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Abstract: The local and global asymptotical stability of equilibria of dynamic
economic systems is examined. After a survey of the most important conditions
is presented we introduce a new stability condition for discrete systems, when
the iteration map is only piece-wise differentiable. Some examples of duopoly
illustrate the theoretical findings.

1. Introduction

The long-term behavior of dynamic economic systems is one of the
most important problem areas in mathematical economics. In the case
of continuous time scales the asymptotic properties of trajectories of
ordinary differential equations are examined, while in the case of discrete
time scales the solutions of difference equations are studied. There are
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many different methods known from the literature in investigating the
asymptotic properties of dynamic systems. In the case of time-invariant
linear systems the locations of the eigenvalues of the coefficient matrix
determine the stability properties of the system. If the linear system
is time variant, then the system is marginally stable if the fundamental
matrix is bounded, and if in addition the fundamental matrix converges
to zero as t → ∞, then the stability is asymptotical. In the case of linear
systems local and global asymptotic stability are equivalent, however in
the case of nonlinear systems we have to distinguish between local and
global asymptotical stability. The most important results on the stability
of linear systems can be found in all textbooks of linear systems theory
(for example, Szidarovszky and Bahill, 1998).

The literature on nonlinear systems is less extensive. For continuous
systems the stability issues are discussed in many books on ordinary
differential equations (for example, Brauer and Nohel, 1969), for discrete
systems the most relevant results are discussed, for example, in Gandolfo
(1971), and La Salle (1976).

The asymptotical stability of nonlinear systems can be examined
by several methods. The most common methodology is based on the
different applications of the Lyapunov method. This approach is very
useful in many cases however finding an appropriate Lyapunov function is
usually a difficult problem, and the failure of finding a Lyapunov function
does not prove the instability of the system. Local asymptotic stability
can be shown by locating the eigenvalues of the Jacobian or by bounding
the norm of the Jacobian at the equilibrium. There was an intensive
research on extending the local asymptotical stability conditions into
global stability and relaxing the sufficient conditions as much as possible.
Parthasarathy (1983) gives an excellent background of this problem area
in the continuous case, and Cima et al. (1999) discuss its discrete time
scales counterpart.

In the classical mathematical literature there are several alterna-
tive stability conditions which guarantee global asymptotical stability of
dynamic systems. More recent publications introduce more simple and
more general stability conditions which could be very useful in economic
studies.

In this paper we will give a brief overview of the current state of this
research field. We will also present an extension of stability conditions
to discrete system with piece-wise differentiable maps.
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2. Stability conditions using norms

Consider first the one-dimensional discrete system

(1) x(t + 1) = f(x(t))

where f : D → R is a continuously differentiable function and D is a
(finite or infinite) interval. Let x̄ ∈ D be a fixed point of map f , that is,
x̄ = f(x̄). The following results are well known from numerical analysis:

Fact 1. Assume that |f ′(x̄)| < 1, then x(t) → x̄ as t → ∞ if x(0) is
selected sufficiently close to x̄.

Fact 2. Assume that for all x ∈ D, |f ′(x)| ≤ q < 1 with some constant
q, then x(t) → x̄ as t → ∞ with arbitrary x(0) ∈ D.

Notice that in the case of Fact 1 only local convergence to the equi-
librium is guaranteed based on only local information on the derivative,
while Fact 2 guarantees global convergence based on global information
on this derivative. The convergence to x̄ also implies that in the case of
Fact 1 there is a neighborhood of x̄ such that x̄ is the only fixed point
there, and in the case of Fact 2, x̄ is the only fixed point in the entire
domain D.

In multidimensional case the derivative f ′(x) is replaced by the
Jacobian matrix, and naturally the absolute value of the derivative is re-
placed by the norm of the Jacobian. Consider therefore the n-dimensional
system

(2) x(t + 1) = f (x(t))

where f : D 7→ R
n is a continuously differentiable function and D is a

convex subset of R
n. Let x̄ ∈ D be a fixed point of map f , and let J(x)

denote the Jacobian of f at x. The following results are well known from
systems theory:

Fact 3. Assume that with some matrix norm ||J(x̄)||<1. Then x(t)→ x̄

as t → ∞ if x(0) is selected sufficiently close to x̄.

Fact 4. Assume that ||J(x)|| ≤ q < 1 for all x ∈ D, where q is a
constant. Then x(t) → x̄ as t → ∞ with arbitrary x(0) ∈ D.

Similarly to the single dimensional case, there is a neighborhood of
x̄ such that x̄ is the only fixed point in it under the conditions of Fact 3,
and in the case of Fact 4, x̄ is the only fixed point in the entire domain D.
These results are the most frequently used sufficient stability conditions
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to prove local or global asymptotic stability of the equilibrium. If a given
matrix norm is greater than one, it does not prove instability, since there
is the possibility that by selecting another norm stability still can be
proved. The most commonly used matrix norms are as follows. Let aij

denote the (i, j) element of an n × n matrix A. Then

||A||1 = max
j

n
∑

i=1

|aij| (column norm)(3)

||A||∞ = max
i

n
∑

j=1

|aij| (row norm)(4)

||A||2 = max
k

√

λ
(k)

AT A
(Euclidean norm)(5)

where the eigenvalues of ATA are λ
(k)

AT A
(k = 1, 2, . . . , n).

This norm requires the computation of eigenvalues of the symmetric
matrix. In many cases the Euclidean norm is replaced by the Frobenius
norm:

(6) ||A||F =

√

√

√

√

n
∑

i=1

n
∑

j=1

|aij |2 (≥ ||A||2)

Example 1. As a simple example consider matrices

A1 =

(

0.8 0.8
0 0

)

, A2 =

(

0.8 0
0.8 0

)

, and A3 =

(

0.58 0.58
0.58 0

)

.

Then clearly

||A1||1 = 0.8 ||A1||∞ = 1.6 ||A1||2 = ||A1||F = 0.8 ·
√

2 ≈ 1.131

||A2||1 = 1.6 ||A2||∞ = 0.8 ||A2||2 = ||A2||F = 0.8 ·
√

2 ≈ 1.131

and

||A3||1 = 1.16 ||A3||∞ = 1.16|| A3||2 = 0.58 ·

√

3 +
√

5

2
≈ 0.938

and ||A3||F = 1.009.

Notice that in each case only one norm is below 1, the other three
norms are greater than one. ▽

In many economic models function f is only piece-wise differen-
tiable on D because of nonnegativity conditions on production levels and
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prices as well as presence of capacity limits. The above mentioned Facts
3 and 4 cannot be applied in such cases without further consideration.
If f is continuously differentiable in a neighborhood of x̄, that is, x̄ is in
the interior of a subregion of D in which f is continuously differentiable,
then Fact 3 can be used to prove local asymptotical stability. However if
x̄ is on the boundary between two subregions, then the Jacobian usually
does not exist at x̄, so this result cannot be applied. Fact 4 assumes the
existence of J(x) for all x ∈ D, which is not the case if f is only piece-
wise differentiable. With some additional considerations we can however
extend these results.

Assume now that D is convex in R
n and it is the union of sets

D
(1), D(2), . . . with mutually exclusive interiors. Assume furthermore that

f is continuous on D and its restriction f (k) on D
(k) is continuously

differentiable in the interior of D
(k) (k = 1, 2, . . . ). Assume in addition

that one of the following two conditions hold:

(A) For all k, there is an open set containing D
(k) such that f (k) can be

extended to it, and f (k) remains continuously differentiable there.
Assume also that for the linear segment connecting x̄ and any x ∈ D

there are finitely many values 0 = t0 < t1 < · · · < tK(x) = 1 such
that all points of the linear segment connecting x̄ + tl(x − x̄) and
x̄ + tl+1(x − x̄) belongs to the same D

(kl) (l = 0, 1, . . . , K(x) − 1).

(B) For all linear subsegments connecting x̄+tl(x−x̄) and x̄+tl+1(x−x̄)
defined in the previous assumption there are sequences {ui}→ x̄+
+tl(x − x̄) and {vi} → x̄ + tl+1(x − x̄) as i → ∞ such that the
entire linear segment connecting ui and vi is in the interior of D

(kl)

for all i.

Assume finally that there is a constant q, such that for all k, and for
all x ∈ D

(k) (under assumption (A)) or x ∈ intD(k) (under assumption
(B)), ||J (k)(x)|| ≤ q < 1, where J (k) is the Jacobian of f (k).

Theorem 1. Under the above conditions x̄ is the only equilibrium and

it is globally asymptotically stable.

Proof. For all x ∈ D,
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||f (x) − x̄|| = ||f (x) − f (x̄)|| =

=

∥

∥

∥

∥

∥

∥

K(x)−1
∑

l=0

(f (x̄ + tl+1(x − x̄)) − f (x̄ + tl(x − x̄)))

∥

∥

∥

∥

∥

∥

≤

≤
K(x)−1
∑

l=0

∥

∥

∥

∥

∫ tl+1

tl

J (kl) (x̄ + t(x − x̄)) (x − x̄)dt

∥

∥

∥

∥

≤

≤
K(x)−1
∑

l=0

∫ tl+1

tl

∥

∥J (kl) (x̄ + t(x − x̄))
∥

∥ · ‖x − x̄‖ dt ≤

≤ q · ||x − x̄||
K(x)−1
∑

l=0

(tl+1 − tl) = q · ||x − x̄||.

Therefore for t ≥ 1,

||x(t) − x̄|| ≤ q · ||x(t− 1) − x̄|| ≤ · · · ≤ qt||x(0) − x̄||,
which converges to zero as t → ∞. The uniqueness of the equilibrium is
a simple consequence of this convergence. ♦

We will show some applications of this theorem in Sec. 4.
Local asymptotic stability is guaranteed, if the conditions of the

theorem are true with D replaced by a neighborhood of the equilibrium
that contains the equilibrium in its interior.

3. Stability conditions using eigenvalues

Consider first the discrete system (2). It is well known that if
all eigenvalues of an n × n matrix A are inside the unit circle, then
there is a matrix norm such that ||A|| < 1 (see for example, Ortega
and Rheinboldt, 1970). This observation and Fact 3 imply the following
result:

Fact 5. Assume f is continuously differentiable in a neighborhood of x̄

and all eigenvalues of the Jacobian J(x̄) are inside the unit circle, then
x̄ is locally asymptotically stable.

In the case of time invariant linear systems the Jacobian is the con-
stant coefficient matrix, and in this case the condition of the theorem is
sufficient and necessary. In the case of nonlinear systems this result gives
only sufficient conditions, since if some eigenvalues have unit absolute
values and all others are inside the unit circle, then the system can be
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unstable, or marginally stable, or even globally asymptotically stable as
it is shown in the following examples:

Example 2. Consider system

x(t + 1) =

(

1 1
0 1

)

x(t)

with both eigenvalues being equal to one. There are infinitely many
equilibria: x̄1 = arbitrary and x̄2 = 0. It is easy to see that

x(t) =

(

1 1
0 1

)t

x(0) =

(

1 t

0 1

)

x(0)

which show that if x2(0) 6= 0, then x1(t) converges to +∞ or −∞ so the
system is unstable.

Consider next the one-dimensional system
x(t + 1) = −x(t)

with eigenvalue −1. Clearly, x(t) = (−1)tx(0), so the zero equilibrium is
only marginally stable.

And finally consider again a one-dimensional system

x(t + 1) = x(t)e−x(t)2 .

Notice that x(0) > 0 implies that for all t, 0 < x(t + 1) < x(t) and if
x(0) < 0, then x(t) < x(t+1) < 0. Hence x(t) is monotonic and bounded,
so convergent. Letting t → ∞ in the systems equation implies that the
limit equals zero, which is the unique equilibrium of the system. Hence
the system is globally asymptotical stable. ▽

The extension of Fact 4 in terms of the eigenvalues of the Jacobian
is not true in general. If the eigenvalues of J(x) for all x ∈ D are inside
the unit circle, then for all x ∈ D there is a matrix norm such that
the norm of J(x) is below one, however this norm is usually different for
different values of x. The following example gives a general n-dimensional
discrete system in which the eigenvalues of J(x) are inside the unit circle
even there is a constant q ∈ [0, 1) such that the absolute values of the
eigenvalues of J(x) for all x ∈ R

n are less than q, and the system is not
globally asymptotically stable (for more details see Cima et al., 1999).

Example 3. Consider the n-dimensional system (1) with

f (x) =

(

− kx3
2

1 + x2
1 + x2

2

,
kx3

1

1 + x2
1 + x2

2

,
1

2
x3, . . . ,

1

2
xn

)T

where k ∈
(

1, 2√
3

)

. This function is continuously differentiable in R
n,

x̄ = 0 is a fixed point and it has the following properties:
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(a) The eigenvalues of the Jacobian are λ1 = λ2 = 0, λ3 = · · · = λn = 1
2

if x1x2 = 0, otherwise λ1 and λ2 are complex with absolute values
less than

√
3

2
k < 1 and λ3 = · · · = λn = 1

2
;

(b) f 4
(

1√
k−1

, 0, . . . , 0
)

=
(

1√
k−1

, 0, . . . , 0
)

. ▽

In important special cases however such counter example cannot be
found, as the following results state (see Cima et al., 1999).

Fact 6. Assume that f : R
n 7→ R

n is a continuously differentiable
triangular map, that is,

f (x) = (f1(x1), f2(x1, x2), . . . , fn(x1, x2, . . . , xn)) .

Let x̄ be an equilibrium of system (2) and assume that the absolute
values of the eigenvalues of J(x) are less than one for all x ∈ R

n. Then
x̄ is globally asymptotically stable.

Fact 7. Let f : R
2 7→ R

2 be a polynomial map with all eigenvalues of
J(x) having absolute values less than one for all x ∈ R

2. Then system
(2) has a unique equilibrium that is globally asymptotically stable.

The following example (see Cima et al., 1997) shows that Fact 7
does not hold for all higher dimensional systems.

Example 4. Assume now that

f (x) =

(

1

2
x1 + x3d(x)2,

1

2
x2 − d(x)2,

1

2
x3, . . . ,

1

2
xn

)T

with d(x) = x1 + x2x3. This is clearly a polynomial map with zero fixed
point and it satisfies the following properties:

(a) For all x ∈ R
n, the eigenvalues of J(x) are equal to 1

2
;

(b) If x(0) =
(

147
32

,−63
32

, 1, 0, . . . , 0
)T

, then for t ≥ 1,

x(t) =

(

147

32
· 2t,−63

32
· 22t,

(

1

2

)t

, 0, . . . , 0

)T

,

so the system is unstable. ▽

The following statement gives a sufficient condition for the insta-
bility of the equilibrium

Fact 8. Assume that at least one eigenvalue of J(x̄) has absolute value
larger than one. Then x̄ is unstable.

A simple elementary proof of this result is given in Li and Szi-
darovszky (1999).
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We now turn our attention to the continuous system

(7) ẋ = f (x),

where f : D 7→ R
n with D ⊂ R

n. Assume that x̄ is an equilibrium of
this system, which is in the interior of D.

The continuous counterpart of Fact 5 is well known and can be
given as follows.

Fact 9. Assume f is continuously differentiable in a neighborhood of x̄

and all eigenvalues of J(x̄) have negative real parts. Then x̄ is locally
asymptotically stable.

Similarly to the discrete case, this condition is sufficient and neces-
sary for time invariant, linear systems. However in the case of nonlinear
systems the above condition is only sufficient, since if some eigenvalues
have zero real parts and all other eigenvalues have negative real parts,
then the system can be unstable, or marginally stable, or even globally
asymptotically stable, as it is illustrated in the following examples.

Example 5. Consider first the two-dimensional system

ẋ =

(

0 1
0 0

)

x

where the equilibrium is x̄1 = arbitrary and x̄2 = 0. Both eigenvalues of
the Jacobian are equal to zero, and it is easy to see that

x(t) =

(

1 t

0 1

)

x(0),

so the system is unstable.
Consider next the one-dimensional system

ẋ = 0
with zero eigenvalue. Then all solutions are constant, the equilibrium is
any real number and all are marginally stable.

Consider finally the system

ẋ = −x3

where x = 0 is the only equilibrium, and the eigenvalue is zero at x = 0.
This equation is separable, so it can be easily solved:

x(t) =
x(0)

√

1 + 2tx(0)2
.

Clearly with x(0) 6= 0, x(t) → 0 as t → ∞ showing the global asymptot-
ical stability of the equilibrium. ▽
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The extension if Fact 9 to global asymptotical stability is true only
in the two-dimensional case (see Gutierrez, 1995; Fernandes et al., 2004).

Fact 10. Assume that f : R
2 7→ R

2 is differentiable and x̄ is an equilib-
rium of system (7). Assume furthermore that for all x ∈ R, the eigenval-
ues if J(x) have negative real parts. Then x̄ is globally asymptotically
stable.

This result however is not true in higher dimensions as the following
example (Cima et al., 1997) shows.

Example 6. Let

f (x) =
(

−x1 + x3d(x)2,−x2 − d(x)2,−x3, . . . ,−xn

)T

with d(x) = x1 + x2x3 as in Example 4. It is easy to see that the
eigenvalues of J(x) are equal to −1 for all x ∈ R

n, and

x1(t) = 18et, x2(t) = −12e2t, x3(t) = · · · = xn(t) = 0
is a solutions of system (7) which shows that the zero equilibrium cannot
be globally asymptotically stable. ▽

The continuous counterpart of Fact 6 remains valid for continuous
systems (see Markus and Yamabe, 1960).

Fact 11. Assume that f : R
n 7→ R

n is a continuously differentiable
triangular map such that for all i and x ∈ R

n, ∂fi

∂xi

(x) < 0. Then the
equilibrium of system (7) is globally asymptotically stable.

Another useful sufficient condition is the following (see Markus and
Yamabe, 1960).

Fact 12. Assume f : R
n 7→ R

n is continuously differentiable, and for all
x ∈ R

n, M(x) = J(x)+J(x)T is negative definite. Assume furthermore
that there are positive constants α and β such that

|TraceM(x)| < α and |DetM(x)| > β.
Then x̄ is globally asymptotically stable.
Similarly to the discrete case, a simple sufficient instability condi-

tion is given in the following result.

Fact 13. Assume f is continuously differentiable in a neighborhood of
x̄, and at least one eigenvalue of J(x̄) has positive real part. Then x̄ is
unstable.

4. Stability of special duopolies

It was earlier mentioned that if the eigenvalues of a matrix are
inside the unit circle, then there is a matrix norm such that the norm of
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the matrix is below unity. This matrix norm is based on the eigenvalues
and the Jordan canonical form of the matrix. So it is hard to compute
and it is not monotonic in the matrix elements, so it cannot be used if
one or more matrix elements is changed to zero. In the 2-dimensional
case for a large group of matrices a very special type of norm can be
selected which can be easily computed and is monotonic. Assume that
all eigenvalues of matrix

A =

(

a b

c d

)

are inside the unit circle. The characteristic polynomial of A is given as
ϕ(λ) = (a − λ)(d − λ) − bc = λ2 − λ(a + d) + (ad − bc), so the matrix
elements satisfy relations (see for example, Bischi et al., 2010)

±(a + d) + (ad − bc) + 1 > 0,(8)

ad − bc < 1.(9)

Select a diagonal matrix

T =

(

x 0
0 1

)

with x > 0, and consider the row norm of A generated by matrix T :

||TAT−1||∞ =

∥

∥

∥

∥

(

a bx
c
x

d

)∥

∥

∥

∥

∞

= max

{

|a| + |b|x,
|c|
x

+ |d|
}

.

This is below unity, if |a| < 1, |d| < 1, furthermore

|a| + |b|x < 1 and
|c|
x

+ |d| < 1,

which occurs if and only if

(10)
|c|

1 − |d| < x <
1 − |a|
|b| .

Suitable x exists, if
|bc| < (1 − |a|)(1 − |d|)

or

(11) −(|a| + |d|) + |ad| − |bc| + 1 > 0

which is consequence of condition (8) if ad ≥ 0 and bc ≥ 0. Hence we
have the following result.
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Fact 14. Assume |a| < 1, |d| < 1, ad ≥ 0 and bc ≥ 0. Assume further-
more that the eigenvalues of matrix A are inside the unit circle. Then
there is a row norm generated by a diagonal matrix with positive diag-
onal, such that the norm of A and that of all other matrices which can
be obtained from A by decreasing the absolute value of at least one of
its elements, are all less than unity.

(a) Consider first a duopoly with linear cost (Ck(xk) = ckxk + dk)
and price (p(x1 + x2) = A − B(x1 + x2)) functions. Then the profit of
firm k has the form

ϕk(x1, x2) = xk(A − Bx1 − Bx2) − (ckxk + dk)

where all coefficients are positive. Assume that both firms have finite
capacity limits, so 0 ≤ xk ≤ Lk for k = 1, 2. The best response of firm k

is

Rk(xl) =



























0 if xl ≥
A − ck

B
,

Lk if xl ≤
A − ck − 2BLk

B
,

A − ck − Bxl

2B
otherwise

with l 6= k. By assuming partial adjustment to best responses, the
dynamic system can be written as follows:

(12) xk(t + 1) = xk(t) + αk · (Rk (xl(t)) − xk(t)) (k = 1, 2).

Notice that the value of R′
k is either −1

2
or 0 in the different seg-

ments, so the four possible Jacobians are
(

1 − α1 −α1

2

−α2

2
1 − α2

)

,

(

1 − α1 0
−α2

2
1 − α2

)

,

(

1 − α1 −α1

2

0 1 − α2

)

and

(

1 − α1 0
0 1 − α2

)

.

It is always assumed that 0 < αk ≤ 1, so the row norms of these
matrices are

max
{

1 − α1

2
; 1 − α2

2

}

, max
{

1 − α1; 1 − α2

2

}

, max
{

1 − α1

2
; 1 − α2

}

and max {1 − α1; 1 − α2} ,

respectively. They are all less than or equal to

max
{

1 − α1

2
; 1 − α2

2

}

< 1,
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consequently Th. 1 implies that global asymptotical stability of the equi-
librium.

(b)Assume again linear price function but quadratic costs
(

Ck(xk)=
= ckxk + dkx

2
k

)

. The payoff of firm k is now as follows:

ϕk(x1, x2) = xk(A − Bx1 − Bx2) − (ckxk + dkx
2
k).

If B + dk > 0 for k = 1, 2, then ϕk is strictly concave in xk, so the best
response of firm k is given as

Rk(xl) =



























0 if xl ≥
A − ck

B
,

Lk if xl ≤
A − ck − 2(B + dk)Lk

B
,

A − ck − Bxl

2(B + dk)
otherwise.

By assuming again partial adjustment to best responses (dynamic
equations (12)), the four possible Jacobians are
(

1 − α1 − α1B
2(B+d1)

− α2B
2(B+d2)

1 − α2

)

,

(

1 − α1 0
− α2B

2(B+d2)
1 − α2

)

,

(

1 − α1 − α1B
2(B+d1)

0 1 − α2

)

and

(

1 − α1 0
0 1 − α2

)

.

Since there is no guarantee that B + d1 > B, the row norms of the
Jacobians might be larger than unity. We will however apply Fact 14
to show the global asymptotical stability of the equilibrium. Notice first
that the first matrix satisfies the conditions of Fact 14 concerning the
matrix elements. The eigenvalues are inside the unit circle if and only if

(1 − α1)(1 − α2) −
α1α2B

2

4(B + d1)(B + d2)
< 1,

±(2 − α1 − α2) + (1 − α1)(1 − α2) −
α1α2B

2

4(B + d1)(B + d2)
+ 1 > 0.

The first inequality is clearly satisfied, and the second holds if

−2 + α1 + α2 + 1 − α1 − α2 + α1α2

(

1 − B2

4(B + d1)(B + d2)

)

+ 1 > 0

which is valid if
B2 < 4(B + d1)(B + d2).

Hence under this condition the equilibrium is globally asymptotically
stable.
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(c) Consider next the case of quadratic price function p(x1+x2) =
= A − (x1 + x2)

2 and linear costs Ck(xk) = ckxk + dk with A ≥ ck. The
profit of firm k is given as

ϕk(x1, x2) = xk

(

A − (xk + xℓ)
2
)

− (ckxk + dk),

where ℓ 6= k and we assume that L1 + L2 ≤
√

A, that is, price is always
nonnegative. Notice that

∂ϕk

∂xk

= A − (xk + xℓ)
2 − 2xk(xk + xℓ) − ck

and
∂2ϕk

∂x2
k

= −4(xk + xℓ) − 2xk < 0,

so ϕk is strictly concave in xk, and the best response is unique. Let x∗
k

be the solution of the first order condition
A − (xk + xℓ)

2 − 2xk(xk + xℓ) − ck = −3x2
k − 4xkxℓ + (A − x2

ℓ) − ck = 0,

that is,

x∗
k =

1

3

(

−2xℓ +
√

x2
ℓ + 3(A − ck)

)

.

Then the best response of firm k is given as

Rk(xℓ) =















0 if x∗
k ≤ 0,

Lk if x∗
k ≥ Lk,

x∗
k otherwise.

There are three segments, in which the derivative of Rk is either 0 or

1

3

(

−2 +
xℓ

√

x2
ℓ + 3(A − ck)

)

∈
[

−2

3
,−1

3

]

,

so
∣

∣

∣
R

′

k

∣

∣

∣
≤ 2

3
except the boundaries between the segments. The Jacobian of the dy-
namic system (12) has now the forms





1 − α1 α1R
′
1

α2R
′
2 1 − α2





where 0 < α1 ≤ 1, 0 < α2 ≤ 1 and |R′
k| ≤ 2

3
(k = 1, 2). Consequently in

all segments the row norm of the Jacobian is below
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max

{

1 − α1 +
2α1

3
, 1 − α2 +

2α2

3

}

= max
{

1 − α1

3
, 1 − α2

3

}

which is less than unity implying the global asymptotical stability of the
equilibrium.

(d) Let’s turn our attention to general concave duopolies. Let p be
the price function and Ck the cost function of firm k. It is assumed that
these functions are twice continuously differentiable and

a) p′ < 0;

b) p′ + xkp
′′ ≤ 0;

c) p′ − C ′′
k < 0

for all feasible values of the relevant variables. It is known from oligopoly
theory (see, for example, Bischi et al., 2010) that in the case of finite
capacity limits the best response of firm k is as follows:

Rk(xl) =















0 if p(xl) − C ′
k(0) ≤ 0,

Lk if p(xl + Lk) + Lkp
′(xl + Lk) − C ′

k(Lk) ≥ 0,

x∗
k otherwise

where x∗
k is the unique solution of the monotonic equation

p(xl + xk) + xkp
′(xl + xk) − C ′

k(xk) = 0

inside interval (0, Lk). By implicit differentiation it is easy to see that in
the case of interior best response

−1 < R′
k(xl) ≤ 0

and in the first two cases R′
k(xl) ≡ 0. By assuming dynamic equations

(12), the Jacobian has again four possibilities:
(

1 − α1 α1R
′
1

α2R
′
2 1 − α2

)

,

(

1 − α1 0
α2R

′
2 1 − α2

)

,

(

1 − α1 α1R
′
1

0 1 − α2

)

and

(

1 − α1 0
0 1 − α2

)

.

The feasible region and all subregions are compact. Therefore there are
constants r1, r2 such that

−1 < −r1 ≤ R′
1(x2) ≤ 0 and − 1 < −r2 ≤ R′

2(x1) ≤ 0

everywhere in the feasible region except on the boundaries between the
subregions. The row norms of the Jacobian matrices in all regions are
less than or equal to

max {1 − α1 + r1α1; 1 − α2 + r2α2} < 1

implying the global asymptotical stability of the equilibrium.
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