Mathematica Pannonica

21/1 (2010), 65-76

THE MARTINGALE HARDY TYPE INEQUALITY FOR THE MAXIMAL OPERATOR OF THE (C, α) MEANS OF CUBIC PARTIAL SUMS OF THE d DIMENSIONAL CONJUGATE WALSHFOURIER SERIES

István Blahota
Institute of Mathematics and Computer Science, College of Nyíregyháza, P.O. Box 166, Nyíregyháza, H-4400 Hungary
Ushangi Goginava
Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia

Received: May 2009
MSC 2000: 42 C 10
Keywords: Multiple Walsh-Fourier series, Hardy space, Cesàro means.

Abstract

The main aim of this paper is to prove that for any $0<p \leq d /$ $/(d+\alpha)$ there exists a martingale $f \in H_{p}$ such that the maximal operators of (C, α) means of cubic partial sums of d-dimensional conjugate Walsh-Fourier series do not belong to the space L_{p}.

[^0]
1. Introduction

In 1939 for the two-dimensional trigonometric Fourier partial sums $S_{j, j}(f)$ Marcinkiewicz [4] has proved that for $f \in L \log L\left([0,2 \pi]^{2}\right)$ the means

$$
\sigma_{n}^{1} f=\frac{1}{n} \sum_{j=1}^{n} S_{j, j}(f)
$$

converge a.e. to f as $n \rightarrow \infty$. Zhizhiashvili [9] improved this result and proved that for $f \in L_{1}\left([0,2 \pi]^{2}\right)$ the (C, α)-means

$$
\sigma_{n}^{\alpha} f=\frac{1}{A_{n}^{\alpha}} \sum_{j=0}^{n} A_{n-j}^{\alpha-1} S_{j, j}(f), \quad \alpha>0
$$

converge a.e. to f as $n \rightarrow \infty$.
For the Marcinkiewicz-Fejér means of the two-dimensional WalshFourier series Weisz [8] proved that the following is true
Theorem A (Weisz). Let $p>2 / 3$. Then the maximal operators σ_{*}^{1} and $\widetilde{\sigma}_{*}^{1,(t)}$ are bounded from the Hardy space $H_{p}(G \times G)$ to the space $L_{p}(G \times G)$.

The second author [1] generalized the theorem of Weisz for the d dimensional Walsh-Fourier series and proved that the maximal operator σ_{*}^{1} is bounded from the d-dimensional dyadic martingale Hardy space $H_{p}(G \times \cdots \times G)$ to the space $L_{p}(G \times \cdots \times G)$ for $p>d /(d+1)$ and is of weak type $(1,1)$. We also proved [2] that for the boundedness of the maximal operator σ_{*}^{1} from the Hardy space $H_{p}(G \times \cdots \times G)$ to the space $L_{p}(G \times \cdots \times G)$ the assumption $p>d /(1+d)$ is essential.

In [3] it is proved that the maximal operators $\sigma_{*}^{\alpha}(0<\alpha<1)$ of the (C, α) means of cubical partial sums of the d-dimensional Walsh-Fourier series is bounded from the d-dimensional dyadic martingale Hardy space $H_{p}(G \times \cdots \times G)$ to the space $L_{p}(G \times \cdots \times G)$, when $p>d /(d+\alpha)$ and for the boundedness of the maximal operator σ_{*}^{α} from the Hardy space $H_{p}(G \times \cdots \times G)$ to the space $L_{p}(G \times \cdots \times G)$ the assumption $p>d /(\alpha+d)$ is essential. It is easy to show that (see Weisz [8]) the conjugate maximal operators $\widetilde{\sigma}_{*}^{\alpha,(t)}(0<\alpha \leq 1)$ of the (C, α) means of cubical partial sums of the d-dimensional Walsh-Fourier series is bounded from the d-dimensional dyadic martingale Hardy space $H_{p}(G \times \cdots \times G)$ to the space $L_{p}(G \times \cdots \times G)$, when $p>d /(d+\alpha)$.

In this paper we prove that for every $0<p \leq d /(d+\alpha), 0<\alpha \leq 1$ there exists a martingale $f \in H_{p}(G \times \cdots \times G)$ such that

$$
\left\|\tilde{\sigma}_{*}^{\alpha,(t)} f\right\|_{p}=+\infty
$$

We note that in case $\alpha=1$ and $d=2$ above mentioned result contains answer to the question of Weisz [8].

2. Dyadic Hardy spaces and conjugate transforms

Let \mathbf{P} denote the set of positive integers, $\mathbf{N}:=\mathbf{P} \cup\{0\}$. Denote Z_{2} the discrete cyclic group of order 2 , that is $Z_{2}=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on Z_{2} is given such that the measure of a singleton is $1 / 2$. Let G be the complete direct product of the countable infinite copies of the compact groups Z_{2}. The elements of G are of the form $x=$ $=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in\{0,1\}(k \in \mathbf{N})$. The group operation on G is the coordinate-wise addition, the measure (denote by μ) and the topology are the product measure and topology. The compact Abelian group G is called the Walsh group. A base for the neighborhoods of G can be given in the following way:

$$
\begin{aligned}
I_{0}(x) & :=G, I_{n}(x):=I_{n}\left(x_{0}, \ldots, x_{n-1}\right):= \\
& :=\left\{y \in G: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\} \quad(x \in G, n \in \mathbf{N}) .
\end{aligned}
$$

These sets are called the dyadic intervals. Let $0=(0: i \in \mathbf{N}) \in G$ denote the null element of $G, I_{n}:=I_{n}(0)(n \in \mathbf{N})$.

For $k \in \mathbf{N}$ and $x \in G$ denote

$$
r_{k}(x):=(-1)^{x_{k}}
$$

the k-th Rademacher function.
The dyadic d-dimensional rectangles are of the form

$$
I_{n}\left(x_{1}, \ldots, x_{d}\right):=I_{n}\left(x_{1}\right) \times \cdots \times I_{n}\left(x_{d}\right) .
$$

The σ-algebra generated by the dyadic rectangles

$$
\left\{I_{n}\left(x_{1}, \ldots, x_{d}\right):\left(x_{1}, \ldots, x_{d}\right) \in G \times \cdots \times G\right\}
$$

is denoted by F_{n}.
The norm (or quasinorm) of the space $L_{p}(G \times \cdots \times G)$ is defined by

$$
\|f\|_{p}:=\left(\int_{G \times \cdots \times G}\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p} d \mu\left(x_{1}, \ldots, x_{d}\right)\right)^{1 / p} \quad(0<p<+\infty)
$$

Denote by $f=\left(f^{(n)}, n \in N\right)$ one parameter martingale with respect to ($F_{n}, n \in \mathbf{N}$) (for details see, e.g. [6, 7]). The maximal function of a martingale f is defined by

$$
f^{*}=\sup _{n \in \mathbf{N}}\left|f^{(n)}\right|
$$

In case $f \in L_{1}(G \times \cdots \times G)$, the maximal function can also be given by

$$
\begin{aligned}
& f^{*}\left(x_{1}, \ldots, x_{d}\right)= \\
& =\sup _{n \in \mathrm{~N}} \frac{1}{\mu\left(I_{n}\left(x_{1}, \ldots, x_{d}\right)\right)}\left|\int_{I_{n}\left(x_{1}, \ldots, x_{d}\right)} f\left(u_{1}, \ldots, u_{d}\right) d \mu\left(u_{1}, \ldots, u_{d} v\right)\right|, \\
& \quad\left(x_{1}, \ldots, x_{d}\right) \in G \times \cdots \times G .
\end{aligned}
$$

For $0<p<\infty$ the Hardy martingale space $H_{p}(G \times \cdots \times G)$ consists of all martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}<\infty
$$

For a martingale

$$
f \sim \sum_{n=0}^{\infty}\left(f^{(n)}-f^{(n-1)}\right)
$$

the conjugate transforms are defined by the martingale

$$
\widetilde{f}^{(t)} \sim \sum_{n=1}^{\infty} r_{n}(t)\left(f^{(n)}-f^{(n-1)}\right)
$$

where $t \in G$ is fixed. Note that $\widetilde{f}^{(0)}=f$. As is well known, if f is an integrable function, then conjugate transforms $\widetilde{f}^{(t)}$ do exist almost everywhere, but they are not integrable in general.

3. Walsh system and (C, α) means

Let $n \in \mathbf{N}$, then $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$, where $n_{i} \in\{0,1\}(i \in \mathbf{N})$, i.e. n is expressed in the number system of base 2. Denote $|n|:=\max \{j \in$ $\left.\in \mathbf{N}: n_{j} \neq 0\right\}$, that is, $2^{|n|} \leq n<2^{|n|+1}$.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1) \sum_{k=0}^{|n|-1} n_{k} x_{k} \quad(x \in G, n \in \mathbf{P})
$$

The Walsh-Dirichlet kernel is defined by

$$
D_{n}(x)=\sum_{k=0}^{n-1} w_{k}(x)
$$

Recall that ([5])

$$
D_{2^{n}}(x)= \begin{cases}2^{n} & \text { if } x \in I_{n} \tag{1}\\ 0 & \text { if } x \in G \backslash I_{n}\end{cases}
$$

The rectangular partial sums of the d-dimensional Walsh-Fourier series are defined as follows:

$$
S_{M_{1}, \ldots, M_{d}} f\left(x_{1}, \ldots, x_{d}\right):=\sum_{i_{1}=0}^{M_{1}-1} \cdots \sum_{i_{d}=0}^{M_{d}-1} \widehat{f}\left(i_{1}, \cdots, i_{d}\right) \prod_{j=1}^{d} w_{i_{j}}\left(x_{j}\right),
$$

where the number

$$
\widehat{f}\left(i_{1}, \cdots, i_{d}\right)=\int_{G \times \cdots \times G} f\left(x_{1}, \ldots, x_{d}\right) \prod_{j=1}^{d} w_{i_{j}}\left(x_{j}\right) d \mu\left(x_{1}, \ldots, x_{d}\right)
$$

is said to be the $\left(i_{1}, \cdots, i_{d}\right)$ th Walsh-Fourier coefficient of the function f. If $f \in L_{1}(G \times \cdots \times G)$ then it is easy to show that the sequence $\left(S_{2^{n}, \ldots, 2^{n}}(f): n \in \mathbf{N}\right)$ is a martingale. If f is a martingale, that is $f=$ $=\left(f^{(n)}: n \in \mathbf{N}\right)$ then the Walsh-Fourier coefficients must be defined in a little bit different way:

$$
\begin{equation*}
\widehat{f}\left(i_{1}, \cdots, i_{d}\right)=\lim _{k \rightarrow \infty} \int_{G \times \cdots \times G} f^{(k)}\left(x_{1}, \ldots, x_{d}\right) \prod_{j=1}^{d} w_{i_{j}}\left(x_{j}\right) d \mu\left(x_{1}, \ldots, x_{d}\right) \tag{2}
\end{equation*}
$$

The Walsh-Fourier coefficients of $f \in L_{1}(G \times \cdots \times G)$ are the same as the ones of the martingale $\left(S_{2^{n}, \ldots, 2^{n}}(f): n \in \mathbf{N}\right)$ obtained from f.

For $n=1,2, \ldots$ and martingale f the (C, α)-mean of order n of the d-dimensional Walsh-Fourier series of f is given by

$$
\sigma_{n}^{\alpha} f\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{A_{n-1}^{\alpha}} \sum_{j=1}^{n} A_{n-j}^{\alpha-1} S_{j, \ldots, j} f\left(x_{1}, \ldots, x_{d}\right)
$$

where

$$
A_{n}^{\alpha}:=\binom{n+\alpha}{n}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!} \quad(n \in N, \alpha \neq-1,-2, \ldots)
$$

It is known that (see Zygmund [10])

$$
\begin{equation*}
A_{n}^{\alpha} \sim n^{\alpha} \quad(n \in N) \tag{3}
\end{equation*}
$$

It is evident that

$$
\begin{aligned}
& \sigma_{n}^{\alpha} f\left(x_{1}, \ldots, x_{d}\right)= \\
& =\int_{G \times \cdots \times G} f\left(u_{1}, \ldots, u_{d}\right) K_{n}^{\alpha}\left(x_{1}+u_{1}, \ldots, x_{d}+u_{d}\right) d \mu\left(u_{1}, \ldots, u_{d}\right)
\end{aligned}
$$

where

$$
K_{n}^{\alpha}\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{A_{n-1}^{\alpha}} \sum_{j=1}^{n} A_{n-j}^{\alpha-1} \prod_{i=1}^{d} D_{j}\left(x_{i}\right)
$$

Let

$$
\rho_{0, \ldots, 0}=r_{0}, \quad \rho_{i_{1}, \ldots, i_{d}}=r_{j}
$$

if $i_{k} \in\left\{0,1, \ldots, 2^{j}-1\right\}$ and at least one $i_{l} \in\left\{2^{j-1}, \ldots, 2^{j}-1\right\}$.
Then $\left(M_{1}, \ldots, M_{d}\right)$ th partial sums of the conjugate transforms is given by

$$
\widetilde{S}_{M_{1}, \ldots, M_{d}}^{(t)} f\left(x_{1}, \ldots, x_{d}\right):=\sum_{i_{1}=0}^{M_{1}-1} \cdots \sum_{i_{d}=0}^{M_{d}-1} \rho_{i_{1}, \ldots, i_{d}}(t) \widehat{f}\left(i_{1}, \ldots, i_{d}\right) \prod_{j=1}^{d} w_{i_{j}}\left(x_{j}\right)
$$

The conjugate (C, α)-means of a martingale f are introduced by

$$
\widetilde{\sigma}_{n}^{\alpha,(t)} f\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{A_{n-1}^{\alpha}} \sum_{j=1}^{n} A_{n-j}^{\alpha-1} \widetilde{S}_{j, \ldots, j}^{(t)} f\left(x_{1}, \ldots, x_{d}\right)
$$

It is evident that $\widetilde{\sigma}_{n}^{\alpha,(0)} f=\sigma_{n}^{\alpha} f$.
The maximal operator and the conjugate maximal operator are defined by

$$
\sigma_{*}^{\alpha} f=\sup _{n}\left|\sigma_{n}^{\alpha} f\right|, \quad \widetilde{\sigma}_{*}^{\alpha,(t)} f=\sup _{n}\left|\widetilde{\sigma}_{n}^{\alpha,(t)} f\right|
$$

A bounded measurable function a is a p-atom, if there exists a dyadic d-dimensional cube $I \times \cdots \times I$, such that
a) $\int_{I \times \cdots \times I} a d \mu=0$;
b) $\|a\|_{\infty} \leq \mu(I \times \cdots \times I)^{-1 / p}$;
c) $\operatorname{supp} a \subset I \times \cdots \times I$.

The basic result of atomic decomposition is the following one.
Theorem A (Weisz [7]). A martingale $f=\left(f^{(n)}: n \in \mathbf{N}\right)$ is in H_{p} $(0<p \leq 1)$ if and only if there exists a sequence $\left(a_{k}, k \in \mathbf{N}\right)$ of p-atoms and a sequence $\left(\mu_{k}, k \in \mathbf{N}\right)$ of real numbers such that for every $n \in \mathbf{N}$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \mu_{k} S_{2^{n}, \ldots, 2^{n}} a_{k}=f^{(n)} \tag{4}
\end{equation*}
$$

$$
\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty
$$

Moreover,

$$
\|f\|_{H_{p}} \sim \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p} .
$$

4. Main result

Theorem 1. Let $0<p \leq d /(d+\alpha)$. Then there exists a martingale $f \in H_{p}(G \times \cdots \times G)$ such that

$$
\left\|\widetilde{\sigma}_{*}^{\alpha,(t)} f\right\|_{p}=+\infty .
$$

Corollary 1. Let $0<p \leq d /(d+\alpha)$. Then there exists a martingale $f \in H_{p}(G \times \cdots \times G)$ such that

$$
\left\|\sigma_{*}^{\alpha} f\right\|_{p}=+\infty
$$

5. Proof of main result

Proof of Theorem 1. Let $\left\{m_{k}: k \in \mathbf{P}\right\}$ be an increasing sequence of positive integers such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{m_{k}^{p}}<\infty \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{l=0}^{k-1} \frac{2^{2 m_{l} d / p}}{m_{l}}<\frac{2^{2 m_{k} d / p}}{m_{k}} \tag{6}\\
\frac{2^{2 d m_{k-1} / p}}{m_{k-1}}<\frac{2^{m_{k}}}{m_{k}}
\end{gather*}
$$

Let

$$
f^{(A)}\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left\{k: 2 m_{k}<A\right\}} \lambda_{k} a_{k}\left(x_{1}, \ldots, x_{d}\right)
$$

where $\lambda_{k}:=\frac{2^{d}}{m_{k}}$ and

$$
a_{k}\left(x_{1}, \ldots, x_{d}\right):=2^{2 d(1 / p-1) m_{k}-d} \prod_{j=1}^{d}\left(D_{2^{2 m_{k}+1}}\left(x_{j}\right)-D_{2^{2 m_{k}}}\left(x_{j}\right)\right)
$$

It is easy to show that the martingale $f:=\left(f^{(0)}, f^{(1)}, \ldots, f^{(A)}, \ldots\right) \in$ $\in H_{p}(G \times \cdots \times G)$. Indeed, since

$$
\begin{gathered}
\left\|a_{k}\right\|_{\infty}=2^{2 d(1 / p-1) m_{k}-d} 2^{2 m_{k} d+d}=2^{2 m_{k} d / p}=\left(\operatorname{supp}\left(a_{k}\right)\right)^{-1 / p} \\
S_{2^{A}, \ldots, 2^{A}} a_{k}\left(x_{1}, \ldots, x_{d}\right)= \begin{cases}0, & A \leq 2 m_{k} \\
a_{k}, & A>2 m_{k}\end{cases} \\
f^{(A)}\left(x_{1}, \ldots, x_{d}\right)=\sum_{\left\{k: 2 m_{k}<A\right\}} \lambda_{k} a_{k}\left(x_{1}, \ldots, x_{d}\right)= \\
=\sum_{k=0}^{\infty} \lambda_{k} S_{2^{A}, \ldots, 2^{A}} a_{k}\left(x_{1}, \ldots, x_{d}\right)
\end{gathered}
$$

from (5) and Th. A we conclude that $f \in H_{p}(G \times \cdots \times G)$.
Let $q_{A, s}=2^{2 A}+2^{2 s}, A>s$. We write $\left(s<m_{k}\right)$

$$
\begin{align*}
\widetilde{\sigma}_{q_{m_{k}, s}}^{\alpha,(t)} f\left(x_{1}, \ldots, x_{d}\right)= & \frac{1}{A_{q_{m_{k}, s}-1}^{\alpha}} \sum_{j=1}^{2^{2 m_{k}-1}} A_{q_{m_{k}, s}-j}^{\alpha-1} \widetilde{S}_{j, \ldots, j}^{(t)} f\left(x_{1}, \ldots, x_{d}\right)+ \tag{8}\\
& +\frac{1}{A_{q_{m_{k}, s}-1}^{\alpha}} \sum_{j=2^{2 m_{k}}}^{q_{m_{k}, s}} A_{q_{m_{k}, s}}^{\alpha-1} \widetilde{S}_{j, \ldots, j}^{(t)} f\left(x_{1}, \ldots, x_{d}\right)= \\
= & I+I I .
\end{align*}
$$

Let $\left(j_{1}, \ldots, j_{d}\right) \in\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times \cdots \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\}$ for some $k \in \mathbf{P}$. Then

$$
\begin{equation*}
\widehat{f}\left(j_{1}, \ldots, j_{d}\right)=\lim _{A \rightarrow \infty} \widehat{f}^{(A)}\left(j_{1}, \ldots, j_{d}\right)=\frac{2^{2 d(1 / p-1) m_{k}}}{m_{k}} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{f}\left(j_{1}, \ldots, j_{d}\right)=0 \tag{10}
\end{equation*}
$$

if $\left(j_{1}, \ldots, j_{d}\right) \notin\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times \cdots \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\}, k \in P$.
Let $j<2^{2 m_{k}}$. Then from (6), (9) and (10) we have

$$
\begin{aligned}
& \left|\widetilde{S}_{j, \ldots, j}^{(t)} f\left(x_{1}, \ldots, x_{d}\right)\right|= \\
& =\left|\sum_{l=0}^{k-1} r_{2 m_{l}}(t) \sum_{v_{1}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \cdots \sum_{v_{d}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \widehat{f}\left(v_{1}, \ldots, v_{d}\right) \prod_{j=1}^{d} w_{v_{j}}\left(x_{j}\right)\right| \leq \\
& \leq \sum_{l=0}^{k-1} \sum_{v_{1}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \cdots \sum_{v_{d}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1}\left|\widehat{f}\left(v_{1}, \ldots, v_{d}\right)\right| \leq \\
& \leq \sum_{l=0}^{k-1} \sum_{2_{1}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \cdots \sum_{v_{d}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \frac{2^{2 d(1 / p-1) m_{l}}}{m_{l}}= \\
& =\sum_{l=0}^{k-1} \frac{2^{2 d(1 / p-1) m_{l}}}{m_{l}} 2^{2 m_{l} d}= \\
& =\sum_{l=0}^{k-1} \frac{2^{2 d m_{l} / p}}{m_{l}}<2 \frac{2^{2 m_{k-1} d / p}}{m_{k-1}} .
\end{aligned}
$$

Consequently

$$
\begin{equation*}
I \leq \frac{1}{A_{q_{m_{k}, s}-1}^{\alpha}} \sum_{j=1}^{2^{2 m_{k-1}}} A_{q_{m_{k}, s}-j}^{\alpha-1} \frac{2^{2 m_{k-1} d / p+1}}{m_{k-1}} \leq c(\alpha) \frac{2^{2 m_{k-1} d / p}}{m_{k-1}} \tag{11}
\end{equation*}
$$

For $2^{2 m_{k}} \leq j<q_{m_{k}, s}$ we have the following

$$
\begin{aligned}
& \widetilde{S}_{j, \ldots, j}^{(t)} f\left(x_{1}, \ldots, x_{d}\right)= \\
& =\sum_{l=0}^{k-1} r_{2 m_{l}}(t) \sum_{v_{1}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \cdots \sum_{v_{d}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \widehat{f}\left(v_{1}, \ldots, v_{d}\right) \prod_{q=1}^{d} w_{v_{q}}\left(x_{q}\right)+ \\
& \quad+r_{2 m_{k}}(t) \sum_{v_{1}=2^{2 m_{k}}}^{j-1} \cdots \sum_{v_{d}=2^{2 m_{k}}}^{j-1} \widehat{f}\left(v_{1}, \ldots, v_{d}\right) \prod_{q=1}^{d} w_{v_{q}}\left(x_{q}\right)= \\
& =\sum_{l=0}^{k-1} r_{2 m_{l}}(t) \sum_{2_{1}=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \cdots \sum_{v_{1}=2^{2 m_{l}+1}-1}^{2_{2_{d}}^{2 d(1 / p-1) m_{l}}} \prod_{v_{l}}^{d} \prod_{q=1} w_{v_{q}}\left(x_{q}\right)+ \\
& \quad+\frac{r_{2 m_{k}}(t) 2^{2 d(1 / p-1) m_{k}}}{m_{k}} \sum_{v_{d}=2^{2 m_{k}}}^{j-1} \cdots \prod_{q=1}^{j-1} w_{v_{q}}\left(x_{q}\right)=
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{l=0}^{k-1} \frac{r_{2 m_{l}}(t) 2^{2 d(1 / p-1) m_{l}}}{m_{l}} \prod_{q=1}^{d}\left[D_{2^{2 m_{l}+1}}\left(x_{q}\right)-D_{2^{2 m_{l}}}\left(x_{q}\right)\right]+ \\
& +\frac{r_{2 m_{k}}(t) 2^{2 d(1 / p-1) m_{k}}}{m_{k}} \prod_{q=1}^{d}\left[D_{j}\left(x_{q}\right)-D_{2^{2 m_{k}}}\left(x_{q}\right)\right]
\end{aligned}
$$

This gives that

$$
\begin{align*}
I I= & \frac{1}{A_{q_{m_{k}, s}-1}^{\alpha}} \sum_{j=2^{2 m_{k}}}^{q_{m_{k}, s}} A_{q_{m_{k}, s}-j}^{\alpha-1} \sum_{l=0}^{k-1} \frac{r_{2 m_{l}}(t) 2^{2 d(1 / p-1) m_{l}}}{m_{l}} \times \tag{12}\\
& \times \prod_{q=1}^{d}\left[D_{2^{2 m_{l}+1}}\left(x_{q}\right)-D_{2^{2 m_{l}}}\left(x_{q}\right)\right]+ \\
& +\frac{r_{2 m_{k}}(t) 2^{2 d(1 / p-1) m_{k}}}{m_{k}} \frac{1}{A_{q_{m_{k}, s}-1}^{\alpha}} \sum_{j=2^{2 m_{k}}}^{q_{m_{k}, s}} A_{q_{m_{k}, s}-j}^{\alpha-1} \prod_{q=1}^{d}\left[D_{j}\left(x_{q}\right)-D_{2^{2 m_{l}}}\left(x_{q}\right)\right] \\
= & I I_{1}+I I_{2} .
\end{align*}
$$

To discuss $I I_{1}$, we use (6) and $D_{2^{n}} \leq 2^{n}$. Thus we can write

$$
\begin{align*}
\left|I I_{1}\right| & \leq c(\alpha) \sum_{l=0}^{k-1} \frac{2^{2 d(1 / p-1) m_{l}}}{m_{l}} \prod_{q=1}^{d}\left|D_{2^{2 m_{l}+1}}\left(x_{q}\right)-D_{2^{2 m_{l}}}\left(x_{q}\right)\right| \tag{13}\\
& \leq c(\alpha) \sum_{l=0}^{k-1} \frac{2^{2 d(1 / p-1) m_{l}}}{m_{l}} 2^{2 m_{l} d} \leq c(\alpha) \frac{2^{2 d m_{k-1} / p}}{m_{k-1}}
\end{align*}
$$

From $\widetilde{\sigma}_{q_{m_{k}}, s}^{\alpha,(t)} f\left(x_{1}, \ldots, x_{d}\right)=I+I I_{1}+I I_{2}$ and (11), (13) we have

$$
\begin{equation*}
\left|\widetilde{\sigma}_{q_{m_{k}, s}}^{\alpha,(t)} f\left(x_{1}, \ldots, x_{d}\right)\right| \geq\left|I I_{2}\right|-|I|-\left|I I_{1}\right| \geq\left|I I_{2}\right|-c(\alpha) \frac{2^{2 d m_{k-1} / p}}{m_{k-1}} \tag{14}
\end{equation*}
$$

Since $D_{j+2^{2 m_{k}}}=D_{2^{2 m_{k}}}+w_{2^{2 m_{k}}} D_{j}$ for $I I_{2}$ we have

$$
\begin{equation*}
I I_{2}=\frac{r_{2 m_{k}}(t) 2^{2 d(1 / p-1) m_{k}}}{m_{k}} \frac{1}{A_{q_{m_{k}}, s-1}^{\alpha}} \sum_{j=0}^{2^{2 s}} A_{2^{2 s}-j}^{\alpha-1} \prod_{q=1}^{d} D_{j}\left(x_{q}\right) w_{2^{2 m_{k}}}\left(x_{q}\right)= \tag{15}
\end{equation*}
$$

$$
=\frac{r_{2 m_{k}}(t) 2^{2 d(1 / p-1) m_{k}}}{m_{k}} \frac{1}{A_{q_{m_{k}, s}-1}^{\alpha}} \prod_{q=1}^{d} w_{2^{2 m_{k}}}\left(x_{q}\right) A_{2^{2 s}-1}^{\alpha} K_{2^{2 s}}^{\alpha}\left(x_{1}, \ldots, x_{d}\right)
$$

Combining (14) and (15) we can write

$$
\begin{align*}
& \left|\widetilde{\sigma}_{q_{m_{k}, s},(t)}^{\alpha,} f\left(x_{1}, \ldots, x_{d}\right)\right| \geq \tag{16}\\
& \geq c(\alpha) \frac{2^{2 d(1 / p-1) m_{k}-2 m_{k} \alpha}}{m_{k}} A_{2^{2 s}-1}^{\alpha}\left|K_{2^{2 s}}^{\alpha}\left(x_{1}, \ldots, x_{d}\right)\right|-c(\alpha) \frac{2^{2 d m_{k-1} / p}}{m_{k-1}}
\end{align*}
$$

Let $\left(x_{1}, \ldots, x_{d}\right) \in\left(I_{2 s} \backslash I_{2 s+1}\right) \times \cdots \times\left(I_{2 s} \backslash I_{2 s+1}\right)$. Then it is evident that

$$
A_{2^{2 s}-1}^{\alpha}\left|K_{2^{2 s}}^{\alpha}\left(x_{1}, \ldots, x_{d}\right)\right| \geq c(\alpha) 2^{2 s(d+\alpha)}
$$

Consequently, from (7) and (16) we have

$$
\begin{aligned}
& \left|\widetilde{\sigma}_{q_{m_{k}}, s}^{\alpha,(t)} f\left(x_{1}, \ldots, x_{d}\right)\right| \geq c(\alpha) \frac{2^{2 d(1 / p-1) m_{k}-2 m_{k} \alpha}}{m_{k}} 2^{2 s(d+\alpha)}-c(\alpha) \frac{2^{m_{k}}}{m_{k}}, \\
& \int_{G \times \cdots \times G}\left(\widetilde{\sigma}_{*}^{\alpha,(t)} f\left(x_{1}, \ldots, x_{d}\right)\right)^{p} d \mu \geq \\
& \geq \sum_{s=\left[\frac{m_{k}}{2}\right]}^{m_{k}-1} \int_{\left(I_{2 s} \backslash I_{2 s+1}\right) \times \cdots \times\left(I_{2 s} \backslash I_{2 s+1}\right)}\left(\widetilde{\sigma}_{*}^{\alpha,(t)} f\left(x_{1}, \ldots, x_{d}\right)\right)^{p} d \mu \geq \\
& \geq \sum_{s=\left[\frac{m_{k}}{2}\right]_{\left(I_{2 s} \backslash _{2 s+1}\right)}^{m_{k}-1} \int_{\times \cdots \times\left(I_{2 s} \backslash \backslash_{2 s+1}\right)}}\left(\tilde{\sigma}_{q_{k}, s}^{\alpha,(t)} f\left(x_{1}, \ldots, x_{d}\right)\right)^{p} d \mu \geq \\
& \geq c(\alpha) \sum_{s=\left[\frac{m_{k}}{2}\right]}^{m_{k}-1} \frac{1}{2^{2 s d}}\left[\frac{2^{2 m_{k}(d / p-(\alpha+d))}}{m_{k}} 2^{2 s(d+\alpha)}\right]^{p} \geq \\
& \geq c(\alpha) \sum_{s=\left[\frac{m_{k}}{2}\right]}^{m_{k}-1} 2^{2 s((d+\alpha) p-d)} \frac{2^{2 m_{k}(d-p(d+\alpha))}}{m_{k}^{p}} \geq \\
& \geq\left\{\begin{array}{l}
c(\alpha) m_{k}^{1-p}, p=\frac{d}{d+\alpha} \\
c(\alpha) \frac{2^{m_{k}(d-p(d+\alpha))}}{m_{k}^{p}}, 0<p<\frac{d}{d+\alpha}
\end{array} \rightarrow \infty \quad \text { as } k \rightarrow \infty .\right.
\end{aligned}
$$

The proof of Th. 1 is complete. \diamond

References

[1] GOGINAVA, U.: Marcinkiewicz-Fejér means of d-dimensional Walsh-Fourier series, J. Math. Anal. Appl. 307 (2005), no. 1, 206-218.
[2] GOGINAVA, U.: The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx. 12 (2006), no. 3, 295-302.
[3] GOGINAVA, U.: Maximal operators of (C, α)-means of cubic partial sums of d-dimensional Walsh-Fourier series, Anal. Math. 33 (2007), no. 4, 263-286.
[4] MARCINKIEWICZ, I.: Sur une methode remarquable de sommation des series doublefes de Fourier, Ann. Scuola Norm. Sup. Pisa 8 (1939), 149-160.
[5] SCHIPP, F., WADE, W. R., SIMON, P. and PÁL, J.: Walsh Series, an Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, New York, 1990.
[6] WEISZ, F.: Martingale Hardy spaces and their Applications in Fourier analysis, Springer, Berlin - Heidelberg - New York, 1994.
[7] WEISZ, F.: Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002.
[8] WEISZ, F.: Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory छ its. Appl. 17, 2 (2001), 32-44.
[9] ZHIZHIASHVILI, L. V.: Generalizatin of a theorem of Marcinkiewicz, Izvest. AN USSR, ser. matem. 32 (1968), 1112-1122 (Russian).
[10] ZYGMUND, A.: Trigonometric series, vol. 1, Cambridge Univ. Press, 1959.

[^0]: E-mail addresses: blahota@nyf.hu, z_goginava@hotmail.com
 The second author is supported by the Georgian National Foundation for Scientific Research, grant no GNSF/ST07/3-171.

