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Abstract: Pseudoradial normal spaces of any order of pseudoradiality given
by an ordinal number not greater than σc(X)+ are constructed. Another con-
struction with similar properties is given for compact T1 spaces. Finally pseu-
doradial spaces of cardinality ωα and pseudoradial order ωα+1 are exhibited.
The most important tools to perform such constructions are those contained
in Lemma 2.7, Th. 2.8, Th. 4.2 and Th. 5.2.

1. Introduction

As is well known, a topological space X is called pseudoradial or
chain-net (see [6], [1] or [4]) provided that for every non-closed subset A
of X, there exist a point x ∈ A \A and a transfinite sequence 〈xα〉α<λ in
A such that xα → x when α→ λ.
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Definition 1.1. Let X be a topological space. Let A ⊆ X. Following
[3], we define the pseudoradial or chain-net closure of A in X as the set

Â={x∈X | there is a transfinite sequence 〈xα〉α<λ inA converging tox}.

We can now use transfinite recursion to define the pseudoradial or chain-
net iterated closure of A.

Â(0) = A;

Â(α+1) =
(̂
Â(α)

)
for every ordinal α;

Â(β) =
⋃

α<β A
(α) if β is a limit ordinal.

Remark 1.2. Let X be a topological space. Let A ⊆ X. Then
(i) A ⊆ Â ⊆ A;

(ii) for each pair of ordinals α, β, if α ≤ β, then Â(α) ⊆ Â(β);

(iii) for each ordinal α, A ⊆ Â(α) ⊆ A.

Definition 1.3. Let X be a pseudoradial space. The pseudoradial order
of X is the least ordinal number α such that for each A ⊆ X,

Â(α) = A.
The pseudoradial order of a pseudoradial space X is denoted by pro(X).

The following proposition presents an upper bound on the number
of times the pseudoradial closure has to be iterated in order to get the
topological closure and therefore assures us that the pseudoradial order
of a pseudoradial space always exists. We follow the proof presented in
[5] or [8], where it is proved that the sequential order of a sequential space
is not greater that ω1.

We recall that the chain character of a pseudoradial space X is the
least infinite cardinal σc (X) such that for each non-closed subset A of
X, there exist a point x ∈ A \ A and a sequence 〈xα〉α<λ in A of length
λ ≤ σc(X) such that xα → x when α→ λ.

We also recall that for each cardinal number λ the least cardinal
that is strictly greater than λ is denoted by λ+. It turns out that λ+ is
always a regular cardinal.

Finally, we will denote the cardinality of a set Y by |Y |. Now we
can prove the following

Proposition 1.4. Let X be a pseudoradial space, let A ⊆ X. Let
σ = σc (X). Then Â(σ+) = A.

Proof. Assume that Â(σ+) $ A, i.e. Â(σ+) is not closed, and then there

exist x ∈ A \ Â(σ+) and a sequence 〈xα〉α<λ in Â(σ+) of length λ ≤ σ
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such that xα → x when α → λ. Since Â(σ+) =
⋃

γ<σ+ Â(γ), for each

α < λ there exists an ordinal γ(α) < σ+ such that xα ∈ Â(γ(α)). Let
E = {γ(α) | α < λ}. Let Γ = sup(E). Since |E| ≤ λ ≤ σ < σ+ and σ+

is a regular cardinal, Γ < σ+. Thus for each α < λ, γ(α) ≤ Γ < σ+ and

xα ∈ Â(γ(α)) ⊆ Â(Γ). Therefore {xα}α<λ ⊆ Â(Γ) and so x ∈ Â(Γ+1). But

Γ + 1 < σ+ and so x ∈ Â(σ+), a contradiction. ♦

Corollary 1.5. Let X be a pseudoradial space. Then there exists an
ordinal α such that α = pro(X). Furthermore pro(X) ≤ σc(X)+.

Remark 1.6. We will show later on in Sec. 3 that there are pseudoradial
spaces X such that pro(X) = (σc (X))+. For example see the space Mω2 ,
which has pseudoradial order ω2 and chain character ω1.

Let us now prove the following proposition, concerning the pseudo-
radial order of the topological sum of a collection of pseudoradial spaces.

Proposition 1.7. Let {Xα}α∈I be a collection of pseudoradial spaces and
for each α ∈ I, let σα = pro(Xα). Then the topological sum

∐
α∈I Xα is

pseudoradial and

pro
(∐

α∈I

Xα

)
= sup

α∈I

σα.

Proof. We denote by iα the canonical inclusion iα : Xα −→
∐

α∈I Xα,
iα(x) = (x, α). It is well known that the topological sum of a collection
of pseudoradial spaces is pseudoradial (see [6]).

Let now σ = supα∈I σα. In order to prove that the pseudoradial
order of

∐
α∈I Xα is σ, it suffices to prove that:

(i) for each A ⊆
∐

α∈I Xα, Â(σ) = A;

(ii) for each β < σ, there exists A ⊆
∐

α∈I Xα, such that Â(β) $ A.

Let A ⊆
∐

α∈I Xα; it is easy to prove that for each α ∈ I, i−1
α (A) =

= i−1
α (A) and also î−1

α (A)
(τ)

= i−1
α (Â(τ)), for each ordinal τ . For each

α ∈ I, let Aα = i−1
α (A). Since Xα is pseudoradial and pro(Xα) = σα,

there exists an ordinal τα ≤ σα such that Âα

(τα)
=Aα. Since τα≤σα≤σ,

we have that Âα

(σ)
= Aα. Therefore Â(σ) =

⋃
α∈I i

−1
α (Â(σ)) × {α} =

=
⋃

α∈I î
−1
α (A)

(σ)

× {α}=
⋃

α∈I i
−1
α (A) ×{α} =

⋃
α∈I i

−1
α (A)×{α}=A.

Let us now prove that for each β < σ, there exists A ⊆
∐

α∈I Xα

such that Â(β) $ A. Let β < σ = supα∈I σα. There exists α ∈ I such that

β < σα = pro(Xα). Therefore there exists Aα ⊆ Xα such that Âα

(β)
&
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& Aα. Let A = iα(Aα). Since Âα

(β)
& Aα, there exists y ∈ Aα \ Âα

(β)
.

Therefore y ∈ Aα = i−1
α (A) = i−1

α (A) and y /∈ î−1
α (A)

(β)

= i−1
α (Â(β)).

Therefore iα(y) ∈ A \ Â(β) and so Â(β) & A. ♦

We call a topological space normal provided that it is both T4 and
T1. If Xα is a normal space for each α ∈ I, then

∐
α∈I Xα is a normal

space.
Finally we recall that the quotient of a pseudoradial space is pseu-

doradial (see [6]).

2. The pseudoradial sum and its order of pseudo-

radiality

In this section we introduce the pseudoradial sum of a family of
topological spaces and prove some of its properties. Especially in Th. 2.8,
through the result obtained in Lemma 2.7, we prove that under some
conditions the pseudoradial order of the pseudoradial sum of a family
of pseudoradial spaces is the sup of the pseudoradial orders of these
spaces +1. This fact will allow us to use transfinite recursion in order to
construct pseudoradial spaces of any order.

Definition 2.1. Let λ be a regular cardinal. Let {Xα}α<λ be topological
spaces; for each α < λ, let 0α ∈ Xα be a point; let S be λ + 1 with the
following topology:

(i) for each α < λ, α is an isolated point;
(ii) the basic neighborhoods of the point λ are the intervals (α, λ],

with α < λ.
Let X be the topological sum of the family {Xα}α<λ. Let A = {0α | α <
< λ} ⊆ X; let f : A −→ S, f(0α) = α. Notice that f is injective.
Therefore we can define ∑

α<λ

(Xα, 0α) = X ∪f S

(X ∪f S denotes the adjunction space of X to S along f). The space∑
α<λ (Xα, 0α) is called the pseudoradial sum of the family {Xα}α<λ,

with base points 0α ∈ Xα.

Let us introduce some notations that we will use throughout this
section. Let fα : Xα −→

∑
α<λ (Xα, 0α), g : S −→

∑
α<λ (Xα, 0α)

be the canonical inclusions. By definition of adjunction space, if V ⊆
⊆
∑

α<λ (Xα, 0α), then
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V is open ⇐⇒

{
f−1

α (V ) ⊆ Xα is open in Xα for each α < λ,

g−1(V ) ⊆ S is open in S.

Finally, for the sake of convenience, rename the point g(λ) as Λ = g(λ).
We call Λ the end point of the pseudoradial sum

∑
α<λ (Xα, 0α).

Remark 2.2. fα : Xα −→ fα(Xα) is a homeomorphism and furthermore
fα(Xα) is both an open and closed subspace of

∑
α<λ (Xα, 0α).

Remark 2.3. The above space S is pseudoradial. So if {Xα}α<λ are
pseudoradial spaces, then

∑
α<λ (Xα, 0α), the adjunction space, is the

quotient of the topological sum of pseudoradial spaces and so it is pseu-
doradial.

Let us now prove the following

Proposition 2.4. Let {Xα}α<λ be normal spaces, λ a regular cardinal;
for each α < λ, let 0α ∈ Xα; then

∑
α<λ (Xα, 0α) is normal.

Proof. We have to prove that
∑

α<λ (Xα, 0α) is a T1 space and a T4

space. It is trivial to show that
∑

α<λ (Xα, 0α) is a T1 space. We now
prove that

∑
α<λ (Xα, 0α) is a T4 space.

Let E,F ⊆
∑

α<λ (Xα, 0α) be closed and disjoint. For each α < λ,
let Eα = f−1

α (E), Fα = f−1
α (F ); Eα, Fα are closed in Xα and disjoint.

If Λ /∈ E ∪ F , the proof is trivial. Assume now that Λ ∈ E ∪ F .
We can suppose Λ ∈ E (then Λ /∈ F ). So there exists α < λ such that
for each α ≥ α, fα(0α) /∈ F (if not, Λ ∈ F \F and therefore F would not
be closed). For each α < λ, consider

E(1)
α =

{
Eα if α < α,

Eα ∪ {0α} if α ≥ α.

Since Xα is normal (and therefore it is a T1 space), E
(1)
α is closed in Xα

and furthermore E
(1)
α ∩ Fα = ∅. Therefore there exist Uα, Vα, open in

Xα and disjoint, such that E
(1)
α ⊆ Uα and Fα ⊆ Vα. Let us now define

U =
⋃

α<λ fα(Uα) ∪ {Λ} and V =
⋃

α<λ fα(Vα). U , V are open, disjoint
and E ⊆ U , F ⊆ V . ♦

Now we want to find the pseudoradial order of
∑

α<λ (Xα, 0α). In
order to do that, we need some lemmas.

Lemma 2.5. Let V ⊆
∑

α<λ (Xα, 0α) be a neighborhood of Λ; then
there exists α < λ and for each α ∈ (α, λ), there exists Uα ⊆ Xα, Uα a
neighborhood of 0α such that( ⋃

α<α<λ

fα(Uα)
)
∪ {Λ} ⊆ V.
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Proof. Since V is a neighborhood of Λ in
∑

α<λ (Xα, 0α), g−1(V ) is a
neighborhood of λ in S. Therefore there exists α < λ such that for each
α ∈ (α, λ], α ∈ g−1(V ), i.e. g(α) ∈ V . But, by definitions of g and fα,
for each α < λ, g(α) = fα(0α), so for each α ∈ (α, λ), fα(0α) ∈ V . Hence
f−1

α (V ) is a neighborhood of 0α in Xα. Thus for each α ∈ (α, λ), there
exists an open set Uα ⊆ Xα such that 0α ∈ Uα and Uα ⊆ f−1

α (V ), and so
fα(Uα) ⊆ V . As a result( ⋃

α<α<λ

fα(Uα)
)
∪ {Λ} ⊆ V. ♦

Lemma 2.6. Let A ⊆
∑

α<λ (Xα, 0α); assume that Λ ∈ A \A. Then for

each α < λ, there exists α′ ≥ α, α′ < λ such that g(α′) ∈ A.

Proof. If not, there exists α < λ such that for each α ∈ [α, λ), g(α) /∈ A.
Thus for each α ≥ α, α < λ, there exists Vα, a neighborhood of g(α),
such that Vα ∩A = ∅ and furthermore g(λ) = Λ /∈ A. In V ={g(α) |α <

< α ≤ λ}∪
(⋃

α∈(α,λ) Vα

)
, a neighborhood of Λ, there are no points of A,

a contradiction. ♦

The following lemma and theorem are very important for the con-
struction of the spaces Mα.

Lemma 2.7. Let λ be a regular cardinal. Let {Xα}α<λ be pseudoradial,
T1 spaces and let 0α ∈ Xα for each α < λ. Let 〈xβ〉β<κ be a transfinite
sequence of length κ in

∑
α<λ (Xα, 0α) and assume that xβ → Λ. Then

κ ≥ λ and there exists β < κ such that for each β ∈ [β, κ), xβ ∈ g(S)
(i.e. the sequence is eventually in g(S)).

Proof. First, assume κ < λ. Let E = {α < λ | f−1
α ({xβ}β<κ) 6= ∅}.

Let α = supE. Since |E| < λ and λ is a regular cardinal, α < λ. So
for each α > α, the sequence 〈xβ〉β<κ never gets in fα(Xα). But so the
set U = g ((α, λ]) ∪

⋃
α∈(α,λ) fα(Xα) is a neighborhood of Λ, in which

the sequence 〈xβ〉β<κ never gets in, a contradiction. So κ cannot be less
than λ.

Assume now κ > λ. For each δ < λ, consider the set Uδ ⊆
⊆
∑

α<λ (Xα, 0α), defined by Uδ = g((δ, λ]) ∪
⋃

γ∈(δ,λ) fγ(Xγ). For each
δ < λ, Uδ is a neighborhood of Λ. Therefore for each δ < λ, there exists
β(δ) < κ such that for each β ≥ β(δ), xβ ∈ Uδ. Let β = supδ<λ β(δ);
β < κ, because λ < κ are regular cardinals. Therefore for each β ∈ (β, κ),
xβ ∈

⋂
δ<λ Uδ = {Λ} i.e. xβ = Λ and so the thesis is proved.

Finally, assume κ = λ. Assume that for each β < κ, there exists
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β ′ ≥ β such that xβ′ /∈ g(S); then, without loss of generality, we can
suppose

(⋆) {xβ}β<κ ⊆
∑

α<λ

(Xα, 0α) \ g(S).

We now want to find a subsequence of 〈xβ〉β<κ, which does not converge
to Λ. For each α<λ, consider Fα =f−1

α

(
{xβ}β<κ

)
, Eα ={β<κ | xβ∈Fα}.

For each α < λ, let

µα =

{
supEα if Eα 6= ∅,

0 if Eα = ∅.

If µα = κ for some α < λ, then we can find a subsequence of 〈xβ〉β<κ,
which is contained in fα(Xα), but such a subsequence cannot converge
to Λ, a contradiction.

So for each α < λ, µα < κ. Let µ = supα<λ µα. If µ < κ, then for
each β ∈ (µ, κ), xβ cannot be in any Fα and therefore xβ = Λ eventually,
but this contradicts the assumption (⋆).

So µ = supα<λ µα = κ = λ. Therefore in {µα | α < λ} there exists
a strictly increasing sequence (µαγ

)γ<λ of length λ (since λ is a regular
cardinal), such that µαγ

→ λ when γ → λ. Now, for each γ < λ, consider
µαγ+1 = sup(Eαγ+1). Since the sequence (µαγ

)γ<λ is strictly increasing,
then for each γ < λ, µαγ

< µαγ+1 and therefore there exists ναγ
∈ Eαγ+1

such that µαγ
< ναγ

≤ µαγ+1 . The sequence (ναγ
)γ<λ converges to λ

when γ → λ and for each γ < λ, ναγ
∈ Eαγ+1 , i.e. xναγ

∈ fαγ+1(Xαγ+1).
Since Xαγ+1 is a T1 space, there exists Uαγ+1 ⊆ Xαγ+1 , a neigh-

borhood of 0αγ+1 , such that xναγ
/∈ fαγ+1(Uαγ+1). Let us consider the

neighborhood of Λ defined by U = g(S) ∪
⋃

β<λ fβ(Uβ) where

Uβ =

{
Uαγ+1 if β = αγ+1 for some γ,

Xβ otherwise.

Now we want to prove that for each α < λ = κ, there exists α′ > α
such that xα′ /∈ U or, in other words, that there exists a subsequence
of 〈xβ〉β<κ such that no term of this subsequence belongs to U , which
is a neighborhood of Λ. For each α < λ, there exists γ < λ such that
ναγ

> α; furthermore:

(i) xναγ
∈ fαγ+1(Xαγ+1) and so xναγ

/∈ fβ(Uβ), for each β 6= αγ+1;

(ii) xναγ
/∈ fαγ+1(Uαγ+1);
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(iii) xναγ
/∈ g(S), because no term of the sequence 〈xβ〉β<κ belongs to

g(S),

and so xναγ
/∈ U .

Therefore for each α < λ = κ, there exists α′ > α (take α′ = ναγ
),

such that xα′ /∈ U and so the sequence 〈xβ〉β<κ cannot converge to Λ, a
contradiction. ♦

Now we can state and prove the following

Theorem 2.8. Let {Xα}α<λ be pseudoradial T1 spaces, λ a regular car-
dinal; for each α < λ, let σα = pro(Xα). Let us assume that:

(i) for each α < λ, σα is a successor ordinal;
(ii) if α ≤ β < λ, then σα ≤ σβ.

Then for each α < λ, there exists 0α ∈ Xα such that
∑

α<λ (Xα, 0α) is
pseudoradial and

pro

(
∑

α<λ

(Xα, 0α)

)
=

(
sup
α<λ

σα

)
+ 1.

Proof. Let σ = supα<λ σα. First, for each α < λ let us choose 0α ∈ Xα.
By hypothesis, we know that for each α < λ, σα = τα + 1. Therefore

there exists Gα ⊆ Xα such that Ĝα

(τα)
& Gα. Thus let us choose 0α ∈

∈ Gα \ Ĝα

(τα)
.
∑

α<λ (Xα, 0α) is pseudoradial (Rem. 2.3).
In order to prove that pro

(∑
α<λ (Xα, 0α)

)
= (supα<λ σα) + 1, it

suffices to prove that:
(i) for each A ⊆

∑
α<λ (Xα, 0α), Â(σ+1) = A;

(ii) there exists A ⊆
∑

α<λ (Xα, 0α), such that Â(σ) & A.
Let us begin by proving the second claim. Let us define A =

⋃
α<λ fα(Gα)

and let us prove that Λ = g(λ) ∈ A \ Â(σ). First let us prove that Λ ∈ A.
Notice that for each α < λ, g(α) ∈ A. In fact 0α ∈ Gα and so

g(α) = fα(0α) ∈ fα(Gα) = fα(Gα) ⊆
⋃

α<λ

fα(Gα) = A.

Now let V ⊆
∑

α<λ (Xα, 0α) be a neighborhood of Λ; therefore,
according to Lemma 2.5, there exists α < λ and for each α ∈ (α, λ) there

exists Uα ⊆ Xα, a neighborhood of 0α, such that
(⋃

α<α<λ fα(Uα)
)
∪

∪{Λ} ⊆ V . Now let α ∈ (α, λ); fα(Uα) is a neighborhood of fα(0α), but
we have just seen that fα(0α) ∈ A, so there exists y ∈ A ∩ fα(Uα). So
y ∈ A∩ fα(Uα) ⊆ A∩ V . Therefore for each neighborhood V of Λ, there
exists y ∈ A ∩ V . Consequently Λ ∈ A.
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Let us now prove that Λ /∈ Â(σ). Assume that Λ ∈ Â(σ). Let
E = {η < σ | Λ /∈ Â(η)}. E 6= ∅, because 0 ∈ E. So let τ = supE. If

τ /∈ E, τ is a limit ordinal, Λ ∈ Â(τ), but Λ /∈ Â(η) for each η < τ , a
contradiction. Thus τ = maxE. Therefore Λ ∈ Â(τ+1) \ Â(τ). So there

exists a sequence 〈xβ〉β<κ in Â(τ) such that xβ → Λ and xβ 6= Λ for each
β. But according to Lemma 2.7, such a sequence have to be eventually in
g(S), i.e. there exists β1 < κ such that for each β ≥ β1, xβ ∈ g(S). So for

each β ≥ β1, there exists αβ < λ such that xβ = g(αβ) = fαβ
(0αβ

) ∈ Â(τ).
But τ < σ = supα<λ σα and by hypothesis (σα)α<λ is an increasing

sequence of ordinals. So there exists α < λ such that for each α > α, we
have that τ < σα. Furthermore every σα is a successor ordinal, and so
for each α, σα = τα + 1. Therefore for each α > α, we have that τ ≤ τα
and so Â(τ) ⊆ Â(τα). Since xβ → Λ when β → κ, there is β2 < κ such
that for each β ≥ β2, xβ ∈

⋃
α∈(α,λ) fα(Xα).

So for each β ≥ max{β1, β2},

(1) xβ = g(αβ) ∈ Â(τ) ⊆ Â(ταβ
).

But at the same time, for each α < λ, 0α /∈ Ĝα

(τα)
; therefore fα(0α) /∈

/∈ fα(Ĝα

(τα)
) = ̂(fα(Gα))

(τα)

. Consequently for each β ≥ max{β1, β2},

xβ = fαβ
(0αβ

) /∈ ̂(fαβ
(Gαβ

))
(ταβ

)

and so

(2) xβ /∈ Â(ταβ
)

(
because if xβ ∈ Â(ταβ

), it would be in ̂(
fαβ

(Gαβ
)
)(ταβ

) )
. But (1) and

(2) contradict each other. So Λ /∈ Â(σ). Thus we have just proved that

Â(σ) & A.

We have still to prove that for each A ⊆
∑

α<λ (Xα, 0α), Â(σ+1) =

= A; clearly it suffices to prove that A ⊆ Â(σ+1). So let x ∈ A.
If there exists xα ∈ Xα such that x = fα(xα), then fα(xα) ∈ A,

so xα ∈ f−1
α (A) = f−1

α (A) ⊆ ̂(f−1
α (A))

(σα)

, where the last inclusion is

justified by the fact that pro(Xα) = σα. Therefore xα ∈ ̂(f−1
α (A))

(σα)

=

= f−1
α (Â(σα)) and so x = fα(xα) ∈ Â(σα) ⊆ Â(σ+1).

Let now x = Λ ∈ A. We can assume that Λ /∈ A; therefore,
according to Lemma 2.6, for each α < λ there exists α′ ≥ α, α′ < λ, such
that g(α′) ∈ A. So it is possible to find a sequence (xα′(α))α<λ in g(S)\{Λ}
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such that xα′(α) ∈ A for each α < λ and xα′(α) → Λ when α → λ. But

xα′ = g(α′) = fα′(0α′) and 0α′ ∈ Xα′. So xα′ ∈ Â(σα′ ) ⊆ Â(σ). Thus

the sequence (xα′(α))α<λ is entirely included in Â(σ) and consequently

Λ = limα→λ xα′(α) ∈ Â(σ+1).

We have proved that A ⊆ Â(σ+1); the thesis is proved. ♦

3. Construction of the spaces Mα

Theorem 3.1. For each ordinal α there exists a pseudoradial and normal
space Mα, such that pro(Mα) = α.

Proof. We will use transfinite recursion. Let us define M0 = {0} and
M1 =

∑
α<ω0

(M0, 0). Clearly M0, M1 are pseudoradial, normal spaces;
furthermore pro(M0) = 0 and pro(M1) = 1.

Let us assume that Mβ is defined for each β < α, in such a way
that Mβ is pseudoradial, normal and pro(Mβ) = β and let us define Mα.
We distinguish three cases:

(i) α = β + 1 and β is a successor ordinal; let us consider ω0 copies
of Mβ

1. We have that Mβ is normal (and therefore it is T1),
pro(Mβ) = β and β is a successor ordinal. Thus, according to
Th. 2.8, for each γ < ω0, we can find a base point 0γ ∈ Mβ such

that
∑

γ<ω0
(Mβ, 0γ) is pseudoradial and pro

(∑
γ<ω0

(Mβ, 0γ)
)

=

=
(
supγ<ω0

(pro(Mβ))
)
+1=β+1=α. Furthermore

∑
γ<ω0

(Mβ, 0γ)
is the pseudoradial sum of normal spaces and so according to
Prop. 2.4 it is normal. So we define

Mα =
∑

γ<ω0

(Mβ , 0γ).
2

(ii) α = β + 1, but β is a limit ordinal, β 6= 0; so let λ = cf(β);
we can find an increasing sequence (βν)ν<λ of successor ordinals,
each of which is less than β, such that the sequence (βν)ν<λ

converges to β when ν → λ. So let us consider the collection

1The choice to take ω0 copies of Mβ, and not, for example, ω1 copies of Mβ, is
totally arbitrary. We could construct Mα by taking λ copies of Mβ , where λ is any
regular cardinal. We choose ω0 because it will be useful in Sec. 5.

2For each n < ω0, Mn is the space Sn constructed by Arhangel’skĭı and Franklin in
[2] and therefore it is a sequential space. If we want Mn to be a pseudoradial and not
sequential space, we have to construct it by taking not less than ω1 copies of Mn−1.
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of spaces {Mβν
}ν<λ, where pro(Mβν

) = βν . This collection of
spaces satisfies the hypotheses of Th. 2.8 and therefore for each
ν < λ there exists 0ν ∈ Mβν

such that
∑

ν<λ (Mβν
, 0ν) is pseu-

doradial and pro
(∑

ν<λ (Mβν
, 0ν)

)
=
(
supν<λ (pro(Mβν

))
)

+ 1 =
= (supν<λ βν)+1 = β+1 = α. Furthermore, according to Prop. 2.4,∑

ν<λ (Mβν
, 0ν) is normal. So we define

Mα =
∑

ν<λ

(Mβν
, 0ν).

(iii) α is a limit ordinal. Let λ = cf(α). We can find an increasing
sequence (βν)ν<λ of ordinals, each of which is less than α, such
that the sequence (βν)ν<λ converges to α when ν → λ. So let us
consider the collection of spaces {Mβν

}ν<λ, where pro(Mβν
) = βν .

We define3

Mα =
∐

ν<λ

Mβν
.

Mα is normal (since it is the topological sum of normal spaces),
and, according to Prop. 1.7, Mα is pseudoradial and pro(Mα) =
= pro(

∐
ν<λMβν

) = supν<λ βν = α. ♦

4. Construction of the spaces Kα

The spaces Mα constructed in Sec. 3 are normal, but they are not
compact. In this section we construct for each ordinal α ≥ 1 a pseudo-
radial compact space Kα, such that pro(Kα) = α. However these spaces
Kα are not normal neither Hausdorff, but only T1.

Let us recall that the cofinite topology on an underlying set X is
the coarsest T1 topology on this set. Closed subspaces in the cofinite
topology are finite sets and the whole set X.

Let S be the Sierpiński space, i.e. the space {0, 1} with the topology
consisting of the empty set, the set {0} and the whole space. Following
the notation introduced in [7], let (Sµ)1 be the product of µ copies of
S with the topology which is the join of the product topology and the
cofinite topology on the set {0, 1}α. Clearly basic neighborhoods of (Sµ)1

3It seems easier to define Mα =
∐

β<α Mβ, but the construction we present in this
section will be useful in Sec. 5.
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are of the form
(∏

η<µ Uη

)
\ F , where Uη is an open subspace of S,

Uη = {0, 1} for all but a finite number of indices and F is a finite set.
For each x ∈ Sµ, let Z(x) = {η < µ | x(η) = 0}. For each η < µ,

let πη : Sµ −→ S be the canonical projection onto the η-th coordinate.

Definition 4.1. For each ordinal α ≥ 1 we define

Kα =

{
Sωβ if α = β + 1,

{x ∈ Sωα | |Z(x)| < ωα} if α is a limit ordinal

(in the case that α is a limit ordinal, the topology is the induced subspace
topology of (Sωα)1).

Theorem 4.2. For each ordinal α ≥ 1, Kα is a T1 compact pseudoradial
space and pro(Kα) = α.

First we prove the following lemmas.

Lemma 4.3. Let A ⊆ Kα, let x ∈ A. For each ordinal β ≥ 1, if
|Z(x)| < ωβ, then x ∈ Â(β).

Proof. First we prove the lemma for all spaces Kα+1 = Sωα. We use
transfinite induction.

Let us prove the lemma for β = 1. Let x ∈ A, |Z(x)| < ω1, i.e.
|Z(x)| ≤ ω0. If |Z(x)| = j < ω0, we can suppose without restriction
Z(x) = {1, . . . , j}. Consider the following neighborhood of x : U =
=
∏

η<ωα
Uη where

Uη =

{
{0} if η ∈ {1, . . . , j},

{0, 1} if η /∈ {1, . . . , j}.

For each k < ω0, let xk ∈ (U ∩ A) \ {x1, . . . , xk−1}. It is easy to prove
that the sequence 〈xk〉k<ω0 converges to x.

Assume now |Z(x)| = ω0. We can suppose without restriction
Z(x) = ω0. For each k < ω0 consider the following neighborhood of

x: U (k) =
∏

η<ωα
U

(k)
η where

U (k)
η =

{
{0} if η ≤ k,

{0, 1} if η > k.

For each k < ω0 let xk ∈ (U (k) ∩ A) \ {x1, . . . , xk−1}. We now
prove that xk → x. Let U \ F be a neighborhood of x, U =

∏
η<ωα

Uη,
F a finite set. Let η = max{η | Uη 6= {0, 1}}. Clearly η < ω0. Let
k = max{k < ω0 | xk ∈ F}. For each k > max{η, k}, we have that
xk ∈ U \ F and so xk → x.

Assume that the lemma is proved for some ordinal β and let us
prove it for the ordinal β+1. Let x ∈ A, |Z(x)| < ωβ+1, i.e. |Z(x)| ≤ ωβ.
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If x ∈ A, the lemma is proved. Assume x ∈ A \ A. If |Z(x)| < ωβ, by

inductive assumption, x ∈ Â(β) ⊆ Â(β+1). If |Z(x)| = ωβ, we can suppose
without restriction Z(x) = ωβ. For each γ < ωβ, let xγ such that

xγ(η) =

{
0 if η < γ,

1 if η ≥ γ.

First we prove that xγ ∈ A for each γ < ωβ. Let U \ F be a
neighborhood of xγ, U =

∏
η<ωα

Uη, F a finite set. Then (U \ F ) ∪ {x}
is a neighborhood of x. Thus in (U \F )∪{x} there are points of A, but
x /∈ A and so in U \ F there are points of A. Then xγ ∈ A.

Furthermore |Z(xγ)| < ωβ, so, by inductive assumption, xγ ∈ Â(β).
We now prove that xγ → x when γ → ωβ. Let U \F be a neighbor-

hood of x, U =
∏

η<ωα
Uη, F a finite set. Let η = max

{
η | Uη 6= {0, 1}

}
.

Since Z(x) = ωβ, η < ωβ. Let γ = max{γ | xγ ∈ F}. For each

γ > max{η, γ}, xγ ∈ U \ F . Therefore xγ → x and so x ∈ Â(β+1).
Assume now that the lemma is proved for each γ < β, β a limit

ordinal and let us prove it for β. Let x ∈ A, |Z(x)| < ωβ. Since β is a limit

ordinal, there exists γ < β such that |Z(x)| = ωγ. So x ∈ Â(γ) ⊆ Â(β).
In a similar way the lemma can be proved for all spaces Kα with α

a limit ordinal. ♦

Lemma 4.4. Let A = {x ∈ Kα | |Z(x)| < ω0}, let x ∈ A. For each

ordinal β, if x ∈ Â(β), then |Z(x)| < ωβ.

Proof. We prove the lemma by transfinite induction. For β = 0 the
proof is trivial.

Assume that the lemma is proved for some ordinal β and let us
prove it for the ordinal β + 1. Let x ∈ Â(β+1). Therefore there exists a
sequence 〈xγ〉γ<λ in Â(β) converging to x. By inductive assumption for
each γ < λ, |Z(xγ)| < ωβ. We have to prove that |Z(x)| < ωβ+1. Assume
|Z(x)| ≥ ωβ+1.

If λ ≤ ωβ, we have
∣∣⋃

γ<λ Z(xγ)
∣∣ ≤ ωβ. Therefore there exists

η ∈ Z(x) \ ∪γ<λZ(xγ). Thus x(η) = 0, but for each γ < λ, xγ(η) = 1 and
so the sequence 〈xγ〉γ<λ cannot converge to x.

If λ>ωβ, i.e. λ≥ωβ+1, let E be a subset of Z(x) of cardinality ωβ.
For each η ∈ E, let Uη = π−1

η (0) be a neighborhood of x (πη is the
projection onto the η-th coordinate). So for each η ∈ E, there exists
γ(η)<λ, such that for each γ≥γ(η), xγ(η)=0. Let γ=sup{γ(η) | η ∈ E}.
Since |E| = ωβ, λ is a regular cardinal and ωβ < λ, we have that γ < λ.
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So for each γ ∈ (γ, λ) and for each η ∈ E, xγ(η) = 0, i.e. |Z(xγ)| ≥ ωβ,
a contradiction.

Assume now that the lemma is proved for each ordinal γ < β, with
β a limit ordinal and let us prove it for β. Let x ∈ Â(β). Therefore there
exists an ordinal γ < β, such that x ∈ Â(γ). By inductive assumption,
|Z(x)| < ωγ < ωβ. ♦

Proof of Theorem 4.2. Let α ≥ 1 be an ordinal. Clearly Kα is a T1

space.
We now prove the compactness. Let {Vi}i∈I be an open cover of

Kα. Let x ∈ Kα such that x(η) = 1 for each η < ωα. Let i ∈ I such that
x ∈ Vi. It is easy to see that Vi has the form Kα \F , F a finite set. Thus
{Vi}i∈I has a finite subcover and so Kα is a compact space.

In order to prove that Kα is a pseudoradial space and that
pro(Kα) = α it suffices to prove that:

(i) for each A ⊆ Kα, Â
(α) = A;

(ii) there exists A ⊆ Kα such that for each β < α, Â(β) $ A.
Let us prove the first claim. Let A ⊆ Kα. Let x ∈ A. According to

the definition of Kα we have that |Z(x)| < ωα. Therefore, by Lemma 4.3,

x ∈ Â(α) and so Â(α) = A.
Let us now prove the second claim. LetA = {x ∈ Kα | |Z(x)| < ω0}.

Let β < α. Let x ∈ Kα such that x(η) = 0 for each η < ωβ. We have

that x ∈ A, but by Lemma 4.4, since |Z(x)| = ωβ, x /∈ Â(β). ♦

5. Construction of the spaces Fα

In [2] Arhangel’skĭı and Franklin constructed a sequential space
Sω having sequential order ω1 and cardinality ω0. Let us observe that
the spaces Mωα+1 constructed in Sec. 3 have pseudoradial order ωα+1

and cardinality ωα+1. In this section we construct for each ordinal α a
pseudoradial space Fα such that pro(Fα) = ωα+1 but |Fα| = ωα.

Let ωα be a cardinal. For each regular cardinal λ ≤ ωα, let S(λ) be
λ+1 with the same topology of S as in Def. 2.1. Consider the topological
sum of all the spaces S(λ) for each regular cardinal λ ≤ ωα with all the
non-isolated points identified. The fan space obtained in such a way is
called S(ωα). For each regular cardinal λ ≤ ωα, let g(λ) : S(λ) −→ S(ωα)
be the canonical inclusion and ξ = g(λ)(λ). Clearly S(ωα) is pseudoradial.

By recursion, following [2], we now construct for each n < ω0 a
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pseudoradial space Gn of cardinality not greater than ωα and at the same
time we define the level Ln(x) for all points x ∈ Gn. Let G0 = {Ω} be an
one-point space and let L0(Ω) = 0. Assume now already defined the space
Gn and the level Ln(x) for all points x ∈ Gn. For each point x of level
n in Gn, take a copy Sx(ωα) of S(ωα) and let X be the topological sum
of the spaces Sx(ωα). Let A = {ξx ∈ Sx(ωα) | x ∈ Gn such that Ln(x) =
= n} ⊆ X, and define f : A −→ Gn by f(ξx) = x. Define the space Gn+1

as the adjunction space X ∪f Gn. Now choose x ∈ Gn+1. If x ∈ Gn, let
Ln+1(x) = Ln(x). If not, let Ln+1(x) = n + 1. It is easy to see that Gn

is pseudoradial and |Gn| ≤ ωα for each n < ω0.
Let us observe that there is a natural embedding φn : Gn −→ Gn+1.

We define by recursion a partial order ≤n on Gn. Suppose that we have
defined a partial order ≤n on Gn, with Ω as maximal element. Then
let ≤n+1 be the partial order on Gn+1 generated by ≤n ∪ {〈y, x〉 | y ∈
∈ Sx(ωα)}.

Now, using the maps φn, we define for each pair m < n < ω0 a
map φn

m : Gm −→ Gn by φn
m = φn ◦ φn−1 ◦ · · · ◦ φm and obtain a direct

system 〈Gn, φ
n
m〉 of spaces and maps. Denote by Fα the direct limit of

this system4. We denote by ψn : Gn −→ Fα the canonical embedding.

Lemma 5.1. Let ≤ be the partial order on Fα defined by the rule that
x ≤ y if and only if there exists a triple n, a, b such that a ∈ ψ−1

n (x),
b ∈ ψ−1

n (y) and a ≤n b. Then for each x ∈ Fα, I(x) = {y ∈ Fα | y ≤ x}
is homeomorphic to Fα.

Proof. Noting that Ln(x) = k implies that Ln+1(φn(x)) = k, we may
unambiguously define the level L(x) of a point x ∈ Fα by choosing some
n and a ∈ ψ−1

n (x) and setting L(x) = Ln(a). It is easy to verify that
x ≤ y implies L(x) ≥ L(y).

For each x ∈ Fα, let I(x) = {y ∈ Fα | y ≤ x}. We will show
by an induction on the level of x that each I(x) is homeomorphic to
Fα. For L(x) = 0 the assertion is trivial. Suppose L(x) = 1 and let
Tn = ψ−1

n (I(x)) for each n < ω0. Then T0 = ∅ and for each n > 0, Tn

is homeomorphic to Gn−1. But clearly I(x) is the inductive limit of the
system 〈Tn, φ

n
m ↾ Tm〉 and hence it is homeomorphic to Fα.

Now suppose our assertion is true for all points at level n − 1 and
that L(x) = n. Then there exists exactly one y ∈ Fα with L(y) = n− 1

4We remind the reader we began our construction by choosing a cardinal ωα in
order to construct a space Fα such that |Fα| = ωα, but pro(Fα) = ωα+1. We also
observe that F0 is the space Sω constructed by Arhangel’skĭı and Franklin in [2].
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and x < y. The point x is at level 1 with respect to I(y) which is homeo-
morphic to Fα by inductive assumption, and hence I(x) is homeomorphic
to Fα by the level-one argument. ♦

Theorem 5.2. Fα is a pseudoradial space with pro(Fα) = ωα+1, but
|Fα| = ωα, and it contains a copy of Mβ for each β < ωα+1.

Proof. It is easy to see that |Fα| = ωα. Since Fα is the direct limit of
a collection of pseudoradial spaces, Fα is pseudoradial. It is also easy
to see that σc(Fα) = ωα. Therefore, by Cor. 1.5, pro(Fα) ≤ ωα+1. The
opposite inequality will follow from the fact that Mβ is a closed subspace
of Fα for each β < ωα+1.

For each regular cardinal λ ≤ ωα, let Σ(λ) be the pseudoradial
sum of λ copies of Fα choosing the level-zero point of each Fα as base
point. Note we can embed each Σ(λ) in Fα by observing that Σ(λ) is
homeomorphic to {Ω} ∪

⋃
x∈S(λ)\{0} I(x).

We will now recursively prove that for each β < ωα+1, Mβ is a
closed subspace of Fα and the end point of Mβ is the level-zero point of
Fα whenever β is not a limit ordinal.

Clearly M0 is a subspace of Fα. It is also easy to see that M1 is
homemorphic to the sequence S(ω0) which is a subspace of S(ωα) which
is a subspace of Fα. So M1 is homeomorphic to a subspace of Fα. Fur-
thermore we can suppose that the end point of M1 is the level-zero point
of Fα.

Now let β < ωα+1. Assume that β = γ + 1 and that γ is also
a successor ordinal. By inductive assumption, we know that Mγ is a
subspace of Fα and the end point of Mγ is the level-zero point of Fα.
We know that Mβ is the pseudoradial sum of ω0 copies of Mγ choosing
the end point of each Mγ as base point (see Sec. 3). So Mβ is embedded
in the pseudoradial sum of ω0 copies of Fα choosing the level-zero point
of each Fα as base point. Therefore Mβ is embedded in Σ(ω0) which is a
subspace of Fα.

Assume now β = γ + 1, but γ is a limit ordinal, γ 6= 0. Let
λ = cf(γ) ≤ ωα and let 〈γν〉ν<λ be an increasing sequence of successor
ordinals which converges to γ. By inductive assumption, we know that
for each ν < λ, Mγν

is a subspace of Fα and the end point of Mγν
is the

level-zero point of Fα. We know that Mβ is the pseudoradial sum of the
family {Mγν

}ν<λ choosing the end point of each Mγν
as base point. So

Mβ is embedded in the pseudoradial sum of λ copies of Fα choosing the
level-zero point of each Fα as base point. Therefore Mβ is embedded in
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Σ(λ) which is a subspace of Fα.
Assume now β is a limit ordinal. Let λ = cf(β) ≤ ωα and let

〈βν〉ν<λ be an increasing sequence of ordinals which converges to β. By
inductive assumption, we know that for each ν < λ, Mβν

is a subspace
of Fα. We know that Mβ is the topological sum of the family {Mβν

}ν<λ.
So Mβ is embedded in the topological sum of λ copies of Fα. Therefore
Mβ is embedded in Σ(λ) \ {Ω} which is a subspace of Fα.

So for each β < ωα+1, Mβ is a subspace of Fα. It is also easy to
see that for each β < ωα+1, Mβ is a closed subspace of Fα. Therefore
pro(Fα) ≥ ωα+1. We have already proved the opposite inequality and so
pro(Fα) = ωα+1. ♦
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