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Abstract: The object of the present paper is to introduce a kind of non-
flat semi-Riemannian manifolds called quasi-generalized recurrent manifolds,
to study a lot of their several geometric properties and to furnish also a proper
example.

1. Introduction

Let (Mn, g) be an n-dimensional connected semi-Riemannian mani-
fold with Levi-Civita connection ∇. Then M is said to be locally sym-
metric due to Cartan if its curvature tensor R satisfies ∇R = 0. The
notion of locally symmetric manifolds has been weakened by many au-
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thors in several ways to a different extent such as recurrent manifolds
by A. G. Walker ([15]), 2-recurrent manifolds by A. Lichnerowicz ([9]),
concircular recurrent manifolds by T. Miyazawa ([10]), weakly symmetric
manifolds by L. Tamássy and T. Q. Binh ([13]), conformally recurrent
manifolds ([1]), projectively recurrent manifolds ([2]), generalized recur-
rent manifolds ([3], [4]).

Again Mn is said to be Ricci symmetric if its Ricci tensor S of type
(0, 2) satisfies ∇S = 0. The notion of Ricci symmetry has also been
weakened by many authors such as Ricci recurrent manifolds by E. M.
Patterson ([11]), weakly Ricci symmetric manifolds by L. Tamássy and
T. Q. Binh ([14]), generalized Ricci recurrent manifolds ([5]).

We denote by ∇iT the covariant differential of the ith order, i ≥ 1,
of a (0, k) tensor field T , k ≥ 1, defined on a semi-Riemannian manifold
(Mn, g) with Levi-Civita connection ∇. The tensor field T is said to be
recurrent, respectively, 2-recurrent ([12]), if the following condition holds
on M

(∇T )(X1, . . . , Xk;X)T (Y1, . . . , Yk) =(1.1)

= (∇T )(Y1, . . . , Yk;X)T (X1, . . . , Xk),

respectively,

(∇2T )(X1, . . . , Xk;X, Y )T (Y1, . . . , Yk) =(1.2)

= (∇T 2)(Y1, . . . , Yk;X, Y )T (X1, . . . , Xk),

where X, Y , X1, Y1, . . . , Xk, Yk are vector fields on M . From (1.1),
respectively (1.2), it follows that at a point x ∈M if the tensor T is non-
zero, then there exists a unique 1-form φ, respectively, a (0, 2)-tensor ψ,
defined on a neighbourhood U of x, such that

∇T = T ⊗ φ, φ = d
(

log ‖T‖
)

,

respectively,

∇2T = T ⊗ ψ,

holds on U , where ‖T‖ denotes the norm of T , ‖T‖2 = g(T, T ).
A non-flat connected semi-Riemannian manifold (Mn, g) (n ≥ 2), is

said to be recurrent ([15]) if its curvature tensor R of type (0, 4) satisfies
the condition ∇R = A⊗R where A is a non-zero 1-form. Such a manifold
is denoted by Kn. Let UR = {x ∈ M : ∇R 6= A ⊗ R at x}. Then the
manifold (Mn, g) is said to be generalized recurrent ([4]) if on UR ⊂ M ,
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we have ∇R = A⊗ R + B ⊗G, where B is an 1-form on UR and G is a
tensor of type (0, 4) given by

(1.3) G(X, Y, Z, U) = g(X,U)g(Y, Z) − g(X,Z)g(Y, U)

for all X, Y, Z, U ∈ χ(M), χ(M) being the Lie algebra of smooth vector
fields on M . Such a manifold is denoted by GKn. It is clear that the
1-form B is non-zero at every point on UR. It is also clear that every Kn

is GKn but not conversely.
The object of the present paper is to introduce a generalized class

of recurrent manifolds called quasi-generalized recurrent manifolds.
A non-flat semi-Riemannian manifold (Mn, g) (n > 2) [this con-

dition is assumed throughout the paper] is said to be quasi-generalized

recurrent manifold if on UR ⊂M the condition

(1.4) ∇R = A⊗R +B ⊗ [G+ g ∧H ]

holds, where A, B are two non-zero 1-forms such that A(.) = g(., α),
B(.) = g(., β), H = η ⊗ η, η being a non-zero 1-form defined by η(.) =
= g(., ρ) such that g(ρ, ρ) = ǫ; and the Kulkarni–Nomizu product E ∧ F
of two (0, 2) tensors E and F is defined by

(E ∧ F )(X1, X2, X3, X4) =

= E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)−

− E(X1, X3)F (X2, X4) − E(X2, X4)F (X1, X3),

Xi ∈ χ(M), i = 1, 2, 3, 4. Such a manifold is denoted by QGKn.
A semi-Riemannian manifold (Mn, g), (n > 2), is said to be Ricci

recurrent ([11]) if its Ricci tensor is not identically zero and satisfies
∇S = A ⊗ S, where A is a non-zero 1-form. Such a kind of manifold
is denoted by RKn. Let US = {x ∈ M : ∇S 6= A ⊗ S at x}. Then
the manifold (Mn, g) is said to be generalized Ricci recurrent ([5]) if on
US ⊂M , the condition ∇S = A⊗ S +B⊗ g holds where B is an 1-form
on US. It is clear that the 1-form B is non-zero at every point of US.
Such a manifold is denoted by GRKn. Extending the notion of GRKn,
we introduce the notion of quasi-generalized Ricci recurrent manifolds.

A semi-Riemannian manifold (Mn, g) is said to be quasi-generalized

Ricci recurrent (briefly, QGRKn) if on US ⊂M , the condition

(1.5) ∇S = A⊗ S +B ⊗ [g + η ⊗ η]
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holds, where B and η are two 1-forms on US. It is clear that the 1-forms
B and η are non-zero at every point of US.

A semi-Riemannian manifold (Mn, g) (n ≥ 3), is said to be quasi-

generalized 2-Ricci recurrent if its Ricci tensor S is not identically zero
and satisfies the following:

(1.6) (∇∇S) = K ⊗ S +N1 ⊗ g + I ⊗H,

where K, N1, I are tensors of type (0, 2) and H = η ⊗ η.
A projective transformation on a semi-Riemannian manifold is a

transformation under which geodesics transform into geodesics. The pro-
jective curvature tensor P of type (0, 4) on a semi-Riemannian manifold
(Mn, g) is defined by ([6], [16])

(1.7) P = R−
1

n− 1
D,

where D is a tensor of type (0, 4) and is given by

D(X, Y, Z, U) = g(X,U)S(Y, Z) − g(Y, U)S(X,Z)

∀ X, Y , Z, U ∈ χ(M).
A semi-Riemannian manifold (Mn, g) (n > 2), is said to be projec-

tively recurrent ([2]) if its projective curvature tensor P is not identically
zero and satisfies

∇P = A⊗ P,

where A is a non-zero 1-form.
As a special subgroup of the conformal transformation group, Y.

Ishii ([8]) introduced the notion of the conharmonic transformation un-
der which a harmonic function transforms into a harmonic function. The
conharmonic curvature tensor C of type (0, 4) on a Riemannian mani-
fold (Mn, g) (n > 3) (this condition is assumed as for n = 3 the Weyl
conformal tensor vanishes) is given by

(1.8) C = R−
1

n− 2
g ∧ S.

A semi-Riemannian manifold (Mn, g) (n > 3), is called a generalized
conharmonically recurrent if its conharmonic curvature tensor C satisfies
the following

∇C = A⊗ C +B ⊗G,
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where A and B are non-zero 1-forms, and is denoted by GCKn.
A semi-Riemannian manifold (Mn, g) (n > 3), is said to be confor-

mally recurrent ([1]) if its conformal curvature tensor C is non-vanishing
and satisfies the following:

(1.9) ∇C = A⊗ C,

where A is a non-zero 1-form.
Section 2 deals with some geometric properties of QGKn. An n-

dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a
smooth symmetric tensor field g of type (0, 2) such that for each point
p ∈M , the tensor gp : TpM×TpM → R is a non-degenerate inner product
of signature (+,+,+, · · · ,+,−), where TpM denotes the tangent vector
space of M at p and R is the real number space. A spacetime is a
connected 4-dimensional Lorentzian manifold. The existence of QGK4 is
ensured by a proper example and it is shown that a Lorentzian QGK4 is
a Gödel cosmological model.

2. Some geometric properties of QGKn

Theorem 2.1. In a semi-Riemannian manifold (Mn, g) (n > 2), the

following results hold:

(i) A QGKn is a QGRKn.

(ii) In a QGKn the relation

(2.1) rA+ (n−1)(n+ 2ǫ)B = 2
[

A(Q.) + (n−1+ǫ)B + (n− 2)B(ρ)η
]

holds, where r is the scalar curvature and Q being the symmetric endo-

morphism corresponding to the Ricci tensor S.

(iii) In a QGKn with non-zero constant scalar curvature the asso-

ciated 1-forms A and B are related by rA + (n − 1)(n + 2ǫ)B = 0, and

the relation A(QX) + (n− 1 + ǫ)B(X) + (n− 2)B(ρ)η(X) = 0 holds for

all X.

(iv) If in a QGKn with non-zero constant scalar curvature, the

vector field ρ is parallel and the vector fields α and β associated to the

1-forms A and B respectively are codirectional, then A and B are closed.

(v) If a QGKn is projectively recurrent, then it is a GKn.

(vi) A QGKn is a GCKn.
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(vii) A GCKn satisfying the condition

(2.2) ∇S = A⊗ S + (n− 2)B ⊗H, H = η ⊗ η, is a QGKn.

(viii) A QGKn (n > 3) is a conformally recurent manifold.

(ix) If in a QGKn, the vector field ρ is parallel and the vector fields

α, β are codirectional, then it is a quasi-generalized 2-Ricci recurrent.

Proof of (i). Taking an orthogonal frame field and contracting suitably,
(1.4) yields

(2.3) ∇S = A⊗ S +B1 ⊗ g +B2η ⊗ η,

where B1 and B2 are 1-forms given by B1 = (n − 1 + ǫ)B and B2 =
= (n − 2)B of which B1 and B2 are non-zero as B is non-zero. This
proves (i).

Proof of (ii). From (2.3) it follows that

dr(X) = rA(X) + (n− 1)(n+ 2ǫ)B(X), and(2.4)

dr(X) = 2
[

A(QX) + (n− 1 + ǫ)B(X) + (n− 2)B(ρ)η(X)
]

,(2.5)

r being the scalar curvature of the manifold. By virtue of (2.4) and (2.5),
we get (2.1). This proves (ii).

Proof of (iii). If r is a non-zero constant, then (2.4) and (2.5) implies
that

rA(X) + (n− 1)(n + 2ǫ)B(X) = 0, and(2.6)

A(QX) + (n− 1 + ǫ)B(X) + (n− 2)B(ρ)η(X) = 0,(2.7)

which proves (iii).

Proof of (iv). Differentiating (1.4) covariantly, and then using (1.4) we
obtain

(∇Y ∇XR)(Z,W,U, V ) =

(2.8)

=
[

(∇YA)(X) + A(X)A(Y )
]

R(Z,W,U, V )+

+ A(X)B(Y )
[

g(Z, V )g(W,U)−g(Z,U)g(W,V ) + g(Z, V )η(W )η(U)+

+ g(W,U)η(Z)η(V ) − g(Z,U)η(W )η(V ) − g(W,V )η(Z)η(U)
]

+

+ (∇YB)(X)
[

g(Z, V )g(W,U)−g(Z,U)g(W,V ) + g(Z, V )η(W )η(U)+
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+ g(W,U)η(Z)η(V ) − g(Z,U)η(W )η(V ) − g(W,V )η(Z)η(U)
]

+

+B(X)
[

g(Z, V )(∇Y η)(W )η(U) + g(Z, V )(∇Y η)(U)η(W )+

+ g(W,U)(∇Y η)(Z)η(V ) + g(W,U)η(Z)(∇Y η)(V )−

− {g(Z,U)(∇Y η)(W )η(V ) + g(Z,U)(∇Y η)(V )η(W )+

+ g(W,V )(∇Y η)(Z)η(U) + g(W,V )(∇Y η)(U)η(Z)}
]

.

Interchanging X and Y and then subtracting the result, we obtain

(∇Y ∇XR)(Z,W,U, V ) − (∇X∇YR)(Z,W,U, V ) =(2.9)

= [(∇YA)(X) − (∇XA)(Y )]R(Z,W,U, V )+

+ [(∇YB)(X) − (∇XB)(Y )][G+ g ∧H ](Z,W,U, V )+

+ [B(Y )A(X) − A(Y )B(X)][G+ g ∧H ](Z,W,U, V )+

+B(X)
[

g(Z, V )(∇Y η)(W )η(U) + g(Z, V )(∇Y η)(U)η(W )+

+ g(W,U)(∇Y η)(Z)η(V ) + g(W,U)(∇Y η)(V )η(Z)−

− {g(Z,U)(∇Y η)(W )η(V ) + g(Z,U)(∇Y η)(V )η(W )+

+ g(W,V )(∇Y η)(Z)η(U) + g(W,V )(∇Y η)(U)η(Z)}
]

−

−B(Y )
[

g(Z, V )(∇Xη)(W )η(U) + g(Z, V )(∇Xη)(U)η(W )+

+ g(W,U)(∇Xη)(Z)η(V ) + g(W,U)(∇Xη)(V )η(Z)−

− {g(Z,U)(∇Xη)(W )η(V ) + g(Z,U)(∇Xη)(V )η(W )+

+ g(W,V )(∇Xη)(Z)η(U) + g(W,V )(∇Xη)(U)η(Z)}
]

,

where H = η ⊗ η.
We suppose that α, β are codirectional and ρ is a parallel vector

field. Then B(X)A(Y )−A(X)B(Y ) = 0 and (∇Xη)(Z) = 0 for all X, Y .
Hence (2.9) takes the form

(∇Y ∇XR)(Z,W,U, V ) − (∇X∇YR)(Z,W,U, V ) =(2.10)

=
[

(∇YA)(X) − (∇XA)(Y )
]

R(Z,W,U, V )+

+
[

(∇YB)(X) − (∇XB)(Y )
]

[G + g ∧H ](Z,W,U, V ).

From Walker’s lemma
(

[15], equation (26)
)

we have

(∇X∇YR)(Z,W,U, V ) − (∇Y ∇XR)(Z,W,U, V )+(2.11)

+ (∇Z∇WR)(X, Y, U, V ) − (∇W∇ZR)(X, Y, U, V )+

+ (∇U∇VR)(Z,W,X, Y ) − (∇V ∇UR)(Z,W,X, Y ) = 0.
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By virtue of (2.10), (2.11) yields

M(X, Y )R(Z,W,U, V )+L(X, Y )(G+g ∧H)(Z,W,U, V )+(2.12)

+M(Z,W )R(X, Y, U, V )+L(Z,W )(G+g ∧H)(X, Y, U, V )+

+M(U, V )R(Z,W,X, Y )+L(U, V )(G+g∧H)(Z,W,X, Y )= 0,

where M(X, Y ) = (∇XA)(Y )− (∇YA)(X), and L(X, Y ) =(∇XB)(Y )−
−(∇YB)(X).

If the scalar curvature is a non-zero constant, then we have the
relation (2.6). Using (2.6) in (2.12) we obtain

M(X, Y )N(Z,W,U, V ) +M(Z,W )N(X, Y, U, V )+(2.13)

+M(U, V )N(Z,W,X, Y ) = 0,

where N = R− r
(n−1)(n+2ǫ)

(G+ g ∧H), from which it follows that N is a

symmetric (0, 4) tensor with respect to the first pair of two indices and
the last pair of two indices. Consequently by virtue of Walker’s lemma
(

[15], eq. (27)
)

, we obtain

M(X, Y ) = L(X, Y ) = 0,

for all X, Y . And hence

(∇XA)(Y ) − (∇YA)(X) = 0,

(∇XB)(Y ) − (∇YB)(X) = 0.

Therefore dA(X, Y ) = 0, dB(X, Y ) = 0. This proves (iv).

Remark 2.1. If ρ is a concurrent vector field, then the result is also
true.

Proof of (v). From (2.3), (1.4) and (1.7) we obtain

(2.14) (∇WP )(X, Y, Z, U) =

=A(W )P (X, Y, Z, U)−
B(W )ǫ

n− 1

[

g(X,U)g(Y, Z)−g(X,Z)g(Y, U)
]

+

+
B(W )

n− 1

[

g(X,U)η(Y )η(Z) − g(Y, U)η(X)η(Z)
]

+

+B(W )
[

g(Y, Z)η(X)η(U) − g(X,Z)η(Y )η(U)
]

.

Suppose that the manifold under consideration is projectively recurrent.
Then (2.14) yields

−
ǫ

n− 1

[

g(X,U)g(Y, Z) − g(X,Z)g(Y, U)
]

+(2.15)
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+
1

n− 1

[

g(X,U)η(Y )η(Z) − g(Y, U)η(X)η(Z)
]

+

+
[

g(Y, Z)η(X)η(U) − g(X,Z)η(Y )η(U)
]

= 0.

Taking contraction over Y and Z, we obtain

(2.16) ǫg(X,U) = nη(X)η(Y ).

Using (2.16) in (1.4) we get
∇R = A⊗R +B1 ⊗G,

where B1 = n+2ǫ
n
B is an 1-form. This proves (v).

Proof of (vi). From (2.3), (1.4) and (1.8) we obtain

(∇WC)(X, Y, Z, U) =(2.17)

= A(W )C(X, Y, Z, U)+

+B1(W )
[

g(X,U)g(Y, Z) − g(X,Z)g(Y, U)
]

,

where B1 = −n+2ǫ
n−2

B is an 1-form. This proves (vi).

Proof of (vii). If the manifold is GCKn, then we have

∇C = A⊗ C +B ⊗G,

which yields, by virtue of (1.8), that

(2.18) ∇R −
1

n− 2

(

g ∧ (∇S)
)

= A⊗

(

R −
1

n− 2
g ∧ S

)

+B ⊗G.

By virtue of (2.2), (2.18) takes the form

∇R = A⊗ R +B ⊗ [G+ g ∧H ].

This proves (vii).

Proof of (viii). The conformal curvature tensor C of type (0, 4) of a
semi-Riemannian manifold (Mn, g) (n > 3), is given by

(2.19) C = R−
1

n− 2
(g ∧ S) +

r

(n− 1)(n− 2)
G,

where r is the scalar curvature of the manifold and G is defined in (1.3).
From (2.3), (2.4), (1.4) and (2.19) we obtain (1.9), which proves

(viii).
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Proof of (ix). From (2.3), it follows that

(∇Y ∇XS)(Z,W ) =(2.20)

=
[

(∇YA)(X) + A(X)A(Y )
]

S(Z,W )+

+ A(X)B(Y )
[

(n− 1 + ǫ)g(Z,W ) + (n− 2)η(Z)η(W )
]

+

+ (∇YB)(X)
[

(n− 1 + ǫ)g(Z,W ) + (n− 2)η(Z)η(W )
]

+

+ (n− 2)B(X)
[

(∇Y η)(Z)η(W ) + (∇Y η)(W )η(Z)
]

.

Interchanging X, Y and subtracting the result, we obtain

(∇X∇Y S)(Z,W )− (∇Y ∇XS)(Z,W ) =(2.21)

= M(X, Y )S(Z,W ) +
[

A(Y )B(X) − A(X)B(Y )+

+ L(X, Y )
][

(n− 1 + ǫ)g(Z,W ) + (n− 2)η(Z)η(W )
]

+

+ (n− 2)
[

B(Y ){(∇Xη)(Z)η(W ) + (∇Xη)(W )η(Z)}−

− B(X){(∇Y η)(Z)η(W ) + (∇Y η)(W )η(Z)}
]

.

If A(Y )B(X)−A(X)B(Y ) = 0 and ρ is a parallel vector field, then (2.21)
takes the form

(∇X∇Y S)(Z,W ) − (∇Y ∇XS)(Z,W ) =(2.22)

= M(X, Y )S(Z,W ) + (n− 1 + ǫ)L(X, Y )g(Z,W )+

+ (n− 2)L(X, Y )η(Z)η(W ).

In view of (2.22) and (2.3) we obtain

(R(X, Y ).S)(Z,W ) = γ(X, Y )g(Z,W )+(2.23)

+ δ(X, Y )S(Z,W ) + σ(X, Y )η(Z)η(W ),

where
γ(X, Y ) = (n− 1 + ǫ) [XB(Y ) − Y B(X) − 2B([X, Y ])] ,

δ(X, Y ) = XA(Y ) − Y A(X) − 2A([X, Y ]) and

σ(X, Y ) = (n− 2) [XB(Y ) − Y B(X) − 2B([X, Y ])] .

The relation (2.23) implies that the manifold is a quasi-generalized
2-Ricci recurrent. This proves (ix).
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3. A proper example of QGK4

In this section the existence of QGK4 is ensured by a proper exam-
ple.

Example 3.1. Let M be an open connected subset of R
4. We consider

the semi-Riemannian manifold M equipped with the Gödel metric ([7])
given by

ds2 = gijdx
idxj = a2

[

−(dx1)2 +
1

2
e2x1

(dx2)2 − (dx3)2+(3.1)

+ (dx4)2 + 2ex1

dx2dx4
]

(i, j = 1, 2, 3, 4),

where a is a positive number and x1, . . . , x4 are the standard coordinates
of R

4.
The only non-vanishing components of the Christoffel symbols of

second kind, the curvature tensor and their covariant derivatives are

Γ1
22 =

1

2
e2x1

, Γ4
12 = Γ1

42 =
1

2
ex1

, Γ4
41 = 1, Γ2

41 = −e−x1

,

(3.2)











R4141 = −
1

2
a2, R4112 =

1

2
a2ex1

, R4242 = −
1

4
a2e2x1

,

R1212 = −
3

4
a2e2x1

, R1221, 1 = a2e2x1

, R4112, 1 =
1

2
a2ex1

,

and the components which can be obtained from these by the symmetry
property of R. The scalar curvature of the manifold is 1

a2 which is non-
vanishing and constant. We shall now show that M is a QGK4, i.e., it
satisfies the defining condition (1.4). In terms of local coordinates, we
consider the components of the associated 1-forms as follows:

(3.3)











































Ai(∂i) = Ai =

{

3
2

for i = 1,

0 otherwise,

Bi(∂i) = Bi =

{

1
a2 for i = 1,

0 otherwise,

ηi(∂i) = ηi =

{√

3
2
a for i = 1,

0 otherwise,

where ∂i = ∂
∂xi at any point x ∈M .



262 A. A. Shaikh and I. Roy

In terms of local coordinates, the defining equation (1.4) of QGKn

can be written as

Rhijk, l =AlRhijk+Bl

[

ghkgij−ghjgik+ghkηiηj+gijηhηk−(3.4)

−ghjηiηk−gikηhηj

]

, i, j, h, k, l=1, 2, . . . , n.

By virtue of (3.2) and (3.3), it follows that (3.4) holds for all i, j, h, k, l =
= 1, 2, 3, 4. Therefore, M is a QGK4. Thus we can state the following:

Theorem 3.1. Let (M4, g) be a semi-Riemannian manifold equipped

with the metric given by (3.1). Then (M4, g) is a QGK4 with non-

vanishing scalar curvature which is neither K4 nor GK4.
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