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Abstract: We employ the notion of weighted sharing of sets to deal with the
problem of Unique Range Sets for meromorphic functions and obtain a result
which improve and supplement all the results obtained earlier in this aspect.

1. Introduction, definitions and results

In this paper by meromorphic functions we will always mean mero-
morphic functions in the complex plane. We shall use the standard no-
tations of value distribution theory:

T (r, f), m(r, f), N(r,∞; f), N(r,∞; f), . . .

(see [6]). It will be convenient to let E denote any set of positive real num-
bers of finite linear measure, not necessarily the same at each occurrence.
We denote by T (r) the maximum of T (r, f) and T (r, g). The notation
S(r) denotes any quantity satisfying S(r) = o(T (r)) as (r −→ ∞, r 6∈ E).

For any constant a, we define

Θ(a; f) = 1 − lim sup
r−→∞

N(r, a; f)

T (r, f)
.
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If for some a ∈ C ∪ {∞}, f and g have the same set of a-points
with same multiplicities then we say that f and g share the value a CM
(counting multiplicities). If we do not take the multiplicities into account,
f and g are said to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of C ∪ {∞} and Ef (S) =
=

⋃

a∈S{z : f(z) − a = 0}, where each zero is counted according to
its multiplicity. If we do not count the multiplicity the set Ef (S) =
=

⋃

a∈S{z : f(z)−a = 0} is denoted by Ef (S). If Ef (S) = Eg(S) we say

that f and g share the set S CM. On the other hand if Ef(S) = Eg(S),
we say that f and g share the set S IM.

As a simple application of his own value distribution theory, Nevan-
linna proved that a non-constant meromorphic function is uniquely de-
termined by the inverse image of 5 distinct values (including the infinity),
IM. Thus, the study of the relationship between two meromorphic func-
tions via the preimage sets of several distinct values in the range has a
long history. Inspired by the Nevanlinna’s four and five value theorems,
in 1970s F. Gross and C.C. Yang started to study the similar but more
general questions of two functions that share sets of distinct elements
instead of values. For instance, they proved that if f and g are two non-
constant entire functions and S1, S2 and S3 are three distinct finite sets
such that f−1(Si) = g−1(Si) for i = 1, 2, 3, then f ≡ g. In 1977 F. Gross
proposed the following question in [6]:

“Is there a finite set S so that an entire function is determined
uniquely by the pre-image of the set S, CM?”

We recall that a set S is called a unique range set for meromorphic
functions (URSM) if for any pair of non-constant meromorphic functions
f and g, the condition Ef(S) = Eg(S) implies f ≡ g. Similarly a set
S is called a unique range set for entire functions (URSE) if for any
pair of non-constant entire functions f and g, the condition Ef (S) =
= Eg(S) implies f ≡ g. We will call any set S ⊂ C a unique range set
for meromorphic functions ignoring multiplicities(URSM-IM) for which
Ef (S) = Eg(S) implies f ≡ g for any pair of non-constant meromorphic
functions.

In the last couple of years the concept of URSE, URSM and URSM-
IM have gradually increased among the researchers. The study is focused
mainly on two problems: finding different URSM with smallest cardinal-
ity and at the same time characterizing the URSM (see [1]–[4], [10]–[19]).

A recent advent in the uniqueness literature is the notion of weighted
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sharing instead of sharing IM/CM which implies a gradual change from
sharing IM to sharing CM. This notion of weighted sharing has been
introduced by I. Lahiri around 2001 in [8, 9]. Below we are giving the
definition.

Definition 1.1 [8, 9]. Let k be a nonnegative integer or infinity. For
a ∈ C∪{∞} we denote by Ek(a; f) the set of all a-points of f , where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times
if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the value a with
weight k.

We write f , g share (a, k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer
p, 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and
only if f, g share (a, 0) or (a,∞) respectively.

Definition 1.2 [8]. Let S be a set of distinct elements of C ∪ {∞} and
k be a nonnegative integer or ∞. Let Ef (S, k) =

⋃

a∈S Ek(a; f).

Clearly Ef (S) = Ef(S,∞) and Ef(S) = Ef (S, 0).

In 2003 Y. Xu [16] proved the following theorem which is the im-
provement of Fang and Hua [2].

Theorem A [16]. If f and g are two non-constant meromorphic func-

tions and Θ(∞; f) > 3
4
, Θ(∞; g) > 3

4
, then there exists a set with seven

elements such that Ef (S,∞) = Eg(S,∞) implies f ≡ g.

Dealing with the question of Yi raised in [19] Lahiri and Banerjee
exhibited a unique range set S with higher cardinalities than Y. Xu [16]
but significantly weaken the condition over the ramification indexes on
f and g. They obtained the following result.

Theorem B [10]. Let

S = {z : zn + azn−1 + b = 0},

where n (≥ 9) be an integer and a, b be two nonzero constants such that

zn + azn−1 + b = 0 has no multiple root. If Ef(S, 2) = Eg(S, 2) and

Θ(∞; f) + Θ(∞; g) > 4
n−1

then f ≡ g.

In [1] and [3] Bartels and Fang-Guo both independently proved the
existence of a URSM-IM with 17 elements.

In this paper we shall continue the investigations and provide better
results from those mentioned earlier and at the same time supplement
them.

The following theorem is the main result of the paper.
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Theorem 1.1. Let

S =

{

z :
(n − 1)(n − 2)

4
zn −

n(n − 2)

2
zn−1 +

n(n − 1)

4
zn−2 − 1 = 0

}

,

where n (≥ 6) is an integer. Suppose that f and g are two non-constant

meromorphic functions satisfying Ef (S, m) = Eg(S, m). If

(i) m ≥ 2 and Θf + Θg + min{Θ(1; f), Θ(1; g) > 10 − n,

(ii) or if m = 1 and Θf +Θg +min{Θ(1; f), Θ(1; g)}+ 1
2
min{Θ(0; f)+

+Θ(∞; f), Θ(0; g) + Θ(∞; g)} > 11 − n,

(iii) or if m = 0 and Θf +Θg +Θ(0; f)+Θ(∞; f)+Θ(0; g)+Θ(∞; g)+
+ min{Θ(0; f) + Θ(1; f) + Θ(∞; f), Θ(0; g) + Θ(1; g) + Θ(∞; g) >
> 16 − n,

then f ≡ g, where Θf = 2Θ(0; f) + 2Θ(∞; f) + Θ(1; f) and Θg can be

similarly defined.

Corollary 1.1. In Th. 1.1 when m = 2 and n ≥ 7 and n ≥ 9 it is

the improvements of the results of Y. Xu [16] and Lahiri–Banerjee [10]
respectively. On the other hand when m = 0 and n ≥ 17 it is the im-

provement of the results of Bartel’s [1] as well as Fang-Guo [3].

We have already assumed that the readers are familiar with the
standard definitions and notations of the value distribution theory as
those are available in [6]. We are still going to explain some notations as
these are used in the paper.

Definition 1.3 [7]. For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1)
the counting function of simple a points of f . For a positive integer m
we denote by N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of
those a points of f whose multiplicities are not greater (less) than m
where each a point is counted according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in
counting the a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and
N(r, a; f |> m) are defined analogously.

Definition 1.4 [9]. We denote by N2(r, a; f)=N(r, a; f)+N(r, a; f |≥2).

Definition 1.5. Let f and g be two non-constant meromorphic functions
such that f and g share (a, 0). Let z0 be an a-point of f with multiplic-
ity p, an a-point of g with multiplicity q. We denote by NL(r, a; f) the
reduced counting function of those a-points of f and g where p > q,
by N

1)
E (r, a; f) the counting function of those a-points of f and g where
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p = q = 1, by N
(2

E (r, a; f) the reduced counting function of those a-points
of f and g where p = q ≥ 2. In the same way we can define NL(r, a; g),

N
1)
E (r, a; g), N

(2

E (r, a; g). In a similar manner we can define NL(r, a; f)
and NL(r, a; g) for a ∈ C ∪ {∞}. When f and g share (a, m), m ≥ 1

then N
1)
E (r, a; f) = N(r, a; f |= 1).

Definition 1.6 [8, 9]. Let f , g share (a, 0). We denote by N ∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities
differ from the multiplicities of the corresponding a-points of g.

Clearly

N ∗(r, a; f, g)=N∗(r, a; g, f) and N ∗(r, a; f, g)=NL(r, a; f)+NL(r, a; g).

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel. Let f and g be two non-constant meromorphic function and for
an integer n ≥ 3

F =
(n − 1)(n − 2)

4
fn −

n(n − 2)

2
fn−1 +

n(n − 1)

4
fn−2,(2.1)

G =
(n − 1)(n − 2)

4
gn −

n(n − 2)

2
gn−1 +

n(n − 1)

4
gn−2.(2.2)

Henceforth we shall denote by H the following functions

H =

(

F
′′

F ′
−

2F ′

F − 1

)

−

(

G
′′

G′
−

2G′

G − 1

)

.

Lemma 2.1 [20]. If F , G are two non-constant meromorphic functions
such that they share (1,0) and H 6≡ 0 then

N
1)
E (r, 1; F |= 1) = N

1)
E (r, 1; G |= 1) ≤ N(r, H) + S(r, F ) + S(r, G).

Lemma 2.2. Let F , G be given by (2.1) and (2.2). If H 6≡ 0 then

N(r, H) ≤ N(r, 0; f) + N(r, 0; g) + N ∗(r, 1; F, G) + N(r,∞; f)+

+N(r,∞; g)+N(r, 1; f)+N(r, 1; g)+N0(r, 0; f ′)+N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′

which are not the zeros of f(f − 1) and F − 1, N0(r, 0; g′) is similarly

defined.

Proof. First we note that F ′ = n(n − 1)(n − 2)fn−3(f − 1)2f ′/4 and
G′ = n(n− 1)(n− 2)gn−3(g − 1)2g′/4. We can easily verify that possible
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poles of H occur at (i) zeros (1-points) of f and g, (ii) poles of f and
g, (iii) those 1-points of F and G whose multiplicities are distinct from
the multiplicities of the corresponding 1-points of G and F respectively,
(iv) zeros of f ′ which are not the zeros of f(f − 1) and F − 1, (v) zeros
of which are not the zeros of g(g − 1) and G − 1.

Since H has only simple poles, clearly the lemma follows from above
explanations. ♦

Lemma 2.3 [11]. If N(r, 0; f (k) | f 6= 0) denotes the counting function

of those zeros of f (k) which are not the zeros of f , where a zero of f (k) is

counted according to its multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f)+

+ N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.4 [15]. Let f be a non-constant meromorphic function and

P (f) = a0 +a1f +a2f
2 + . . .+anfn, where a0, a1, a2 . . . , an are constants

and an 6= 0. Then T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.5. Let f , g be two non-constant meromorphic functions and

suppose α1 and α2 are the roots of the equation
(n−1)(n−2)

4
z2 − n(n−2)

2
z+

+n(n−1)
4

= 0. Then

(n − 1)2(n − 2)2fn−2(f − α1)(f − α2)g
n−2(g − α1)(g − α2) 6≡ 16

and n (≥ 5) is an integer.

Proof. If possible, let us suppose

(2.3) (n − 1)2(n − 2)2fn−2(f − α1)(f − α2)g
n−2(g − α1)(g − α2) ≡ 16.

Let z0 be a zero of f with multiplicity p. Then z0 is a pole of g
with multiplicity q such that

(n − 2)p = (n − 2)q + 2q = nq.(2.4)

From (2.4) we see that 2q = (n− 2)(p− q) ≥ n− 2 and so p = n
n−2

q ≥ n
2
.

Let z0 be a zero of f − αi i = 1, 2 with multiplicity p. Then z0 is a
pole of g with multiplicity q such that p = (n − 2)q + 2q = nq ≥ n.

Since the poles of f are the zeros of g and g − αi i = 1, 2, we get

N(r,∞; f) ≤ N(r, 0; g) + N(r, α1; g) + N(r, α2; g) ≤

≤
2

n
N(r, 0; g) +

1

n
N(r, α1; g) +

1

n
N(r, α2; g) ≤

≤
4

n
T (r, g).
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By the second fundamental theorem we get

2T (r, f) ≤ N(r, 0; f)+N(r, α1; f)+N(r, α2; f)+N(r,∞; f)+S(r, f) ≤

≤
2

n
N(r, 0; f) +

1

n
N(r, α1; f) +

1

n
N(r, α2; f)+

+
4

n
T (r, g) + S(r, f) ≤

≤
4

n
T (r, f) +

4

n
T (r, g) + S(r, f).

i.e.,

(

2 −
4

n

)

T (r, f) ≤
4

n
T (r, g) + S(r, f).(2.5)

Similarly

(

2 −
4

n

)

T (r, g) ≤
4

n
T (r, f) + S(r, g)(2.6)

Adding (2.5) and (2.6) we get
(

2 −
8

n

)

{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction for n ≥ 5. This proves the lemma. ♦

Lemma 2.6 [3]. Let f , g be two non-constant meromorphic functions

and suppose n (≥ 6) is an integer. If

(n − 1)(n − 2)

2
fn − n(n − 2)fn−1 +

n(n − 1)

2
fn−2 ≡

≡
(n − 1)(n − 2)

2
gn − n(n − 2)gn−1 +

n(n − 1)

2
gn−2,

then f ≡ g.

Lemma 2.7. Let F , G be given by (2.1), where n ≥ 7 is an integer.

Also let S be given as in Th. 1.1. If Ef (S, 0) = Eg(S, 0) then S(r, f) =
= S(r, g).

Proof. Since Ef (S, 0) = Eg(S, 0), it follows that F and G share (1, 0).
We first note that the polynomial

p(z) =
(n − 1)(n − 2)

4
zn −

n(n − 2)

2
zn−1 +

n(n − 1)

4
zn−2 − 1

has only simple zeros. In fact

p′(z) =
n(n − 1)(n − 2)

4
zn−3(z − 1)2.
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Also we note that p(0), p(1) 6= 0. Thus all the zeros of p(z) are simple
and we denote them by wj, j = 1, 2, . . . n. Since F , G share (1, 0) from
the second fundamental theorem we have

(n − 2)T (r, g) ≤
n

∑

j=1

N (r, wj; g) + S(r, g) =

=

n
∑

j=1

N (r, wj ; f) + S(r, g) ≤

≤ nT (r, f) + S(r, g).

Similarly we can deduce
(n − 2)T (r, f) ≤ nT (r, g) + S(r, f).

The last inequalities imply T (r, f) = O (T (r, g)) and T (r, g) = O (T (r, f))
and so we have S(r, f) = S(r, g). ♦

Lemma 2.8. Under the condition of Th. 1.1, H ≡ 0.

Proof. Let F , G be given by (2.1) and (2.2). Since Ef (S, m) = Eg(S, m)
it follows that F , G share (1, m). If possible let us suppose that H 6≡ 0.

Case 1. m ≥ 1. While m ≥ 2, using Lemma 2.3 we note that

N0(r, 0; g′) + N(r, 1; G |≥ 2) + N ∗(r, 1; F, G) ≤(2.7)

≤ N0(r, 0; g′) + N(r, 1; G |≥ 2) + N(r, 1; G |≥ 3) ≤

≤ N0(r, 0; g′) +
n

∑

j=1

{

N(r, ωj; g |= 2) + 2N(r, ωj ; g |≥ 3)
}

≤

≤ N(r, 0; g′ | g 6= 0)+S(r, g)≤N(r, 0; g)+N(r,∞; g)+S(r, g).

Hence using (2.7), Lemmas 2.1 and 2.2 we get from second fundamental
theorem for ε > 0 that

(n + 1) T (r, f) ≤(2.8)

≤ N(r, 0; f) + N(r, 1; f) + N(r,∞; f) + N(r, 1; F |= 1)+

+ N(r, 1; F |≥ 2) − N0(r, 0; f ′) + S(r, f) ≤

≤ 2
{

N(r, 0; f) + N(r, 1; f) + N(r,∞; f)
}

+ N(r, 0; g)+

+ N(r, 1; g) + N(r,∞; g) + N(r, 1; G |≥ 2) +

+ N∗(r, 1; F, G) + N 0(r, 0; g′) + S(r, f) + S(r, g) ≤

≤2
{

N(r, 0; f)+N(r, 1; f)+N(r,∞; f)+N(r, 0; g)+N(r,∞; g)
}

+

+ N(r, 1; g) + S(r, f) + S(r, g)
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≤
(

11 − 2Θ(0; f) − 2Θ(0; g)−

− 2Θ(∞; f) − 2Θ(∞; g)− 2Θ(1; f) − Θ(1; g) + ε
)

T (r) + S(r).

In a similar way we can obtain

(n+1) T (r, g) ≤
(

11−2Θ(0; f)−2Θ(0; g)−2Θ(∞; f)−(2.9)

−2Θ(∞; g)−Θ(1; f)−2Θ(1; g)+ε
)

T (r)+S(r).

Combining (2.8) and (2.9) we see that

(

n−10+2Θ(0; f)+2Θ(∞; f)+Θ(1; f)+2Θ(0; g)+(2.10)

+ 2Θ(∞; g)+Θ(1; g)+min{Θ(1; f), Θ(1; g)}−ε
)

T (r)≤S(r).

Since ε > 0, (2.10) leads to a contradiction.
While m = 1, using Lemma 2.3, (2.7) changes to

N 0(r, 0; g′) + N(r, 1; G |≥ 2) + N ∗(r, 1; F, G) ≤(2.11)

≤ N 0(r, 0; g′)+N(r, 1; G |≥ 2)+NL(r, 1; G)+N(r, 1; F |≥3)≤

≤ N(r, 0; g) + N(r,∞; g) +
1

2

n
∑

j=1

{N(r, ωj; f) − N(r, ωj; f)} ≤

≤ N(r, 0; g) + N(r,∞; g) +
1

2

{

N(r, 0; f) + N(r,∞; f)
}

+

+ S(r, f) + S(r, g).

So using (2.11), Lemmas 2.1 and 2.2 and proceeding as in (2.8) we get
from second fundamental theorem for ε > 0 that

(2.12) (n+1) T (r, f) ≤

≤ 2
{

N(r, 0; f)+N(r, 1; f)+N(r,∞; f)+N(r, 0; g)+N(r,∞; g)
}

+

+ N(r, 1; g) +
1

2

{

N(r, 0; f) + N(r,∞; f)
}

+ S(r, f) + S(r, g) ≤

≤

{

5

2
N(r, 0; f)+2N(r, 1; f)+

5

2
N(r,∞; f)+2N(r, 0; g)+2N(r,∞; g)

}

+

+ N(r, 1; g) + S(r, f) + S(r, g) ≤

≤

(

12−
5

2
Θ(0; f)−2Θ(0; g)−

5

2
Θ(∞; f)−

− 2Θ(∞; g)−2Θ(1; f)−Θ(1; g)+ε

)

T (r) + S(r).
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Similarly we can obtain

(n + 1) T (r, g) ≤

(

12 − 2Θ(0; f) −
5

2
Θ(0; g) − 2Θ(∞; f)−

(2.13)

−
5

2
Θ(∞; g)− Θ(1; f) − 2Θ(1; g) + ε

)

T (r) + S(r).

Combining (2.12) and (2.13) we see that
(

n − 11 + 2Θ(0; f) + 2Θ(∞; f) + Θ(1; f) + 2Θ(0; g)+(2.14)

+ 2Θ(∞; g) + Θ(1; g) + min{Θ(1; f), Θ(1; g)}+

+
1

2
min

{

Θ(0; f) + Θ(∞; f), Θ(0; g) + Θ(∞; g)
}

− ε

)

T (r) ≤

≤ S(r).

Since ε > 0, (2.14) leads to a contradiction.

Case 2. m = 0. Using Lemma 2.3 we note that

N 0(r, 0; g′) + N
(2

E (r, 1; F ) + 2NL(r, 1; G) + 2NL(r, 1; F ) ≤

(2.15)

≤ N0(r, 0; g′)+N
(2

E (r, 1; G)+NL(r, 1; G)+NL(r, 1; G)+2NL(r, 1; F )≤

≤ N0(r, 0; g′) + N(r, 1; G |≥ 2) + NL(r, 1; G) + 2NL(r, 1; F ) ≤

≤ N(r, 0; g′ | g 6= 0) + N(r, 1; G |≥ 2) + 2N(r, 1; F |≥ 2) ≤

≤ 2
{

N(r, 0; g)+N(r,∞; g)+N(r, 0; f)+N(r,∞; f)
}

+S(r, f)+S(r, g).

Hence using (2.15), Lemmas 2.1 and 2.2 we get from second fundamental
theorem for ε > 0 that

(n + 1) T (r, f) ≤(2.16)

≤N(r, 0; f)+N(r, 1; f)+N(r,∞; f)+N
1)
E (r, 1; F )+NL(r, 1; F )+

+ NL(r, 1; G) + N
(2

E (r, 1; F ) − N0(r, 0; f ′) + S(r, f) ≤

≤ 2
{

N(r, 0; f) + N(r,∞; f) + N(r, 1; f)
}

+ N(r, 0; g)+

+ N(r, 1; g) + N(r,∞; g) + N
(2

E (r, 1; F ) + 2NL(r, 1; G)+

+ 2NL(r, 1; F ) + N 0(r, 0; g′) + S(r, f) + S(r, g) ≤
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≤ 4
{

N(r, 0; f) + N(r,∞; f)
}

+ 3
{

N(r, 0; g) + N(r,∞; g)
}

+

+ 2N(r, 1; f) + N(r, 1; g) + S(r, f) + S(r, g) ≤

≤
(

17 − 4Θ(0; f) − 4Θ(∞; f) − 3Θ(0; g)− 3Θ(∞; g)−

− 2Θ(1; f) − Θ(1; g) + ε
)

T (r) + S(r).

In a similar manner we can obtain

(n+1) T (r, g) ≤
(

17 − 3Θ(0; f) − 3Θ(∞; f) − 4Θ(0; g)−(2.17)

− 4Θ(∞; g)−Θ(1; f)−2Θ(1; g)+ε
)

T (r)+S(r).

Combining (2.16) and (2.17) we see that

(

n − 16 + 3Θ(0; f) + 3Θ(∞; f) + Θ(1; f)+(2.18)

+ 3Θ(0; g) + 3Θ(∞; g) + Θ(1; g)+

+ min
{

Θ(0; f) + Θ(1; f) + Θ(∞; f), Θ(0; g)+

+ Θ(1; g) + Θ(∞; g)
}

− ε
)

T (r) ≤ S(r).

Since ε > 0, (2.18) leads to a contradiction. ♦

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1) and (2.2). Since
Ef (S, m) = Eg(S, m) it follows that F , G share (1, m). By a simple
computation it can be easily seen that 1 is a root with multiplicity 3
of F − 1

2
and hence F − 1

2
= (f − 1)3 Qn−3(f), where Qn−3(f) is a

polynomial in f of degree n − 3 and thus N2

(

r, 1
2
; F

)

≤ 2N(r, 1; f)+

+N (r, 0; Qn−3(f)) ≤ 2N(r, 1; f) + (n − 3)T (r, f) + S(r, f).
From Lemma 2.8 we have H ≡ 0. So

(3.1) F ≡
aG + b

cG + d
,

where a, b, c, d are constants such that ad − bc 6= 0. Also

(3.2) T (r, F ) = T (r, G) + O(1).

We now consider the following cases.
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Case 1. Let ac 6= 0. From (3.1) we get

(3.3) N(r,∞; G) = N
(

r,
a

c
; F

)

.

So in view of (3.2), (3.3) and the second fundamental theorem we get

T (r, F ) ≤ N(r, 0; F ) + N(r,∞; F ) + N
(

r,
a

c
; F

)

+ S(r, F ) =

= N(r, 0; f) + 2T (r, f) + N(r,∞; f) + N(r,∞; g) + S(r, f) ≤

≤ 5T (r, f) + S(r, f),

which in view of by Lemma 2.4 gives a contradiction for n ≥ 6.

Case 2. Let a 6= 0 and c = 0. Then F = αG + β, where α = a
d

and
β = b

d
.
If F has no 1-point, by the second fundamental theorem we get

T (r, F ) ≤ N(r, 0; F ) + N(r,∞; f) + S(r, f) ≤

≤ 3T (r, f) + N(r,∞; f) + S(r, f),

which implies a contradiction in view of Lemma 2.4.
If F and G have some 1-points then α + β = 1 and so

(3.4) F ≡ αG + 1 − α.

Suppose α 6= 1. If 1 − α 6= 1
2

then in view of (3.2) and the second
fundamental theorem we get

2T (r, F ) ≤ N(r, 0; F ) + N(r, 1 − α; F ) + N
(

r,
1

2
; F

)

+

+ N(r,∞; F ) + S(r, F ) ≤

≤ 3T (r, f)+N(r, 0; G)+(n−2)T (r, f)+N(r,∞; f) + S(r, f) ≤

≤ (n + 5)T (r, f) + S(r, f),

which implies a contradiction in view of Lemma 2.4 and n ≥ 6. If α = 1
2
,

then we have from (3.4)

F ≡
1

2
(G + 1).

So by the second fundamental theorem we can obtain using (3.2) that

2T (r, G) ≤N (r, 0; G)+N
(

r,
1

2
; G

)

+N(r,−1; G)+N(r,∞; G)+S(r, G)≤

≤3T (r, g)+(n − 2)T (r, g)+N(r, 0; F )+N(r,∞; g) + S(r, g)≤

≤(n + 5)T (r, g) + S(r, g),
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which implies a contradiction in view of Lemma 2.4 and n ≥ 6.
So α = 1 and hence F ≡ G. So by Lemma 2.6 we get f ≡ g.

Case 3. Let a = 0 and c 6= 0. Then F ≡ 1
γG+δ

, where γ = c
b

and δ = d
b
.

If F has no 1-point then as in Subcase 2.2 we can deduce a contra-
diction.

If F and G have some 1-points then γ + δ = 1 and so

(3.5) F ≡
1

γG + 1 − γ
.

Suppose γ 6= 1 If γ 6= −1, then by the second fundamental theorem
we get

2 T (r, F ) ≤ N(r, 0; F ) + N

(

r,
1

1 − γ
; F

)

+ N

(

r,
1

2
; F

)

+

+ N(r,∞; f) + S(r, f) ≤

≤ 3T (r, f)+N(r, 0; G)+(n−2)T (r, f)+N(r,∞; f)+S(r, f)≤

≤ (n + 5)T (r, f) + S(r, f),

which gives a contradiction in view of Lemma 2.4 and n ≥ 6. If γ = −1
from (3.5) we have

F ≡
1

−G + 2
.

Now the second fundamental theorem with the help of (3.2) yields

2T (r, G) ≤

≤ N(r, 0; G) + N

(

r,
1

2
; G

)

+ N(r, 2; G) + N(r,∞; G) + S(r, G) ≤

≤ 3T (r, g) + (n − 2)T (r, g) + N(r,∞; F ) + N(r,∞; G) + S(r, g) ≤

≤ (n + 3)T (r, g) + S(r, g),

which implies a contradiction in view of Lemma 2.4 and n ≥ 6.
So we must have γ = 1 then FG ≡ 1, which is impossible by

Lemma 2.5. This completes the proof of the theorem. ♦
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