Mathematica Pannonica 21/1 (2010), 129–142

ON THE WEYL PROJECTIVE CURVATURE TENSOR OF AN N(k)-CONTACT METRIC MANIFOLD

Ahmet \mathbf{Yildiz}

Dept. of Mathematics, Dumlupinar University, Kütahya, Turkey

Uday Chand De

Dept. of Pure Mathematics, University of Calcutta, 35, Ballygunje Circular Road, Kolkata 700019, West Bengal, India

Cengizhan Murathan

Dept. of Mathematics, Uludağ University, 16059 Bursa, Turkey

Kadri Arslan

Dept. of Mathematics, Uludağ University, 16059 Bursa, Turkey

Received: December 2008

MSC 2000: 53 C 25, 53 D 10

Keywords: Contact metric manifold, N(k)-contact metric manifold, Sasakian manifold, Weyl projective curvature tensor, concircular curvature tensor, Weyl projective recurrent manifold.

Abstract: In the present paper we classify N(k)-contact metric manifolds which satisfy $P(\xi, X) \cdot R = 0$, $R(\xi, X) \cdot P = 0$, $P(\xi, X) \cdot S = 0$, $P(\xi, X) \cdot P = 0$ and $P(\xi, X) \cdot Z = 0$ where P is the Weyl projective curvature tensor and Z is the concircular curvature tensor.

E-mail addresses: ahmetyildiz@dumlupinar.edu.tr, uc_de@yahoo.com, cengiz@uludag.edu.tr, arslan@uludag.edu.tr

This paper is supported by the Dumlupmar University research found (Project No: 2004-9).

1. Introduction

A Riemannian manifold (M^{2n+1}, g) is said to be *semi-symmetric* if its curvature tensor R satisfies $R(X, Y) \cdot R = 0$, $X, Y \in \chi(M)$, where R(X, Y) acts on R as a derivation (see [11] and [15]). In [16], S. Tanno showed that a semi-symmetric K-contact manifold M^{2n+1} (2n + 1 > 3)is locally isometric to the unit sphere $S^{2n+1}(1)$.

A contact metric manifold M^{2n+1} satisfying $R(X, Y)\xi = 0$, where ξ is the characteristic vector field of the contact structure, is locally isometric to the product $E^{n+1} \times S^n(4)$ for 2n+1 > 3 and flat in dimension 3 ([4] or see [5]). In [14], D. Perrone studied a contact metric manifold $M^{2n+1}(2n+1 > 3)$ satisfying $R(\xi, X) \cdot R = 0$; he shows that under additional assumptions the manifold is either Sasakian (and of constant curvature +1) or $R(X, \xi)\xi = 0$.

Baikoussis and Koufogiorgos [2] showed that an N(k)-contact metric manifold M^{2n+1} satisfying $R(\xi, X) \cdot C = 0$, is either locally isometric to $S^{2n+1}(1)$ or locally isometric to the product $E^{n+1} \times S^n(4)$, where C is the Weyl conformal curvature tensor of M^{2n+1} . This generalizes a result of Chaki and Tarafdar [8] that a Sasakian manifold M^{2n+1} satisfying $R(\xi, X) \cdot C = 0$ is locally isometric to $S^{2n+1}(1)$. In [13], Papantoniou showed that a semi-symmetric contact metric manifold M^{2n+1} (2n+1 > 3) with ξ belonging to the (k, μ) -nullity distribution is either locally isometric to $S^{2n+1}(1)$ or locally isometric to the product $E^{n+1} \times S^n(4)$. Both Perrone and Papantoniou also studied contact metric manifolds satisfying $R(\xi, X) \cdot S = 0$, where S denotes the Ricci tensor of M^{2n+1} . In [14], Perrone showed that if ξ belongs to the k-nullity distribution, where k is a function, with $R(\xi, X) \cdot S = 0$, then M^{2n+1} is either Einstein-Sasakian manifold or locally isometric to the product $E^{n+1} \times S^n(4)$. De, Kim and Shaikh [9] studied contact metric manifolds with characteristic vector field ξ belonging to the (k, μ) -nullity distribution satisfying $R(X,\xi) \cdot C = 0$.

Recently, in [6], the authors studied contact metric manifold M^{2n+1} satisfying the curvature conditions $Z(\xi, X) \cdot Z = 0$, $Z(\xi, X) \cdot R = 0$ and $R(\xi, X) \cdot Z = 0$, where Z is the *concircular curvature tensor* of M^{2n+1} defined by

(1.1)
$$Z(X,Y)W = R(X,Y)W - \frac{\tau}{2n(2n+1)}(X \wedge_g Y)W,$$

and τ is the scalar curvature.

In the theory of the projective transformations of connections the Weyl projective curvature tensor plays an important role. The Weyl projective curvature tensor P in a Riemannian manifold (M^{2n+1}, g) is defined by

(1.2)
$$P(X,Y)W = R(X,Y)W - \frac{1}{2n}(X \wedge_S Y)W,$$

where S is the Ricci tensor.

In the present paper we give a full classification of the N(k)-contact metric manifold M^{2n+1} satisfying the curvature conditions $P(\xi, X) \cdot R = 0$, $R(\xi, X) \cdot P = 0$, $P(\xi, X) \cdot P = 0$, $P(\xi, X) \cdot S = 0$ and $P(\xi, X) \cdot Z = 0$. In the conclusive part, we prove that an N(k)-contact metric manifold with non-vanishing recurrent Weyl curvature tensor does not exist.

2. Preliminaries

Let (M^{2n+1}, g) be a (2n + 1)-dimensional Riemannian manifold of class C^{∞} . We denote Riemannian-Christoffel curvature tensor by

(2.1)
$$R(X,Y)W = \nabla_X \nabla_Y W - \nabla_Y \nabla_X W - \nabla_{[X,Y]} W,$$

where ∇ is the Levi–Civita connection and $X, Y \in \chi(M), \chi(M)$ being the Lie algebra of vector fields on M.

A contact metric manifold M^{2n+1} is said to be *Einstein* if its Ricci tensor S is of the form

(2.2)
$$S(X,Y) = \gamma g(X,Y)$$

for any vector fields X, Y, where γ is a constant on M^{2n+1} [3].

We next define the endomorphism $X \wedge_A Y$ of $\chi(M)$ by

(2.3)
$$(X \wedge_A Y)W = A(Y, W)X - A(X, W)Y,$$

where $X, Y, W \in \chi(M)$ and A is a symmetric (0, 2)-tensor field.

Now, the homomorphisms $R(X, Y) \cdot R$, $R(X, Y) \cdot S$ and the endomorphisms $(X \wedge_A Y) \cdot R$, $(X \wedge_A Y) \cdot S$ are defined by

$$(2.4) \quad (R(X,Y) \cdot R)(U,V)W = R(X,Y)R(U,V)W - R(R(X,Y)U,V)W - R(U,R(X,Y)V)W - R(U,V)R(X,Y)W,$$

(2.5)
$$(R(X,Y) \cdot S)(U,V) = -S(R(X,Y)U,V) - S(U,R(X,Y)V),$$

(2.6)
$$((X \wedge_A Y) \cdot R)(U, V)W =$$
$$= (X \wedge_A Y)R(U, V)W - R((X \wedge_A Y)U, V)W -$$
$$- R(U, (X \wedge_A Y)V)W - R(U, V)(X \wedge_A Y)W,$$

$$(2.7) \quad ((X \wedge_A Y) \cdot S)(U, V) = -S((X \wedge_A Y)U, V) - S(U, (X \wedge_A Y)V),$$

respectively, where $X, Y, U, V, W \in \chi(M)$ and A is a symmetric (0, 2)-tensor field on (M, g). For the case A = S the last equation vanishes, i.e.

(2.8)
$$((X \wedge_A Y) \cdot S)(U, V) = 0.$$

From now on we assume that M^{2n+1} is an (2n + 1)-dimensional Riemannian manifold of class C^{∞} . The manifold M^{2n+1} is said to admit an *almost contact structure*, sometimes called a (ϕ, ξ, η) -structure, if it admits a tensor field ϕ of type (1, 1) a vector field ξ and a 1-form η satisfying

(2.9)
$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi \xi = 0, \ \eta \circ \phi = 0.$$

An almost contact structure is said to be *normal* if the induced almost complex structure J on the product manifold $M^{2n+1} \times \mathbb{R}$ defined by

$$J\left(X,\lambda\frac{d}{dt}\right) = \left(\phi X - \lambda\xi, \eta(X)\frac{d}{dt}\right)$$

is integrable, where X is tangent to M^{2n+1} , t the coordinate of \mathbb{R} and λ a smooth function on $M^{2n+1} \times \mathbb{R}$. Let g be a compatible Riemannian metric with (ϕ, ξ, η) , that is,

(2.10)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

or equivalently,

 $g(X, \phi Y) = -g(\phi X, Y)$ and $\eta(X) = g(X, \xi)$

for all $X, Y \in TM^{2n+1}$. Then, M becomes an almost contact metric manifold equipped with an almost contact metric structure (ϕ, ξ, η, g) .

An almost contact metric structure becomes a contact metric structure if

132

$$g(X,\phi Y) = d\eta(X,Y).$$

The 1-form η is then a contact form and ξ is its characteristic vector field. It is well known that the tangent sphere bundle of a flat Riemannian manifold admits a contact metric structure satisfying $R(X, Y)\xi = 0$ [4]. On the other hand, we have on a Sasakian manifold [3]

(2.11)
$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y.$$

In [4], Blair, Koufogiorgos and Papantoniou considered the (k, μ) nullity condition on a contact metric manifold M^{2n+1} . The (k, μ) -nullity distribution of a contact manifold M is a distribution

$$N(k,\mu): p \longrightarrow N_p(k,\mu) =$$

$$= \left\{ \begin{array}{l} W \in T_pM \mid R(X,Y)W = k \left[g(Y,W)X - g(X,W)Y \right] \\ +\mu \left[g(Y,W)hX - g(X,W)hY \right] \end{array} \right\},$$

for all $X, Y \in TM$, where $(k, \mu) \in \mathbb{R}^2$ and $k \leq 1$. For more details see also [4], [13].

In particular a contact metric manifold M is Sasakian if and only if k = 1 and, consequently, $\mu = 0$ [4].

Furthermore, in a (k, μ) -contact manifold

(2.12)
$$S(X,\xi) = 2nk\eta(X),$$

(2.14)
$$h^2 = (k-1)\phi^2,$$

(2.15)
$$R(X,Y)\xi = k\{\eta(Y)X - \eta(X)Y\} + \mu\{\eta(Y)hX - \eta(X)hY\},\$$

(2.16)
$$R(\xi, X)Y = k \{g(X, Y)\xi - \eta(Y)X\} + \mu \{g(hX, Y)\xi - \eta(Y)hX\},\$$

holds, where Q is the Ricci operator defined by S(X, Y) = g(QX, Y).

If $\mu = 0$, the (k, μ) -nullity distribution $N(k, \mu)$ is reduced to the *k*-nullity distribution [16], where *k*-nullity distribution N(k) of a Riemannian manifold M is defined by

$$(2.17) \ N(k): p \longrightarrow N_p(k) = \{ W \in T_pM \mid R(X, Y)W = k(X \wedge_g Y)W \}.$$

If $\xi \in N(k)$, then we call a contact metric manifold M an N(k)-contact metric manifold. For a N(k)-contact metric manifold the equations (2.15) and (2.16) reduce to

(2.18)
$$R(X,Y)\xi = k \{\eta(Y)X - \eta(X)Y\},\$$

A. Yildiz, U. C. De, C. Murathan and K. Arslan

(2.19)
$$R(\xi, X)Y = k \{g(X, Y)\xi - \eta(Y)X\},\$$

134

respectively. If k = 1 then an N(k)-contact metric manifold is Sasakian and if k = 0 then an N(k)-contact metric manifold is locally isometric to the product $E^{n+1} \times S^n(4)$ for n > 1 and flat for n = 1. In [1], N(k)contact metric manifolds were studied in some detail. In particular, if k < 1, the scalar curvature is $\tau = 2n(2n - 2 + k)$.

Using (1.1), (1.2), (2.18) and (2.19) for an N(k)-contact metric manifold we have the followings:

(2.20)
$$P(\xi, X)Y = kg(X, Y)\xi - \frac{1}{2n}S(X, Y)\xi,$$

$$(2.21) P(X,Y)\xi = 0,$$

(2.22)
$$Z(\xi, X)Y = \left(k - \frac{\tau}{2n(2n+1)}\right) \{g(X, Y)\xi - \eta(Y)X\},$$

(2.23)
$$Z(X,Y)\xi = \left(k - \frac{\tau}{2n(2n+1)}\right)\{\eta(Y)X - \eta(X)Y\}.$$

The standard contact metric structure on the tangent sphere bundle T_1M satisfies the (k, μ) -nullity condition if and only if the base manifold M is of constant curvature. In particular if M has constant curvature c, then k = c(2 - c) and $\mu = -2c$.

We also recall the notion of a \mathcal{D} -homothetic deformation. For a given contact metric structure (φ, ξ, η, g), this is the structure defined by

$$\bar{\eta} = a\eta, \quad \bar{\xi} = \frac{1}{a}\xi, \quad \bar{\varphi} = \varphi, \quad \bar{g} = ag + a(a-1)\eta \otimes \eta,$$

where a is a positive constant. While such a change preserves the state of being contact metric, K-contact, Sasakian or strongly pseudo-convex CR, it destroys a condition like $R(X, Y)\xi = 0$ or

$$R(X,Y)\xi = k\left\{\eta(Y)X - \eta(X)Y\right\}.$$

However the form of the (k, μ) -nullity condition is preserved under a \mathcal{D} -homothetic deformation with

$$\bar{k} = \frac{k + a^2 - 1}{a^2}, \quad \bar{\mu} = \frac{\mu + 2a - 2}{a}.$$

Given a non-Sasakian (k, μ) -manifold M, E. Boeckx [7] introduced an invariant

$$I_M = \frac{1 - \frac{\mu}{2}}{\sqrt{1 - k}}$$

and showed that for two non-Sasakian (k, μ) -manifolds $(M_i, \varphi_i, \xi_i, \eta_i, g_i)$, i = 1, 2, we have $I_{M_1} = I_{M_2}$ if and only if up to a \mathcal{D} -homothetic deformation, the two manifolds are locally isometric as contact metric manifolds. Thus we know all non-Sasakian (k, μ) -manifolds locally as soon as we have for every odd dimension 2n + 1 and for every possible value of the invariant I, one (k, μ) -manifold $(M, \varphi, \xi, \eta, g)$ with $I_M = I$. For I > -1such examples may be found from the standard contact metric structure on the tangent sphere bundle of a manifold of constant curvature c, where we have $I = \frac{1+c}{|1-c|}$. E. Boeckx also gives a Lie algebra construction for any odd dimension and value of $I \leq -1$.

In Th. 6 of the present paper we need the following example.

Example 1 [7]. Since the Boeckx invariant for a $(1 - \frac{1}{n}, 0)$ -manifold is $\sqrt{n} > -1$, we consider the tangent sphere bundle of an (n + 1)-dimensional manifold of constant curvature c, so chosen that the resulting \mathcal{D} -homothetic deformation will be a $(1 - \frac{1}{n}, 0)$ -manifold. That is for k = c(2 - c) and $\mu = -2c$ we solve

$$1 - \frac{1}{n} = \frac{k + a^2 - 1}{a^2}, \quad 0 = \frac{\mu + 2a - 2}{a}$$

e result is
$$(\sqrt{n} \pm 1)^2$$

for a and c. The result

$$c = \frac{(\sqrt{n} \pm 1)^2}{n-1}, \quad a = 1+c$$

and taking c and a to be these values we obtain an $N(1-\frac{1}{n})$ -contact metric manifold.

3. N(k)-contact metric manifolds satisfying some curvature conditions

In the present section we consider N(k)-contact metric manifold M^{2n+1} satisfying the curvature conditions $P(\xi, X) \cdot R = 0$, $R(\xi, X) \cdot P = 0$, $P(\xi, X) \cdot S = 0$, $P(\xi, X) \cdot P = 0$ and $P(\xi, X) \cdot Z = 0$. First we recall the following result:

Theorem 1 [14]. Let M be a contact Riemmanian manifold. If

a) $R(X,\xi) \cdot S = 0$,

b) $R(X, Y)\xi = k \{\eta(Y)X - \eta(X)Y\},\$

then M is either locally isometric to the Riemannian product $E^{n+1} \times S^n(4)$ or M is an Einstein–Sasakian manifold.

Now we give the following main results:

Theorem 2. Let M be a (2n + 1)-dimensional N(k)-contact metric manifold that satisfies

$$P(\xi, X) \cdot R = 0$$

then M is locally isometric to the product $E^{n+1} \times S^n(4)$ or is an Einstein manifold. Furthermore if M is an Einstein manifold then $P(\xi, X) \cdot R = 0$. **Proof.** Let M^{2n+1} be an N(k)-contact metric manifold satisfying $P(\xi, X) \cdot R = 0$.

By (2.4), we can write

(3.1)
$$(P(\xi, X) \cdot R)(U, V)W = = P(\xi, X)R(U, V)W - R(P(\xi, X)U, V)W - - R(U, P(\xi, X)V)W - R(U, V)P(\xi, X)W = 0,$$

where $X, U, V, W \in \chi(M)$. Developing the right-hand side of (3.1) and using the hypothesis and (2.18), (2.19), (2.12), (1.2), (2.3) we have

$$\begin{split} kg(R(U,V)W,X)\xi &- \frac{1}{2n}S(X,R(U,V)W)\xi - k^2g(X,U)g(V,W)\xi + \\ &+ k^2g(X,U)\eta(W)V + \frac{k}{2n}S(X,U)g(V,W)\xi - \frac{k}{2n}S(X,U)\eta(W)V + \\ &+ k^2g(X,V)g(U,W)\xi - k^2g(X,V)\eta(W)U - \frac{k}{2n}S(X,V)g(U,W)\xi + \\ &+ \frac{k}{2n}S(X,V)\eta(W)U + k^2g(X,W)\eta(U)V - k^2g(X,W)\eta(V)U + \\ &+ \frac{k}{2n}S(X,W)\eta(V)U - \frac{k}{2n}S(X,W)\eta(U)V = 0. \end{split}$$

Taking the inner product with ξ in (3.2), again using (2.18) and (2.19), we get

$$(3.3) kg(R(U,V)W,X) - \frac{1}{2n}S(X,R(U,V)W) - - k^2g(X,U)g(V,W) + k^2g(X,U)\eta(W)\eta(V) + + \frac{k}{2n}S(X,U)g(V,W) - \frac{k}{2n}S(X,U)\eta(W)\eta(V) + + k^2g(X,V)g(U,W) - k^2g(X,V)\eta(W)\eta(U) - - \frac{k}{2n}S(X,V)g(U,W) + \frac{k}{2n}S(X,V)\eta(W)\eta(U) = 0.$$

136

Substituting U by ξ in (3.3) and using (2.18), we obtain

(3.4)
$$\frac{k}{2n}S(X,V)\eta(W) - k^2g(X,V)\eta(W) = 0.$$

If k = 0 then M^{2n+1} is locally isometric to the product $E^{n+1} \times S^n(4)$. If $k \neq 0$, again substituting W by ξ in (3.4), we get

$$(3.5) S(X,V) = 2nkg(X,V).$$

Thus M^{2n+1} is an Einstein manifold.

Conversely, if M is an Einstein manifold then (3.5) holds by virtue of (2.13). Hence we substitute (3.5) in (2.20) and get $P(\xi, X) \cdot R = 0$. Our theorem is thus proved. \Diamond

Theorem 3. Let a (2n + 1)-dimensional N(k)-contact metric manifold M satisfies

$$R(\xi, X) \cdot P = 0$$

then either M^{2n+1} is locally isometric to the product $E^{n+1} \times S^n(4)$ or M^{2n+1} is an Einstein manifold.

Proof. Let M^{2n+1} be an N(k)-contact metric manifold such that $R(\xi, X) \cdot P = 0$. By (2.4), we get

$$R(\xi, X)P(U, V)W - P(R(\xi, X)U, V)W - - P(U, R(\xi, X)V)W - P(U, V)R(\xi, X)W = 0.$$

Using (1.2), (2.18) and (2.19), we get

(3.6)
$$kg(P(U,V)W,X)\xi - k\eta(P(U,V)W)X - kg(X,U)P(\xi,V)W + k\eta(U)P(X,V)W - kg(X,V)P(U,\xi)W + k\eta(V)P(U,X)W - kg(X,W)P(U,V)\xi + k\eta(W)P(U,V)X = 0.$$

By (2.21), we have

(3.7)
$$kg(P(U,V)W,X)\xi - k\eta(P(U,V)W)X - kg(X,U)P(\xi,V)W + k\eta(U)P(X,V)W - kg(X,V)P(U,\xi)W + k\eta(V)P(U,X)W + k\eta(W)P(U,V)X = 0.$$

Taking the inner product with ξ in (3.7), we get

(3.8)
$$kg(P(U,V)W,X) - k\eta(P(U,V)W)\eta(X) - kg(X,U)\eta(P(\xi,V)W) + k\eta(U)\eta(P(X,V)W) - kg(X,V)\eta(P(U,\xi)W) + k\eta(V)\eta(P(U,X)W) + k\eta(W)\eta(P(U,V)X) = 0.$$

Using (2.12) and (2.19) in (3.8), we get

$$\begin{array}{ll} (3.9) & kg(R(U,V)W,X) - k^2g(X,U)\eta(W)\eta(V) + \\ & + k^2g(X,V)\eta(W)\eta(U) - \frac{k}{2n}S(X,V)\eta(W)\eta(U) + \\ & + \frac{k}{2n}S(X,U)\eta(W)\eta(V) - k\eta(X)g(R(U,V)W,\xi) + \\ & + k\eta(U)g(R(X,V)W,\xi) + k\eta(V)g(R(U,X)W,\xi) + \\ & + k\eta(W)g(R(U,V)X,\xi) - kg(X,U)g(R(\xi,V)W,\xi) + \\ & + kg(X,V)g(R(\xi,U)W,\xi) - \frac{k}{2n}S(X,W)\eta(U)\eta(V) + \\ & + \frac{k}{2n}S(W,U)\eta(X)\eta(V) = 0. \end{array}$$

Let $\{\tilde{e}_i : i = 1, ..., 2n + 1\}$ be an orthonormal ϕ -basis of vector fields in M^{2n+1} . If we put $V = W = \tilde{e}_i$ in (3.9) and sum up with respect to i and using (2.12), (2.13), (2.18) and (2.19), then we get

(3.10)
$$k\left[\left(1+\frac{1}{2n}\right)S(U,X) - (2n+1)kg(U,X)\right] = 0.$$

If k = 0 then M is locally isometric to the product $E^{n+1} \times S^n(4)$. If $k \neq 0$, from (3.10), we have

$$(3.11) S(U,W) = 2nkg(U,W),$$

which means that M^{2n+1} is an Einstein manifold.

Theorem 4. If a (2n+1)-dimensional N(k)-contact metric manifold M satisfies

$$P(\xi, X) \cdot S = 0$$

then either M is locally isometric to the product $E^{n+1} \times S^n(4)$ or M is an Einstein–Sasakian manifold.

Proof. Let M^{2n+1} be an N(k)-contact metric manifold. By the equations (2.8) and (1.2) the condition $P(\xi, X) \cdot S = 0$ turns into

$$(R(\xi, X) \cdot S)(U, V) = \frac{1}{2n} ((\xi \wedge_S X) \cdot S)(U, V) = 0.$$

Hence using Th. 1, we get the result. Thus, our theorem is proved. \Diamond **Theorem 5.** If a (2n+1)-dimensional N(k)-contact metric manifold M satisfies $P(\xi, X) \cdot P = 0$

then the condition

$$S^{2}(X,U) = 4nkS(X,U) - 4n^{2}k^{2}g(X,U),$$

holds on M.

Proof. Let M^{2n+1} be an N(k)-contact metric manifold satisfying $P(\xi, X) \cdot P = 0$. Then we get

$$(P(\xi, X) \cdot P)(U, V)W = P(\xi, X)P(U, V)W - P(P(\xi, X)U, V)W - P(U, P(\xi, X)V)W - P(U, V)P(\xi, X)W = 0.$$

Using (2.4), (2.18) and (2.19) in (3.12), and taking the inner product with ξ we get

$$(3.13) \quad kg(X, R(U, V)W) - \frac{1}{2n}S(X, P(U, V)W) + \frac{k}{2n}g(X, V)S(U, W) - -k^2g(X, U)g(V, W) + \frac{k}{2n}S(X, U)g(V, W) + k^2g(X, V)g(U, W) - -\frac{k}{2n}g(X, V)S(U, W) - \frac{k}{2n}S(X, V)g(U, W) = 0.$$

Let $\{\tilde{e}_i : i = 1, ..., 2n + 1\}$ be a orthonormal ϕ -basis of vector fields in M^{2n+1} . If we put $V = W = \tilde{e}_i$ in (3.13) and sum up with respect to i and using (2.12) and (2.13), then we get

(3.14)
$$S^{2}(X,U) = 4nkS(X,U) - 4n^{2}k^{2}g(X,U).$$

Lemma 1 [10]. Let A be a symmetric (0, 2)-tensor at point x of a semi-Riemannian manifold (M, g), dim $(M) \ge 3$, and let $T = g \land A$ be the Kulkarni-Nomizu product of g and A. Then, the relation

$$T \cdot T = \alpha Q(g, T), \quad \alpha \in \mathbb{R}$$

is satisfied at x if and only if the condition

$$A^2 = \alpha A + \lambda g, \quad \lambda \in \mathbb{R}$$

holds at x.

Corollary 1. Let M^{2n+1} be a N(k)-contact metric manifold satisfying the condition $P(\xi, X) \cdot P = 0$ then $T \cdot T = \alpha Q(g, T)$, where $T = g \overline{\wedge} S$ and $\alpha = 4nk$.

Regarding the concircular curvature tensor we have:

Theorem 6. If a (2n+1)-dimensional non-Sasakian N(k)-contact metric manifold M satisfies

$$P(\xi, X) \cdot Z = 0$$

then either M is locally isometric to the manifold of Ex. 1 or M is an Einstein manifold.

Proof. Let M^{2n+1} be an N(k)-contact metric manifold satisfying $P(\xi, X) \cdot Z = 0$. Then we can write

(3.15)
$$(P(\xi, X) \cdot Z)(U, V)W = = P(\xi, X)Z(U, V)W - Z(P(\xi, X)U, V)W - Z(U, P(\xi, X)V)W - Z(U, V)P(\xi, X)W = 0,$$

where $X, U, V, W \in \chi(M)$. Using (2.18) in (3.15), we have

(3.16)
$$kg(X, Z(U, V)W)\xi - \frac{1}{2n}S(X, Z(U, V)W)\xi - kg(X, U)Z(\xi, V)W + \frac{1}{2n}S(X, U)Z(\xi, V)W - kg(X, V)Z(U, \xi)W + \frac{1}{2n}S(X, V)Z(U, \xi)W - kg(X, W)Z(U, V)\xi + \frac{1}{2n}S(X, W)Z(U, V)\xi = 0.$$

Taking the inner product with ξ in (3.16) and substituting V by ξ and using (2.22) and (2.23), we get

(3.17)
$$\tilde{A}kg(X,U)\eta(W) - \frac{\tilde{A}}{2n}S(X,U)\eta(W) = 0,$$

where $\tilde{A} = k - \frac{\tau}{2n(2n+1)}$. Again substituting W by ξ in (3.17), we get

$$\tilde{A}[kg(X,U) - \frac{1}{2n}S(X,U)] = 0.$$

Therefore either $\tilde{A} = 0$ or

$$S(X,U) = 2nkg(X,U).$$

Thus M^{2n+1} is an Einstein manifold if $\tilde{A} \neq 0$.

If $\tilde{A} = 0$, then we have $\tau = 2n(2n+1)k$. Thus, we recall that the scalar curvature of an N(k)-contact metric manifold is $\tau = 2n(2n-2+k)$. Comparing $k = 1 - \frac{1}{n}$ and hence M is locally isometric to the manifold of Ex. 1 for n > 1 and to the flat case if n = 1.

140

4. Weyl projective recurrent contact metric manifolds

A non-flat Riemannian manifold M is said to be Weyl projective recurrent if the Weyl projective curvature tensor P satisfies the condition

(4.1)
$$\nabla P = A \otimes P,$$

where A is an everywhere non-zero 1-form [12].

Then, we prove the following theorem:

Theorem 7. An N(k)-contact metric manifold with non-vanishing recurrent Weyl curvature tensor does not exist.

Proof. If possible, let M^{2n+1} be an N(k)-contact metric manifold with non-vanishing recurrent Weyl projective curvature tensor. Then from (4.1), we get

$$\nabla_X \nabla_Y P = (XA(Y) + A(X)A(Y))P,$$

which implies that

(4.2)
$$R(X,Y) \cdot P = 2dA(X,Y)P.$$

We define a function f on M^{2n+1} by $f^2 = g(P, P)$, where g is the usual extension to the inner product between the tensor fields. Since Riemannian metric tensor is parallel, by (4.1) and (4.2) it follows that

$$f(Xf) = f^2 A(X),$$

or,

$$(4.3) Xf = fA(X).$$

By (4.3), it follows that

(4.4)
$$2dA(X,Y)f = (XA(Y) - YA(X) - A([X,Y]))f$$
$$= (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]})f$$
$$= 0.$$

Since f is non-vanishing by assumption, the 1-form A has to be closed. Thus, by (4.2) and (4.3) we get $R(X, Y) \cdot P = 0$, which in view of Th. 3 and the assumption non-vanishing of P, shows that M^{2n+1} is locally isometric to the product $E^{n+1} \times S^n(4)$. But $E^{n+1}(0) \times S^n(4)$ satisfies $\nabla P = 0$ [5], hence our assumption is not possible. \Diamond

Acknowledgement. The authors are thankful to the referee for his valuable suggestions in the improvement of the paper.

References

- [1] BAIKOUSSIS, C., BLAIR, D. E. and KOUFOGIORGOS, T.: A decomposition of the curvature tensor of a contact manifold satisfying $R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y)$, Mathematics Technical Report, University of Ioannina, 1992.
- [2] BAIKOUSSIS, C. and KOUFOGIORGOS, T.: On a type of contact manifolds, J. Geom. 46 (1993), 1–9.
- [3] BLAIR, D. E.: Contact manifolds in Riemannian geometry, Lectures Notes in Mathematics 509, Springer-Verlag, Berlin, 1976.
- [4] BLAIR, D. E., KOUFOGIORGOS, T. and PAPANTONIOU, B. J.: Contact metric manifolds satisfying a nullity condition, *Israel Journal of Math.* 91 (1995), 189–214.
- [5] BLAIR, D. E.: Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, Boston, Inc., Boston, MA, 2002.
- [6] BLAIR, D. E., KIM, J. S. and TRIPATHI, M. M.: On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42 (2005), 883–892.
- [7] BOECKX, E.: A full classification of contact metric (k, μ)-spaces, Illinois J. Math. 44 (2000), 212–219.
- [8] CHAKI, M. C. and TARAFDAR, M.: On a type of Sasakian manifolds, Soochow J. Math. 16 (1990), 23–28.
- [9] DE, U. C., KIM, Y. H. and SHAIKH, A. A.: Contact metric manifolds with ξ belonging to the (k, μ)-nullity distribution, *Indian J. of Math.* 47 (2005), 295– 304.
- [10] DESZCZ, R., VERSTRAELEN, L. and YAPRAK, Ş.: Warped Products realizing a certain condition of Pseudosymmetry type imposed on the Weyl curavture tensor, *Chinese J. Math.* 22 (1994), no. 2, 139–157.
- [11] KOWALSKI, O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, Czechoslovak Math. J. 46 (1996), 427–474.
- [12] MISHRA, R. S. and POKHARIYAL, G. P.: Curvature tensors in Riemannian manifold, *Indian J. of Pure and Appl. Math.* 2 (1971), 529–532.
- [13] PAPANTONIOU, B. J.: Contact Riemannian manifolds satisfying $R(\xi, X) \cdot R = 0$ and $\xi \in (k, \mu)$ -nullity distribution, Yokohama Math. J. **40** (1993), 149–161.
- [14] PERRONE, D.: Contact Riemannian manifolds satisfying $R(X, \xi) \cdot R = 0$, Yokohama Math. J. **39** (1992), no. 2, 141–149.
- [15] SZABO, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X, Y) \cdot R = 0$, I, Local version, J. Diff. Geo. 17 (1982), 531–582.
- [16] TANNO, S.: Ricci Curvatures of Contact Riemannian manifolds, *Tohoku Math. J.* 40 (1988), 441–448.