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1. Introduction

In 1939 for the two-dimensional trigonometric Fourier partial sums
S; ;i (f) Marcinkiewicz [4] has proved that for f € Llog L([0,27]?) the
means

o =28 ()

converge a.e. to f as n — oo. Zhizhiashvili [9] improved this result and
proved that for f € L;([0,27]?) the (C, a)-means

(0% 1 - a—
O-nf:EZAn—;SjJ(f)u a>0
converge a.e. to f as n — oo.
For the Marcinkiewicz—Fejér means of the two-dimensional Walsh—
Fourier series Weisz [8] proved that the following is true
Theorem A (Weisz). Let p > 2/3. Then the mazimal operators o}

and 52" are bounded from the Hardy space H, (G x G) to the space
L,(GxG@Q).

The second author [1] generalized the theorem of Weisz for the d-
dimensional Walsh—Fourier series and proved that the maximal operator
olis bounded from the d-dimensional dyadic martingale Hardy space
H, (G x ---x G) to the space L, (G x ---x G) for p > d/(d+1) and
is of weak type (1,1). We also proved [2] that for the boundedness of
the maximal operator o! from the Hardy space H, (G x --- x G) to the
space L, (G x --- x G) the assumption p > d/ (1 + d) is essential.

In [3] it is proved that the maximal operators 02 (0 < o < 1) of the
(C, @) means of cubical partial sums of the d-dimensional Walsh—Fourier
series is bounded from the d-dimensional dyadic martingale Hardy space
H, (G x --- x G) to the space L, (G x ---x @), when p > d/(d+ «)
and for the boundedness of the maximal operator ¢¢ from the Hardy
space H, (G x --- x G) to the space L, (G X ---x G) the assumption
p > d/ (a+d) is essential. It is easy to show that (see Weisz [8]) the
conjugate maximal operators 52" (0 < o < 1) of the (C,a) means of
cubical partial sums of the d-dimensional Walsh—Fourier series is bounded
from the d-dimensional dyadic martingale Hardy space H, (G x - -- x G)
to the space L, (G X --- X G), when p > d/ (d + «).

In this paper we prove that for every 0 < p <d/(d+a),0 <a <1
there exists a martingale f € H, (G x --- x G) such that
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[520f]], = +oo.

We note that in case @« = 1 and d = 2 above mentioned result
contains answer to the question of Weisz [8].

2. Dyadic Hardy spaces and conjugate transforms

Let P denote the set of positive integers, N := P U {0}. Denote
Zs the discrete cyclic group of order 2, that is Zy = {0, 1}, where the
group operation is the modulo 2 addition and every subset is open. The
Haar measure on Z; is given such that the measure of a singleton is
1/2. Let G be the complete direct product of the countable infinite
copies of the compact groups Z5. The elements of G are of the form z =
= (To,T1,. .., Tp,...) with 2, € {0,1} (k € N). The group operation on
G is the coordinate-wise addition, the measure (denote by p) and the
topology are the product measure and topology. The compact Abelian
group G is called the Walsh group. A base for the neighborhoods of G
can be given in the following way:
Iy(x) =G, I,(x):= I,(xo,...,Tp_1):=

={yeG:y=(20, -, Tn-1,Yn>Ynit, --)} (x € G,n eN).

These sets are called the dyadic intervals. Let 0 = (0: 7 € N) € G denote
the null element of G, I, := I, (0) (n € N).

For k € N and x € GG denote

i (x) = (=1)™

the k-th Rademacher function.

The dyadic d-dimensional rectangles are of the form

Iy (xq, ..o xq) =1 (1) X - X I, (x4)
The o-algebra generated by the dyadic rectangles
{In(,fl,...,l’d) : (1’1,...,.1361) eGx--- XG}

is denoted by F,.

The norm (or quasinorm) of the space L, (G X --- x G) is defined

1/p

by
Hf”p = (C / |f(.f1}'1’...7$‘d)‘pdﬂ(,f17...’$d) (0<p<+OO>
X XG

Denote by f = ( f™M neN ) one parameter martingale with re-
spect to (F,,n € N) (for details see, e.g. [6, 7]). The maximal function
of a martingale f is defined by
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= sup | /]
neN

In case f € L (G x -+ x @), the maximal function can also be
given by
(e, xq) =

1
= sup
neN U ([n(xla ce >$d))

/ flug, .. ug)dp (ug, ... uqv)|,

In(z1,...,2q)

(x1,...,2q4) € G X -+ X G.
For 0 < p < oo the Hardy martingale space H,(G x - - - X G) consists
of all martingales for which
11, = 1171l < o0

For a martingale

f~ Z (f(n) _ f(n—l))
n=0

the conjugate transforms are defined by the martingale

FO Yy S @) (10 = 7).
n=1
where t € G is fixed. Note that ]7(0) = f. As is well known, if f is
an integrable function, then conjugate transforms f® do exist almost
everywhere, but they are not integrable in general.

3. Walsh system and (C, o) means

Let n € N, then n = Y n;2', where n; € {0,1} (i € N), i.e. n
i=0
is expressed in the number system of base 2. Denote |n| := max{j €
€ N :n; # 0}, that is, 2I"l < n < 2lni+1,
The Walsh—Paley system is defined as the sequence of Walsh—Paley
functions:

. n|—1
w, (@) = [T 0 (@)™ = 1oy () (1) & (eGneP).

The Walsh—Dirichlet kernel is defined by

D, (z) = iwk (x).
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Recall that ([5])

o ifxel,
(1) Dz () = { 0 ifzeG\IL.

The rectangular partial sums of the d-dimensional Walsh—Fourier

series are defined as follows:
Mi—1  Mg—1

d
Suttef @) i= 30 o S Fliveeevia) [ ws, (7).
11=0 1q=0 Jj=1
where the number

d
Flir ig) = / F . oed) [ ws, (w5) dp (2, - 0)
Gx--xG J=1

is said to be the (i, - - - ,i4)th Walsh—Fourier coefficient of the function f.
If feLi(Gx---xG) then it is easy to show that the sequence

(San.on (f) :n € N) is a martingale. If f is a martingale, that is f =

= (f™ : n € N) then the Walsh-Fourier coefficients must be defined in

a little bit different way:

(2)
f(il,--- ,iq) = lim / f® (a:l,...,xd)Hwij () dp (z1,...,24q) .

The Walsh-Fourier coefficients of f € L; (G x ---x G) are the
same as the ones of the martingale (San _on (f): n€N) obtained from f.

.....

For n = 1,2,... and martingale f the (C,«)-mean of order n of

the d-dimensional Walsh—Fourier series of f is given by

1 n
O'zf(flfl,...,flfd) = Ag_l ;Az:;s‘] ..... jf(xlv"wxd)v
where
1 2) ...
A% — (”‘:LO‘) _ (at]) (ot ') (@+n) eN az-1-2. ).

n!

It is known that (see Zygmund [10])
(3) AY ~n® (n€N).

It is evident that
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O'gf(l’l, Ce ,l’d) =

= / flur, ..o ug) K (o1 +ug, .o xg +ug) dp (ug, ..y ug)
Gx-xXG
where

Kfj(xl,...,xd): ! ZAO‘ lI_ID (z;) .

"_1]1

Let
£0,..0 =T0s Piy,.ig = Tj

if i € {0,1,...,29 — 1} and at least one i; € {2771, ... 27 — 1}.
Then (M, ..., My)th partial sums of the conjugate transforms is
given by
Mi—1  Mg—1

§J(\f}1,__.7Mdf(:c1,..., Z Z iy i Fi, .., szj ;).

i1=0 ig=0

The conjugate (C, a)-means of a martingale f are mtroduced by

O'n7(t)f(x17---7xd): > ZAn ;S] f(xlv”’axd)‘
n—1 ;-1

-1z

It is evident that 5o f=0f.

The maximal operator and the conjugate maximal operator are
defined by

ot f =sup|odf], 720 f =supla>?f].
n n

A bounded measurable function a is a p-atom, if there exists a
dyadic d-dimensional cube I x --- x I, such that

a) [ adp=0;

Ix--xI

b) llall,, < (I % -+ x 1)1,

c)suppa C I x---x 1.

The basic result of atomic decomposition is the following one.
Theorem A (Weisz [7]). A martingale f = (f™ :n € N) is in H,
(0 < p <1)if and only if there exists a sequence (ay, k € N) of p-atoms
and a sequence (g, k € N) of real numbers such that for every n € N,

(4) S S, anar = O,
k=0
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o
> lpl? < oo
k=0

Moreover,

s 1/p
1/l ~ inf <Z |Mk|”> :
k=0

4. Main result

Theorem 1. Let 0 < p < d/(d+ «). Then there ezists a martingale
feH,(Gx---xQG) such that

‘ 53’(t)pr = +400.
Corollary 1. Let 0 < p < d/(d+ «). Then there erxists a martingale

feH,(Gx---xQ) such that
lo £, = +o0

5. Proof of main result

Proof of Theorem 1. Let {m; : k € P} be an increasing sequence of
positive integers such that

=1
(5) —<OO,
2

k—1 92myd/p 92myd/p

7 <
( ) mg—1 my
Let
f(A) (1’1,...,l’d) = Z )\kak (ZL’l,...,ZL'd),
{k:2m <A}
d
where A\, := — and

my
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d
j=1
It is easy to show that the martingale f:=(f©), f&, ... f), ) €
H, (G x ---x G). Indeed, since

||ak|| — 22d(1/p—1)mk—d22mkd+d — 22mkd/p — (supp (ak))—l/P’
SZA ..... 240 (xlv"wxd) - { ay, A>2mk )
f(A)(xla"wxd): Z )‘kak(xlv"wxd):
{k'2mk<A}
= Z)\kS2A ..... 24 (xla"wxd)
k=0
from (5) and Th. A we conclude that f € H, (G x --- x G).
Let g = 224 + 2%, A > s. We write (s < my,)
22mk 1
~a gt
(8) o—q7;fgsf(x1, ) » Z Aqu e ]()Jf (x1,...,2q) +
ka s —
qmy,s

1
+r ZA;YL;S ]S](,t, f($1""7$d):

‘hnk,s_l j:22mk

=1+1I.

Let (j1,. ..,jd)€{22mk,...,22mk+1—1} X e X {22””%, ) ..,22mk+1—1} for
some k € P. Then

2d(1/p—1)my,
. . _ 1 A(A) . . :27
(9) f(]1a~~~>]d) Algfolof (]1,--~,]d) o
and
(10) J/C\(]ba]d)zo

i Gty oy ga) @ {22, 22t Y f22me | 92mitl 1) ke P,
Let j < 22™ . Then from (6), (9) and (10) we have
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Q(®)
‘Sj,...,jf (ZL’l, e ,[L’d)
k—1 22ml+1 1 22ml+1 d
= E 2ml E E f Ulu"'vvd)vaj (xj)
=0 U1_22ml vd_22ml ]:1
fe— 2 my+1_ 1 22ml+1
SIS =
=0 v= 22ml vg= 22ml
k=122t 22t 22d(1/P—1)m
<2 Z =
- m,
=0 1=2 vd:22ml !
k=1 52d(1/p—1
_y 20/
m
1=0 !
k=1 52d 2 d
92dmy /p 92my_1d/p
= <2
— U mME—1
Consequently
1 22k —1 92my_1d/p+1 92my_1d/p
) <3 > s < ¢la) —
Gmy,s—1 =1 k—1 k—1
For 2?™ < j < g,,, s we have the following
o) _
S],,]f (Il, c .. ’xd> —
k—1 22mp+1_1 22my+1_1 d
- Tom, (t) § o E .f (Ula >’Ud) H qu (xq) +
=0 v1 _22ml vd_22ml q:l
j—1 j—1 d
+ Tom, (1) E e E f(v,...,vq) H Wy, (Tq) =
:22"’% :22mk q=1
2m;+1 2my;+1_
kol Pl 2 g1 fp—1ym, 4
= Tom, (t g E I § R (7q) +
=0 1)1_22"”l ’l)d—22ml l q:l
Tom, ( )22d(1/p 1)m

SO o | CHES

mig
V1= =22my vg= =22mp q=1
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N

1 d
. 1) 92d(1/p—1)m
_ T2 1 ( ) H D22mz+1 .fl)'q D22ml (xq)] +

l 1

i
o

q
() 2241 /p=1)m d
4 e 2L T (D), (1) — D ()],

g=1

This gives that

(12)
qmy,s k-1 2d(1/p—1)my
1 Z a—1 Tom, (t) 2
]I Aa AQWLk,S—j Z ml %

qus lj 22mk =0

d
X H D22ml+1 :I:q D22ml (Zlfq)] ‘I’
q=1

ka,s d

Tom, (1) 92d(1/p—1)my, 1 o
L — o 2 Aty [11D) (20) = Do ()]
Gmy,,s—1 j=22mk q=1

=11+ 11,.

To discuss Iy, we use (6) and Dgn < 2". Thus we can write

??‘
>_.

92d(1/p—1)m d

(13) |IL] < Z H | Doz 1 (£4) — Doy ()]
=0 q=1

-1 92d(1/p—1)my 92dmy_1/p

clo — A e
@ <o)

VAN

From fo;’(t) f(x1,...,xq) =1+ 11, + 115 and (11), (13) we have

mp,s
ot 92dmy_1/p
(14) (500 f (v, )| = 1| = 1] = |[5] = 15| — ¢ (a)
' mE—1
Since D; g2m, = Dozmy. + wozm, D; for 11, we have
(15)
22s d
Tom (t) 22d(1/p—1)mk 1 N
.[]2 = k -~ AO‘ ZA2261 H D] (Iq) w22mk (,’,Uq> =

qmy,s—1 j—p q=1
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T9my, (t) 22d(1/p—1)mk 1

d
- m Ao Hszmk (xQ)AgZ"—l ;23(']:17 "’7xd>-
k

ka,s—l q=1

Combining (14) and (15) we can write

(16) (50 f (o1, swa)| >

qmy,s
22d(1/p—1)mk—2mka 22dmk,1/p

> c(a) o A | Ko (1, )| = el

Let (Ila ceey xd) € ([25\128—‘,-1) X oo X (128\[25-}-1)- Then lt is evident
that
Agz"—l |K§25 (Ila s 7$d)| > C(Oé) 22S(d+a).

Consequently, from (7) and (16) we have

22d(1/p—1)mk—2mko¢ omy
goo® ‘ > 92s(d+a) _
O-ka,sf (xh ,,’,Ud) ZC (Oé) my, & (Oé) my ’
[ @Os )
Gx---xG

mp—1
> Z / (53’(t)f (21, .. ,xd))p dp >

mk—l )
/ (53,;525f(x1,...,xd)) dp >

JT2e\ T2 1) %% (Taa\T2e 1)

(V3
ii
0T

mE 1 2my,(d/p—(a+d)) P
]_ 2 k\a/p
> 22s(d+a) >
> c(a) % 5o [ o >
=l
my—1 2my, (d—p(d+a))
2 k P
> C(Oé) Z 223((d+a)p—d) 5
%) o
cla)ymy, ", p= g
oy (d—p(d+a)) g4 —00 ask— 00
c(a)img , 0<p< g5

The proof of Th. 1 is complete. ¢
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