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1. Introduction

In 1939 for the two-dimensional trigonometric Fourier partial sums
Sj,j (f) Marcinkiewicz [4] has proved that for f ∈ L log L([0, 2π]2) the
means

σ1
nf =

1

n

n∑

j=1

Sj,j (f)

converge a.e. to f as n → ∞. Zhizhiashvili [9] improved this result and
proved that for f ∈ L1([0, 2π]2) the (C, α)-means

σα
nf =

1

Aα
n

n∑

j=0

Aα−1
n−jSj,j (f) , α > 0

converge a.e. to f as n → ∞.
For the Marcinkiewicz–Fejér means of the two-dimensional Walsh–

Fourier series Weisz [8] proved that the following is true

Theorem A (Weisz). Let p > 2/3. Then the maximal operators σ1
∗

and σ̃
1,(t)
∗ are bounded from the Hardy space Hp (G × G) to the space

Lp (G × G) .

The second author [1] generalized the theorem of Weisz for the d-
dimensional Walsh–Fourier series and proved that the maximal operator
σ1
∗ is bounded from the d-dimensional dyadic martingale Hardy space

Hp (G × · · · × G) to the space Lp (G × · · · × G) for p > d/ (d + 1) and
is of weak type (1,1). We also proved [2] that for the boundedness of
the maximal operator σ1

∗ from the Hardy space Hp (G × · · · × G) to the
space Lp (G × · · · × G) the assumption p > d/ (1 + d) is essential.

In [3] it is proved that the maximal operators σα
∗ (0 < α < 1) of the

(C, α) means of cubical partial sums of the d-dimensional Walsh–Fourier
series is bounded from the d-dimensional dyadic martingale Hardy space
Hp (G × · · · × G) to the space Lp (G × · · · × G), when p > d/ (d + α)
and for the boundedness of the maximal operator σα

∗ from the Hardy
space Hp (G × · · · × G) to the space Lp (G × · · · × G) the assumption
p > d/ (α + d) is essential. It is easy to show that (see Weisz [8]) the

conjugate maximal operators σ̃
α,(t)
∗ (0 < α ≤ 1) of the (C, α) means of

cubical partial sums of the d-dimensional Walsh–Fourier series is bounded
from the d-dimensional dyadic martingale Hardy space Hp (G × · · · × G)
to the space Lp (G × · · · × G), when p > d/ (d + α) .

In this paper we prove that for every 0 < p ≤ d/ (d + α) , 0 < α ≤ 1
there exists a martingale f ∈ Hp (G × · · · × G) such that
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∥∥σ̃α,(t)
∗ f

∥∥
p

= +∞.

We note that in case α = 1 and d = 2 above mentioned result
contains answer to the question of Weisz [8].

2. Dyadic Hardy spaces and conjugate transforms

Let P denote the set of positive integers, N := P ∪ {0}. Denote
Z2 the discrete cyclic group of order 2, that is Z2 = {0, 1}, where the
group operation is the modulo 2 addition and every subset is open. The
Haar measure on Z2 is given such that the measure of a singleton is
1/2. Let G be the complete direct product of the countable infinite
copies of the compact groups Z2. The elements of G are of the form x =
= (x0, x1, . . . , xk, . . . ) with xk ∈ {0, 1} (k ∈ N) . The group operation on
G is the coordinate-wise addition, the measure (denote by µ) and the
topology are the product measure and topology. The compact Abelian
group G is called the Walsh group. A base for the neighborhoods of G
can be given in the following way:

I0 (x) := G, In (x) := In (x0, . . . , xn−1) :=

:= {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . . )} (x ∈ G, n ∈ N) .

These sets are called the dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote
the null element of G, In := In (0) (n ∈ N) .

For k ∈ N and x ∈ G denote
rk (x) := (−1)xk

the k-th Rademacher function.
The dyadic d-dimensional rectangles are of the form

In (x1, . . . , xd) := In (x1) × · · · × In (xd) .

The σ-algebra generated by the dyadic rectangles
{In (x1, . . . , xd) : (x1, . . . , xd) ∈ G × · · · × G}

is denoted by Fn.
The norm (or quasinorm) of the space Lp (G × · · · × G) is defined

by

‖f‖p :=




∫

G×···×G

|f (x1, . . . , xd)|
p dµ (x1, . . . , xd)




1/p

(0 < p < +∞) .

Denote by f =
(
f (n), n ∈ N

)
one parameter martingale with re-

spect to (Fn, n ∈ N) (for details see, e.g. [6, 7]). The maximal function
of a martingale f is defined by
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f ∗ = sup
n∈N

∣∣f (n)
∣∣ .

In case f ∈ L1 (G × · · · × G), the maximal function can also be
given by

f ∗ (x1, . . . , xd) =

= sup
n∈N

1

µ (In(x1, . . . , xd))

∣∣∣∣
∫

In(x1,...,xd)

f (u1, . . . , ud) dµ (u1, . . . , udv)

∣∣∣∣,

(x1, . . . , xd) ∈ G × · · · × G.

For 0 < p < ∞ the Hardy martingale space Hp(G×· · ·×G) consists
of all martingales for which

‖f‖Hp
:= ‖f ∗‖p < ∞.

For a martingale

f ∼

∞∑

n=0

(
f (n) − f (n−1)

)

the conjugate transforms are defined by the martingale

f̃ (t) ∼

∞∑

n=1

rn (t)
(
f (n) − f (n−1)

)
,

where t ∈ G is fixed. Note that f̃ (0) = f. As is well known, if f is
an integrable function, then conjugate transforms f̃ (t) do exist almost
everywhere, but they are not integrable in general.

3. Walsh system and (C, α) means

Let n ∈ N, then n =
∞∑
i=0

ni2
i, where ni ∈ {0, 1} (i ∈ N), i.e. n

is expressed in the number system of base 2. Denote |n| := max{j ∈
∈ N :nj 6= 0}, that is, 2|n| ≤ n < 2|n|+1.

The Walsh–Paley system is defined as the sequence of Walsh–Paley
functions:

wn (x) :=
∞∏

k=0

(rk (x))nk = r|n| (x) (−1)

|n|−1∑
k=0

nkxk

(x ∈ G, n ∈ P) .

The Walsh–Dirichlet kernel is defined by

Dn (x) =

n−1∑

k=0

wk (x) .
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Recall that ([5])

(1) D2n (x) =

{
2n if x ∈ In,
0 if x ∈ G\In.

The rectangular partial sums of the d-dimensional Walsh–Fourier
series are defined as follows:

SM1,...,Md
f (x1, . . . , xd) :=

M1−1∑

i1=0

· · ·

Md−1∑

id=0

f̂ (i1, · · · , id)
d∏

j=1

wij (xj) ,

where the number

f̂ (i1, · · · , id) =

∫

G×···×G

f (x1, . . . , xd)

d∏

j=1

wij (xj) dµ (x1, . . . , xd)

is said to be the (i1, · · · , id)th Walsh–Fourier coefficient of the function f.
If f ∈ L1 (G × · · · × G) then it is easy to show that the sequence

(S2n,...,2n (f) : n ∈ N) is a martingale. If f is a martingale, that is f =
= (f (n) : n ∈ N) then the Walsh–Fourier coefficients must be defined in
a little bit different way:
(2)

f̂ (i1, · · · , id) = lim
k→∞

∫

G×···×G

f (k) (x1, . . . , xd)

d∏

j=1

wij (xj) dµ (x1, . . . , xd) .

The Walsh–Fourier coefficients of f ∈ L1 (G × · · · × G) are the
same as the ones of the martingale (S2n,...,2n (f) : n∈N) obtained from f .

For n = 1, 2, . . . and martingale f the (C, α)-mean of order n of
the d-dimensional Walsh–Fourier series of f is given by

σα
nf(x1, . . . , xd) =

1

Aα
n−1

n∑

j=1

Aα−1
n−jSj,...,jf(x1, . . . , xd),

where

Aα
n :=

(
n + α

n

)
=

(α+1) (α+2) · · · (α+n)

n!
(n∈N, α 6= −1,−2, . . . ).

It is known that (see Zygmund [10])

(3) Aα
n ∼ nα (n ∈ N) .

It is evident that
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σα
nf(x1, . . . , xd) =

=

∫

G×···×G

f (u1, . . . , ud) Kα
n (x1 + u1, . . . , xd + ud) dµ (u1, . . . , ud) ,

where

Kα
n (x1, . . . , xd) =

1

Aα
n−1

n∑

j=1

Aα−1
n−j

d∏

i=1

Dj (xi) .

Let
ρ0,...,0 = r0, ρi1,...,id = rj

if ik ∈ {0, 1, . . . , 2j − 1} and at least one il ∈ {2j−1, . . . , 2j − 1}.
Then (M1, . . . , Md)th partial sums of the conjugate transforms is

given by

S̃
(t)
M1,...,Md

f (x1, . . . , xd) :=

M1−1∑

i1=0

· · ·

Md−1∑

id=0

ρi1,...,id (t) f̂ (i1, . . . , id)
d∏

j=1

wij (xj) .

The conjugate (C, α)-means of a martingale f are introduced by

σ̃α,(t)
n f(x1, . . . , xd) =

1

Aα
n−1

n∑

j=1

Aα−1
n−j S̃

(t)
j,...,jf(x1, . . . , xd).

It is evident that σ̃
α,(0)
n f = σα

nf.
The maximal operator and the conjugate maximal operator are

defined by

σα
∗ f = sup

n
|σα

nf |, σ̃α,(t)
∗ f = sup

n
|σ̃α,(t)

n f |.

A bounded measurable function a is a p-atom, if there exists a
dyadic d-dimensional cube I × · · · × I, such that

a)
∫

I×···×I

adµ = 0;

b) ‖a‖∞ ≤ µ(I × · · · × I)−1/p;
c) supp a ⊂ I × · · · × I.
The basic result of atomic decomposition is the following one.

Theorem A (Weisz [7]). A martingale f =
(
f (n) : n ∈ N

)
is in Hp

(0 < p ≤ 1) if and only if there exists a sequence (ak, k ∈ N) of p-atoms

and a sequence (µk, k ∈ N) of real numbers such that for every n ∈ N,

(4)

∞∑

k=0

µkS2n,...,2nak = f (n),
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∞∑

k=0

|µk|
p < ∞.

Moreover,

‖f‖Hp
∼ inf

(
∞∑

k=0

|µk|
p

)1/p

.

4. Main result

Theorem 1. Let 0 < p ≤ d/ (d + α). Then there exists a martingale

f ∈ Hp (G × · · · × G) such that∥∥σ̃α,(t)
∗ f

∥∥
p

= +∞.

Corollary 1. Let 0 < p ≤ d/ (d + α). Then there exists a martingale

f ∈ Hp (G × · · · × G) such that

‖σα
∗ f‖p = +∞

5. Proof of main result

Proof of Theorem 1. Let {mk : k ∈ P} be an increasing sequence of
positive integers such that

(5)

∞∑

k=1

1

mp
k

< ∞,

(6)
k−1∑

l=0

22mld/p

ml
<

22mkd/p

mk
,

(7)
22dmk−1/p

mk−1
<

2mk

mk
.

Let

f (A) (x1, . . . , xd) :=
∑

{k:2mk<A}

λkak (x1, . . . , xd) ,

where λk :=
2d

mk
and
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ak (x1, . . . , xd) := 22d(1/p−1)mk−d
d∏

j=1

(D22mk+1 (xj) − D22mk (xj)) .

It is easy to show that the martingale f :=
(
f (0), f (1), . . . , f (A), . . .

)
∈

∈ Hp (G × · · · × G). Indeed, since

‖ak‖∞ = 22d(1/p−1)mk−d22mkd+d = 22mkd/p = (supp (ak))
−1/p ,

S2A,...,2Aak (x1, . . . , xd) =

{
0, A ≤ 2mk

ak, A > 2mk
,

f (A) (x1, . . . , xd) =
∑

{k:2mk<A}

λkak (x1, . . . , xd) =

=
∞∑

k=0

λkS2A,...,2Aak (x1, . . . , xd)

from (5) and Th. A we conclude that f ∈ Hp (G × · · · × G) .
Let qA,s = 22A + 22s, A > s. We write (s < mk)

σ̃α,(t)
qmk,s

f(x1, ..., xd) =
1

Aα
qmk,s−1

22mk−1∑

j=1

Aα−1
qmk,s−jS̃

(t)
j,...,jf (x1, . . . , xd) +(8)

+
1

Aα
qmk,s−1

qmk,s∑

j=22mk

Aα−1
qmk,s−jS̃

(t)
j,...,jf(x1, . . . , xd)=

= I + II.

Let (j1, . . . , jd)∈{22mk , . . . , 22mk+1−1} × · · · × {22mk , . . . , 22mk+1−1} for
some k ∈ P. Then

(9) f̂ (j1, . . . , jd) = lim
A→∞

f̂ (A) (j1, . . . , jd) =
22d(1/p−1)mk

mk

and

(10) f̂ (j1, . . . , jd) = 0

if (j1, . . . , jd) /∈{22mk , . . . , 22mk+1−1}×· · ·×{22mk , . . . , 22mk+1−1}, k∈P.
Let j < 22mk . Then from (6), (9) and (10) we have
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∣∣∣S̃(t)
j,...,jf (x1, . . . , xd)

∣∣∣ =

=

∣∣∣∣∣∣

k−1∑

l=0

r2ml
(t)

22ml+1−1∑

v1=22ml

· · ·

22ml+1−1∑

vd=22ml

f̂ (v1, . . . , vd)

d∏

j=1

wvj
(xj)

∣∣∣∣∣∣
≤

≤
k−1∑

l=0

22ml+1−1∑

v1=22ml

· · ·
22ml+1−1∑

vd=22ml

∣∣∣f̂ (v1, . . . , vd)
∣∣∣ ≤

≤

k−1∑

l=0

22ml+1−1∑

v1=22ml

· · ·

22ml+1−1∑

vd=22ml

22d(1/p−1)ml

ml
=

=
k−1∑

l=0

22d(1/p−1)ml

ml

22mld =

=

k−1∑

l=0

22dml/p

ml
< 2

22mk−1d/p

mk−1
.

Consequently

(11) I ≤
1

Aα
qmk,s−1

22mk−1∑

j=1

Aα−1
qmk,s−j

22mk−1d/p+1

mk−1

≤ c (α)
22mk−1d/p

mk−1

.

For 22mk ≤ j < qmk ,s we have the following

S̃
(t)
j,...,jf (x1, . . . , xd) =

=

k−1∑

l=0

r2ml
(t)

22ml+1−1∑

v1=22ml

· · ·

22ml+1−1∑

vd=22ml

f̂ (v1, . . . , vd)

d∏

q=1

wvq
(xq)+

+ r2mk
(t)

j−1∑

v1=22mk

· · ·

j−1∑

vd=22mk

f̂ (v1, . . . , vd)
d∏

q=1

wvq
(xq) =

=
k−1∑

l=0

r2ml
(t)

22ml+1−1∑

v1=22ml

· · ·
22ml+1−1∑

vd=22ml

22d(1/p−1)ml

ml

d∏

q=1

wvq
(xq)+

+
r2mk

(t) 22d(1/p−1)mk

mk

j−1∑

v1=22mk

· · ·

j−1∑

vd=22mk

d∏

q=1

wvq
(xq) =
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=

k−1∑

l=0

r2ml
(t) 22d(1/p−1)ml

ml

d∏

q=1

[D22ml+1 (xq) − D22ml (xq)] +

+
r2mk

(t) 22d(1/p−1)mk

mk

d∏

q=1

[Dj (xq) − D22mk (xq)] ,

This gives that

II =
1

Aα
qmk,s−1

qmk,s∑

j=22mk

Aα−1
qmk,s−j

k−1∑

l=0

r2ml
(t) 22d(1/p−1)ml

ml
×

(12)

×

d∏

q=1

[D22ml+1 (xq) − D22ml (xq)]+

+
r2mk

(t) 22d(1/p−1)mk

mk

1

Aα
qmk,s−1

qmk,s∑

j=22mk

Aα−1
qmk,s−j

d∏

q=1

[Dj (xq)−D22ml (xq)]

= II1 + II2.

To discuss II1, we use (6) and D2n ≤ 2n. Thus we can write

|II1| ≤ c (α)

k−1∑

l=0

22d(1/p−1)ml

ml

d∏

q=1

|D22ml+1 (xq) − D22ml (xq)|(13)

≤ c (α)
k−1∑

l=0

22d(1/p−1)ml

ml

22mld ≤ c (α)
22dmk−1/p

mk−1

.

From σ̃
α,(t)
qmk,sf (x1, . . . , xd) = I + II1 + II2 and (11), (13) we have

(14)
∣∣∣σ̃α,(t)

qmk,s
f (x1, . . . , xd)

∣∣∣ ≥ |II2| − |I| − |II1| ≥ |II2| − c (α)
22dmk−1/p

mk−1
.

Since Dj+22mk = D22mk + w22mk Dj for II2 we have

II2 =
r2mk

(t) 22d(1/p−1)mk

mk

1

Aα
qmk,s−1

22s∑

j=0

Aα−1
22s−j

d∏

q=1

Dj (xq) w22mk (xq) =

(15)
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=
r2mk

(t) 22d(1/p−1)mk

mk

1

Aα
qmk,s−1

d∏

q=1

w22mk (xq)A
α
22s−1K

α
22s(x1, ..., xd).

Combining (14) and (15) we can write

∣∣∣σ̃α,(t)
qmk,s

f (x1, . . . , xd)
∣∣∣ ≥(16)

≥c(α)
22d(1/p−1)mk−2mkα

mk

Aα
22s−1|K

α
22s (x1, . . . , xd)|−c(α)

22dmk−1/p

mk−1

.

Let (x1, . . . , xd) ∈ (I2s\I2s+1)× · · ·× (I2s\I2s+1). Then it is evident
that

Aα
22s−1 |K

α
22s (x1, . . . , xd)| ≥ c (α) 22s(d+α).

Consequently, from (7) and (16) we have
∣∣∣σ̃α,(t)

qmk,s
f (x1, . . . , xd)

∣∣∣ ≥ c (α)
22d(1/p−1)mk−2mkα

mk
22s(d+α) − c (α)

2mk

mk
,

∫

G×···×G

(
σ̃α,(t)
∗ f (x1, . . . , xd)

)p
dµ ≥

≥

mk−1∑

s=[mk
2 ]

∫

(I2s\I2s+1)×···×(I2s\I2s+1)

(
σ̃α,(t)
∗ f (x1, . . . , xd)

)p
dµ ≥

≥

mk−1∑

s=[mk
2 ]

∫

(I2s\I2s+1)×···×(I2s\I2s+1)

(
σ̃α,(t)

qmk,s
f (x1, . . . , xd)

)p

dµ ≥

≥ c (α)

mk−1∑

s=[mk
2 ]

1

22sd

[
22mk(d/p−(α+d))

mk
22s(d+α)

]p

≥

≥ c (α)

mk−1∑

s=[mk
2 ]

22s((d+α)p−d) 2
2mk(d−p(d+α))

mp
k

≥

≥

{
c (α)m1−p

k , p = d
d+α

c (α) 2mk(d−p(d+α))

mp
k

, 0 < p < d
d+α

→ ∞ as k → ∞.

The proof of Th. 1 is complete. ♦
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