Mathematica Pannonica 21/2 (2010), 207–213

ON A THEOREM OF DABOUSSI RE-LATED TO THE SET OF GAUSSIAN INTEGERS II

Jean-Marie De Koninck

Département de mathématiques et de statistique, Université Laval Québec, Québec G1V 0A6, Canada

Imre Kátai

Computer Algebra Department, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary

Received: April 2010

MSC 2000: 11 K 06, 11 K 65, 11 N 37

Keywords: Gaussian integers, additive characters.

Abstract: Let W stand for the union of finitely many convex bounded domains in \mathbb{C} . Given x > 0, we denote by xW the set $\{xz : z \in W\}$. Let $G = \mathbb{Z}[i]$ be the set of Gaussian integers and set $G^* := G \setminus \{0\}$. Given a complex number z = u + iv, where $u, v \in \mathbb{R}$, let $\{z\} = \{u\} + i\{v\}$, where $\{x\}$ stands for the fractional part of x. Let $E := \{w : 0 \leq \Re(w) < 1, 0 \leq \Im(w) < 1\}$. We say that the sequence of complex numbers z_1, z_2, \ldots is uniformly distributed mod Eif $\lim_{N \to \infty} \frac{1}{N} \# \{n \leq N : \Re(\{z_n\}) < u, \Im(\{z_n\}) < v\} = uv$ for every pair of real numbers $u, v \in [0, 1]$. Let \mathcal{T} be the set of those functions $t : G^* \to \mathbb{C}$ for which $t(\alpha) + F(\alpha)$ is uniformly distributed mod E in limit on xW (as $x \to \infty$) for every additive arithmetical function F, and such that $t(\alpha) + F(\alpha)$ is uniformly distributed in F. We prove that if $P(z) \in \mathbb{C}[z]$ is a polynomial of positive degree, whose leading coefficient is a and such that the numbers 1, $\Re(a)$ and $\Im(a)$ are rationally independent, then $P \in \mathcal{T}$.

E-mail addresses: jmdk@mat.ulaval.ca, katai@compalg.inf.elte.hu

1. Introduction

Let W stand for the union of finitely many convex bounded domains in \mathbb{C} . Given x > 0, we denote by xW the set $\{xz : z \in W\}$, and observe that with the Lebesgue measure $|\cdot|$, we have $|xW| = x^2|W|$. Let $G = \mathbb{Z}[i]$ be the set of Gaussian integers and set $G^* := G \setminus \{0\}$. Finally, let \mathcal{M} be the set of multiplicative functions defined on G^* and let \mathcal{M}^* be the subset of \mathcal{M} made of those $g \in \mathcal{M}$ satisfying $|g(\alpha)| \leq 1$ for all $\alpha \in G^*$. Let χ be an arbitrary additive character, that is a function $\chi : G \to \{z : |z| = 1\}$ for which $\chi(0) = 1$ and $\chi(\alpha_1 + \alpha_2) = \chi(\alpha_1)\chi(\alpha_2)$ for all $\alpha_1, \alpha_2 \in G$. Using the standard notation $e(u) = e^{2\pi i u}$, we set $\chi(1) = e(A)$ and $\chi(i) = e(B)$, and then denote by \mathcal{A} the set of those χ 's for which at least one of A and B is irrational. We proved in [1] that, given $\chi \in \mathcal{A}$ and $g \in \mathcal{M}^*$,

$$\lim_{x \to \infty} \frac{1}{|xW|} \sum_{\beta \in xW} g(\beta)\chi(\beta) = 0,$$

where the convergence is uniform in g, thereby generalizing a previous result of Daboussi and Delange [2].

This paper is essentially a continuation of the results obtained in [1].

2. The main result

Given a complex number z = u + iv, where $u, v \in \mathbb{R}$, let $\{z\} = \{u\} + i\{v\}$, where $\{x\}$ stands for the fractional part of x. Let $E := := \{w : 0 \leq \Re(w) < 1, 0 \leq \Im(w) < 1\}$. We say that the sequence of complex numbers z_1, z_2, \ldots is uniformly distributed mod E if

$$\lim_{N \to \infty} \frac{1}{N} \# \{ n \le N : \Re(\{z_n\}) < u, \ \Im(\{z_n\}) < v \} = uv$$

for every pair of real numbers $u, v \in [0, 1]$.

A result of H. Weyl states that (see [3]) that the sequence z_n is uniformly distributed mod E if

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e(k\Re(z_n) + \ell\Im(z_n)) = 0$$

for each pair $(k, \ell) \in \mathbb{Z} \times \mathbb{Z} \setminus \{(0, 0)\}.$

For each real positive number x, let $N(x) := \#\{\alpha \in xW \cap G^*\}$ and further let $h : G^* \to \mathbb{C}$. For $u, v \in]0, 1]$, let

$$F_x(u,v) := \frac{1}{N(x)} \# \{ z \in xW \cap G^* : \Re(\{h(z)\}) < u, \ \Im(\{h(z)\}) < v \}.$$

We say that h is uniformly distributed mod E in limit on xW for $x \to \infty$ if

(2.1)
$$\lim_{x \to \infty} F_x(u, v) = uv$$
 holds for $0 < u \le 1, \ 0 < v \le 1.$

Let \mathcal{T} be the set of those functions $t: G^* \to \mathbb{C}$ for which $t(\alpha) + F(\alpha)$ is uniformly distributed mod E in limit on xW (as $x \to \infty$) for every additive arithmetical function F, and such that $t(\alpha) + F(\alpha)$ is uniformly distributed in F.

Theorem 1. Let $P(z) \in \mathbb{C}[z]$ a polynomial of positive degree k. Let a be the coefficient of z^k in P(z). Assume that the numbers 1, $\Re(a)$ and $\Im(a)$ are rationally independent. Then $P \in \mathcal{T}$.

3. Preliminary lemmas

Lemma 1. Let $\wp = \{\rho_1, \rho_2, \dots, \rho_r\}$ be a finite set of Gaussian primes, with $|\rho_1| \leq |\rho_2| \leq \dots \leq |\rho_r|$ such that no two of them are associates. Let χ be an additive character. Set $T(x) := \sum_{\beta \in xW} g(\beta)\chi(P(\beta))$ and let

$$T_1(x) := \sum_{\substack{\rho\gamma \in xW\\\rho \in \wp}} g(\rho\gamma)\chi(P(\rho\gamma)), \qquad T_2(x) := \sum_{\substack{\rho\gamma \in xW\\\rho \in \wp}} g(\rho)g(\gamma)\chi(P(\rho\gamma)).$$

Then,

$$|T_1(x) - T_2(x)| \le \frac{cx^2}{|\rho_1|^2} A_{\wp},$$

where $A_{\wp} = \sum_{j=1}^{r} \frac{1}{|\rho_j|^2}$.

Lemma 2 (Weyl). Let $f(x) = \alpha_k x^k + \ldots + \alpha_1 x + \alpha_0$ be a polynomial with real coefficients $\alpha_0, \alpha_1, \ldots, \alpha_k$ and such that

$$\left| \alpha_k - \frac{h}{q} \right| \le \frac{1}{q^2}, \qquad (h,q) = 1.$$

Then,

$$\sum_{x=1}^{P} e(f(x)) \ll P^{1+\varepsilon} q^{\varepsilon} \left(\frac{1}{P} + \frac{1}{q} + \frac{q}{P^k}\right)^{2^{1-k}}.$$

Proof. This result is due to H. Weyl and is stated (and proved) as Lemma 3.6 in the book of Hua [3]. \diamond

Lemma 3 (Erdős–Turán–Koksma). Let (x_n) , where n = 1, 2, ..., N, be a sequence of points in \mathbb{R}^s and let G be an arbitrary positive integer. Then, the discrepancy $D_N(x_n)$ is less than

$$2s^{2}3^{s+1}\left(\frac{1}{G} + \sum_{0 < \|h\| \le G} \frac{1}{R(h)} \left| \frac{1}{N} \sum_{n=1}^{N} e(\langle h, x_{n} \rangle) \right| \right),$$

where $\langle \cdot, \cdot \rangle$ denotes the usual inner product on \mathbb{R}^s , $||h|| = \max_{i=1,\dots,s} |h_i|$ for integral lattice points $h = (h_1, \dots, h_s)$, and $R(h) = \prod_{j=1}^s \max(|h_j|, 1)$. **Proof.** For a proof of this result, see the book of Kuipers and Niederreiter [4]. \diamond

4. The proof of the main result

The case k = 1 follows essentially from our Th. 1 proved in [1]. Hence, we may assume that $k \ge 2$.

The first part of the proof follows exactly the same reasoning as that of the proof of Th. 1 in [1].

Indeed, applying Lemma 1 with

$$a(\gamma) = g(\gamma)$$
 and $b(\gamma) = \sum_{\substack{\rho \in \wp \\ \rho \in \frac{xW}{\gamma}}} g(\rho)\chi(P(\rho\gamma))$

we get that

$$T_2(x) = \sum_{\substack{\gamma \in G^* \\ \gamma \in \cup_{\rho \in \wp} \frac{xW}{\rho}}} a(\gamma)b(\gamma),$$

with

(4.1)
$$|T_1(x) - T_2(x)| \le \frac{cx^2}{|\rho_1|^2} A_{\wp}.$$

By the Cauchy–Schwarz Inequality, we obtain that

(4.2)
$$|T_2(x)| \le \left(\sum_{\gamma} |a(\gamma)|^2\right)^{1/2} \cdot \left(\sum_{\gamma} |b(\gamma)|^2\right)^{1/2} = \Sigma_1^{1/2} \cdot \Sigma_2^{1/2},$$

say.

On the one hand, it is clear that

$$(4.3) \Sigma_1 \ll x^2.$$

On the other hand, Σ_2 can be written as

(4.4)
$$\Sigma_2 = \sum_{\gamma} \sum_{\substack{\rho \in \wp \\ \rho\gamma \in xW}} 1 + \sum_{\nu \neq j} \sum_{\gamma \in S_{\nu,j}} g(\rho_{\nu}) \overline{g(\rho_j)} \chi(P(\rho_{\nu}\gamma)) \overline{\chi(P(\rho_j\gamma))},$$

where $S_{\nu,j} = \frac{xW}{\rho_{\nu}} \cap \frac{xW}{\rho_{j}}$. Now, since χ is an additive character, it follows that

(4.5)
$$\chi(P(\rho_{\nu}\gamma))\overline{\chi(P(\rho_{j}\gamma))} = \chi(P(\rho_{\nu}\gamma) - P(\rho_{j}\gamma)).$$

Assume that

$$\chi(z) := e(k\Re(z) + \ell\Im(z)), \qquad (k,\ell) \in \mathbb{Z} \times \mathbb{Z} \setminus \{(0,0)\}.$$
 Then, set

T

(4.6)
$$B_{\nu,j} := \sum_{\gamma \in S_{\nu,j}} \chi(P(\rho_{\nu}\gamma) - P(\rho_{j}\gamma)).$$

In light of the estimates (4.1) through (4.6), it is clear that it is sufficient to prove that

(4.7)
$$\lim_{x \to \infty} \frac{1}{N(x)} |B_{\nu,j}| = 0.$$

To do so, we argue as in the proof of Th. 1 of [1].

Let $\rho_{\nu}, \rho_j \in \wp$ be fixed, $\rho_{\nu} \neq \rho_j$. Further let $a = A + Bi, \rho_{\nu}^k - \rho_j^k =$ = P + Qi, U = K(AP - QB) + L(AQ + BP). We must have that $U \neq 0$. Indeed, since

$$U = (KP + LQ)A + (LP - KQ)B_{2}$$

and KP + LQ = 0, LP - KQ = 0 would imply that $\frac{P}{Q} = \frac{K}{L}$, $\frac{P}{Q} = -\frac{L}{K}$, that is either K = L or K = -L.

If K = L, then $K \neq 0$, and KP + LQ = 0, LP - KQ = 0, which would apply that P + Q = 0, P - Q = 0, implying that P = Q = 0.

If K = -L, then $K \neq 0$, and so P - Q = 0, P + Q = 0 would follow, which is also impossible.

Since A, B, 1 are rationally independent, it follows that U is irrational and therefore that k!U is an irrational number.

Let $0 \le \lambda \le 1$ be the unique (irrational) number such that e(k!U) = $= e(\lambda)$ and let $q_1 < q_2 < \dots$ be a sequence of positive integers such that J.-M. De Koninck and I. Kátai

$$q_{\nu} \|\lambda q_{\nu}\| < 1$$
 for $\nu = 1, 2, 3, \dots$

holds.

Let

$$Y(x) = \max_{q_{\nu} < \log x} q_{\nu}$$

and

$$B_{\nu,j}^{(x)} := \frac{1}{Y(x)} \sum_{\gamma \in S_{\nu,j}} \sum_{\ell=0}^{Y(x)-1} \chi \left(P(\rho_{\nu}(\gamma + \ell)) - P(\rho_{j}(\gamma + \ell)) \right).$$

First, letting $N(x) = \#\{\gamma \in S_{\nu,j}\}$, we observe that $|B_{\nu,j} - B_{\nu,j}^{(x)}| = o(N(x))$ as $x \to \infty$. Thus in order to prove (4.7), we only need to prove that

(4.8)
$$\lim_{x \to \infty} \frac{1}{N(x)} \left| B_{\nu,j}^{(x)} \right| = 0.$$

Now let $N^{(0)}$ be the number of those γ for which $\gamma + \ell \in S_{\nu,j}$ $(\ell = 0, 1, \dots, Y(x) - 1)$. If $\gamma \in S_{\nu,j}$ and $\gamma + \ell \notin S_{\nu,j}$ for at least one $\ell \in \{0, 1, \dots, Y(x) - 1\}$, then either $\gamma \rho_{\nu}$ or $\gamma \rho_{j}$ is close to the boundary of xW. Since W is a finite union of convex domains, the length of the boundary of xW is O(x), which implies that

 $0 \le N(x) - N^{(0)}(x) \ll xY(x) = o(N(x)) \qquad (x \to \infty).$ We shall now prove that

(4.9)
$$\max_{\gamma \in S_{\nu,j}} \frac{1}{Y(x)} \left| \sum_{\ell=0}^{Y(x)-1} \chi(Q(\ell)) \right| \to 0 \qquad (x \to \infty),$$

where

$$Q(\ell) = Q_j(\ell) = P(\rho_\nu(\gamma + \ell)) - P(\rho_j(\gamma + \ell))$$

To prove (4.9), we shall use Lemma 2. But in order to do so, we first observe that $Q(\ell) = a(\rho_{\nu}^{\ell} - \rho_{j}^{\ell})\ell^{k} + \dots$

Let $R(\ell) = K \Re Q(\ell) + L \Im Q(\ell)$. Then $R(\ell)$ is a polynomial of degree k, of which the coefficient of the main term is $K \Re a(\rho_{\nu}^{k} - \rho_{j}^{k}) + L \Im a(\rho_{\nu}^{k} - \rho_{j}^{k})$. Thus,

$$T := \sum_{\ell=0}^{Y(x)-1} \chi(Q(\ell)) = \sum_{\ell=0}^{Y(x)-1} e(R(\ell)).$$

Applying Lemma 2 with P = Y(x), f = R, $\alpha_k = \lambda$, we may conclude that

212

$$|T| \ll Y(x)^{1+2\varepsilon} \left(\frac{1}{Y(x)}\right)^{2^{1-k}},$$

where $\varepsilon > 0$ is an arbitrary small constant. Thus, $T/Y(x) \to 0$ as $x \to \infty$ uniformly in γ , which completes the proof of (4.9) and therefore of (4.8). The estimates being uniform in t, Th. 1 then follows from Lemma 3.

References

- BASSILY, N., DE KONINCK, J. M. and KÁTAI, I.: On a theorem of Daboussi related to the set of Gaussian integers, *Mathematica Pannonica* 14 (2003), 267– 272.
- [2] DABOUSSI, H. and DELANGE, H.: Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C.R. Acad. Sci. Paris Série A 278 (1974), 657–660.
- [3] HUA, L. K.: Additive Theory of Prime Numbers, Vol. 13, Translations of Mathematical Monographs, American Mathematical Society, Rhode Island, 1965.
- [4] KUIPERS, L. and NIEDERREITER, H. Uniform Distribution of Sequences, John Wiley and Sons, New York, 1974.