 1.96.(2.28)

The following notation is used.
O = center of C1, I = center of C2, Î = center of K̂2, S(s, 0) is

the characteristic point of the circles C1 and C2 and also of the circles
K̂1 and K̂2. The quadrilateral A1A3A5A7 is from the class C4(R0, r0, d0)
where R0 = 7, r0 = 4.8, d0 = 1. (For convenience its vertices are denoted
by A1, A3, A5, A7 instead of A1, A2, A3, A4.)

We have to prove that straight lines A1T1 and A3T3 intersect in a
point of the circle C1 between vertices A1 and A3. To prove this we have
to prove that the situation shown in Fig. 7 is impossible. The proof is as
follows.

Let by M be denoted intersection of the straight line A1T1 and the
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Figure 7

circle C1 and let by N be denoted intersection of the straight line NT3

and the circle C1. Then by Th. A it is valid
c |A1T1| + c |NT3| = |A1N | ,

and by Th. 3 we have
c |A1T1| = |A1T2| , c |NT3| = |NT4| .

Obviously, |A1T2| + |NT4| > |A1N |.
In the same way can be concluded that N can not be between A3

and A5. Thus [A1A2] and [A2A3] are tangential segments to the circle K̂2.
Now we can proceed and easily conclude that between vertices A3

and A5 there exists a point A4 such that [A3A4] and [A4A5] are tangential
segment to the circle K̂2. And so on.

Thus starting from bicentric quadrilateral A1A3A5A7 we have ob-
tained bicentric octagon A1 . . . A8 which has the following properties.

a) Each of its main diagonals [AiAi+4], i = 1, 2, 3, 4, contain the
characteristic point S(s, 0) since the circles C1 and K̂2 determine the
same characteristic point as the circles C1 and C2.

b) Let by t̄1, . . . , t̄8 be denoted tangent lengths of the octagon
A1 . . . A8. Then by Th. B it is valid

t̄it̄i+4 =
tM

c
· tm

c
, i = 1, 2, 3, 4,

where tM and tm are maximal and minimal tangent lengths of the class
C4(R0, r0, d0).

Since c(R̂1, r̂1, d̂1) = (R1, r1, d1) there exists a bicentric octagon
Â1...Â8 from the class C8(R1, r1, d1) such that its tangent lengths t̂1, ..., t̂8
have the property that

t̂i = ct̄i, i = 1, . . . , 8,

where t̄1, . . . , t̄8 are tangent lengths of the octagon A1 . . . A8. Thus
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t̂i = ti, i = 1, 3, 5, 7 and t̂i = ti, i = 2, 4, 6, 8,
where t1, t3, t5, t7 are tangent lengths of the bicentric quadrilateral
A1A3A5A7 and t2, t4, t6, t8 are tangent lengths of the bicentric quadrilat-
eral A2A4A6A8 (which is not drawn in Fig. 6). The proof that [Ai+1Ai+3],
i = 1, 3, 5, 7 are tangential segments to the circle C2 can be as follows.
See Fig. 8. Since [A2A3] and [A3A4] are tangential segments to the circle
K̂2 and by Th. A it is valid

|A2A4| = c(t̄2 + t̄4),

the situation shown in Fig. 8 is impossible. The segment [A2A4] must be
a tangential segment to the circle C2 since by Th. 3 must be ct̄2 = |A2T2|,
ct̄4 = |A4T4|. See relation (2.24).

Figure 8

Of course, starting now from bicentric octagon Â1 . . . Â8 we can
in exactly the same way obtain a bicentric 16-gon from the class
C16(R11, r11, d11) such that its tangent lengths u1, . . . , u16 have the prop-
erty that

u2i−1 = t̂i, i = 1, . . . , 8.
There is a complete analogy with the case when we start from bicentric
quadrilateral.

So the proof that Conj. 1 is a true one follows from Th. 3 and Th. A
and Th. B can be accepted. ♦

As an important corollary of Th. 4 we have the following:

Theorem 5. Let n ≥ 3 be an integer such that is known Fuss’ relation
Fn(R, r, d) = 0 for bicentric n-gons. Let (R0, r0, d0) be any positive solu-
tion of the relation Fn(R, r, d) = 0 and let R0, r0, d0 in Fn(R0, r0, d0) = 0
be replaced by expressions given by (2.15). Then obtained equality can be
written as

F2n(R1, r1, d1) = 0,

where F2n(R, r, d) = 0 is Fuss’ relation for bicentric 2n-gons.
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For example, if n = 3, then using relation (1.1d) can be easily (even
by hand, without using computer algebra) obtained relation (1.1b).

Notice 2. In [6] one algorithm is given which states how can be obtained
Fuss’ relation Fn(R, r, d) = 0 for any odd n ≥ 3. From this and Th. 5 it
is clear one way how can be obtained Fuss’ relation for any even n ≥ 4.
Many interesting and important facts and relations in this connection
are established in the present article. These are a great source for many
further investigations of bicentric n-gons and their practical use.

Acknowledgement. The author wishes to express thankfulness to the
referee for many useful remarks and proposals.
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