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Abstract: Let s > 2k and let sq(·) denote the sum-of-digits-function to an
integer base q. Under certain mild conditions, we prove that

N = xk
1

+ · · · + xk
s

has a solution for almost all integers N where for all i = 1, . . . , s, the variables
xi are assumed to be squarefree and fulfill the additive condition sqi

(n) ≡ hi

mod mi for given integers qi.

1. Introduction

Let q ≥ 2. A positive integer n admits the unique representation

n =
∑

j≥0

ajq
j

in the q-adic numeration system, where 0 ≤ aj < q for all j ∈ N. Let

sq(n) :=
∑

j≥0

aj
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be the sum-of-digits function. Its basic property – called q-additivity
– is that sq(nqh + m) = sq(n) + sq(m) holds for all n, m, h ∈ N with
m < qh. The sum-of-digits function has been extensively studied since
the publication of a paper of Gelfond [4] in 1967. Let µ denote the Möbius
µ-function, that is µ(n) = 0 if n is not a squarefree integer, µ(n) = 1 if
n is a squarefree positive integer with an even number of distinct prime
factors, and µ(n) = −1 elsewhere.

For instance, for integers h, m with m > 1, Gelfond [4, Th. 2]
showed that the condition that n is squarefree, i.e.

(1) µ2(n) = 1,

and the condition

(2) sq(n) ≡ h mod m

are in a certain sense independent, i.e. the density of integers n such that
(1) and (2) holds is

1

m

6

π2
,

as one expects, since we recall that the density of squarefree numbers is
6/π2. Recently, Mauduit and Rivat [7] proved that there are infinitely
many primes p such that (2) holds with p in place of n. In particular,
the number of primes smaller X that respect the additive condition (2)
equals asymptotically 1/m times the number of all primes smaller X, as
one might conjecture.

On a philosophical view, such results show that certain properties
among the integers are independent. In this paper, we want to generalize
this approach and study the independence of the conditions (1) and (2)
among the set of solutions (x1, . . . xs) ∈ Ns of

N = xk
1 + · · ·+ xk

s ,(3)

where s, k ∈ N and N is a given positive integer. If one does not as-
sume any restrictions to the variables xj (j = 1, . . . , s) in (3), then the
solvability of this equation is known as Waring’s Problem.

Let Rk,s(N) denote the number of solutions of (3) without restric-
tions on the variables. Let s > 2k. It is well known that one has

Rk,s(N) ∼ Sk,s(N)N s/k−1,
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where 0 < Sk,s(N) ≪ 1 is an arithmetical function. We refer the reader
to [10] for a survey. Before stating our main theorem, we introduce results
on Waring’s Problem where the variables are assumed to fulfill on the
one hand (1) or on the other hand (2).

1.1. Waring’s Problem with squarefree variables and
generalizations

Among others, Waring’s Problem with squarefree variables has been
studied by Estermann [3] and by Baker and Brüdern [1], [2].

In the case k = 2, s ≥ 5, Estermann [3, Formula 48] proved that
the number of solutions of

(4) N = x2
1 + . . . + x2

s

with µ2(x1) = . . . = µ2(xs) = 1 equals asymptotically

S2,s,µ2(N)N s/2−1,

where S2,s,µ2 is some arithmetical function. Thus S2,s,µ2(N) > 0 implies
that (4) has a solution with xj squarefree (j = 1, . . . s) for sufficiently
large N . According to [3, Th. 1], S2,s,µ2(N) ≫ 1 is fulfilled if the follow-
ing Condition A holds.

A: Let (N, s) be said to satisfy Condition A if

x2
1 + . . . + x2

s ≡ N mod 32

has a solution with 4 ∤ xj for j = 1, . . . , s.
Condition A holds for all N if s ≥ 8.

In a previous paper [6], we proved an asymptotic formula for the
number Rk,s,µ2(N) of solutions of (3) where the variables xj (j = 1, . . . , s)
are assumed to be squarefree. For s > 2k, we showed that there is some
ρ > 0 such that

(5) Rk,s,µ2(N) = Sk,s,µ2(N)N s/k−1 + O
(
N s/k−1−ρ

)

holds. One has Sk,s,µ2(N) > 0 if k ≥ 3 or Condition A holds.
Now we want to generalize the notion of squarefree integers. Let V

be a set of pairwise coprime integers not containing 1. Throughout this
paper, we assume that there is some δ > 0 such that

∑

v∈V

1

v1−δ
(6)
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converges. Introduce

χV(n) :=

{

1 if v ∤ n for all v ∈ V;

0 otherwise.

We are interested in the set {n ∈ N : χV(n) = 1}. One of the most
prominet examples is the set of squarefree numbers. In this case V =
= {p2 : p prime } and we have χV = µ2. Now, for any ε > 0 and
δ = 1/2 − ε our assumption (6) holds. We refer the reader to [5] for
details to these sieve sequences.

Let s, k ∈ N. We denote by Rk,s,V(N) the number of solutions of
(3) with χV(x1) = . . . = χV(xs) = 1.

In [6] we showed that there is some ρ > 0 such that

Rk,s,V(N) = Sk,s,V(N) N s/k−1 + O
(
N s/k−1−ρ

)
,(7)

for some arithmetic function Sk,s,V(N) ≪ 1. Unfortunately, we could
not determine whether Sk,s,V(N) > 0 for an arbitrary set V of pairwise
coprime integers. Indeed, SV(N) ≪ 1 can not hold in general. For
instance, if 2 ∈ V, then all variables xi are odd. And N has to be even
(odd) if s is even (odd). Recall that if V = {p2 : p prime }, we have
Sk,s,V(N) = Sk,s,µ2(N) > 0 if k ≥ 3 or Condition A holds. However,
if we restrict V to be a set of prime powers, we are able to determinate
whether that SV(N) > 0. In this case we write

W =: {pep | p ∈ P} ,(8)

instead of V, where P is a subset of the prime numbers and (ep) is a
sequence of positive integers. Recall that we assume that there is some
δ > 0 such that

∑

p∈P

1

(pep)1−δ
< ∞.(9)

Without loss of generality, we can restrict ourselves to the case that
ep ∈ {1, 2} for all pep ∈ W, since a solution with the variables not
divisible by p2 implies a solution with the variables not divisible by pr

with r ≥ 2.
Next, we define a condition that is necessary for Sk,s,W(N) > 0 to

hold. We define τ by pτ ||k and let σ := τ + 1 if p 6= 2 and σ := τ + 2 if
p = 2. For an integer N , we say that (W, N) satisfies Condition C if the
following two conditions hold:
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• For each prime p such that p ∈ W (i.e. ep = 1) with p ≤ (k−1)4+8k
there is a solution of

xk
1 + . . . + xk

s ≡ N mod pσ

with p ∤ x1 · · ·xs.

• If k = 2 and 4 ∈ W, there is a solution of
x2

1 + x2
2 + x2

3 + x2
4 ≡ N − 1 mod 8

such that 4 ∤ xi for i = 1, 2, 3, 4.

In [6], we showed that for any set of prime powers W that is defined
by (8) such that there is some δ > 0 such that (9) and Condition C hold,
we have

Sk,s,W(N) > 0.

One consequence of this results is formula (5) above. For another
example, let k = 2. In this case, we have to verify Condition C for p ≤ 17
by an easy computation We get the following result:

Let P be a set of prime numbers and assume that there is some
some δ > 0 such that

∑

p∈P

1

p1−δ

converges. Let N ∈ N and assume N ≡ 5 mod 8 if 2 ∈ P and N ≡ 2
mod 3 if 3 ∈ P. If N is sufficiently large, it can be represented as a sum
of five squares of integers not being divisible by any prime of P.

1.2. Waring’s Problem with digital restrictions

Thuswaldner and Tichy [9] investigated Waring’s Problem where
the digit sums of the variables xj (j = 1, . . . , s) are assumed to be in a
certain residue class. Denote by Rk,s,h,m(N) the number of solutions of
(3) where for all j = 1, . . . , s, the variables xj are assumed to fulfill

sq(xj) ≡ h mod m

for given integers h, m, q with m, q ≥ 2 and (q − 1, m) = 1.
For s > 2k, Thuswaldner and Tichy proved that

Rk,s,h,m(N) ∼ 1

ms
Rk,s(N)(10)

holds. Therefore, the condition that an s-tuple of integers is a solution
of (3) is asymptotically in a first-order approximation independent from
the condition that its elements fulfill (2). This result has been extended
by Pfeiffer and Thuswaldner [8].
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1.3. Main result

In the present paper we want to show that one can combine the
results presented in Subsec. 1.1 and 1.2. We prove that among the so-
lutions of (3), the conditions χV(n) = 1 and (2) are independent. We
further show that (3), for sufficient large N and under mild conditions,
has a solution where the variables meet χV(n) = 1 and (2).

Theorem 1. Let s, k ∈ N with s > 2k, hj, mj , qj ∈ N satisfying

(qj − 1, mj) = 1, for all j = 1, . . . , s. Let V be a set of pairwise co-

prime integers not containing 1 and assume that there is some δ > 0
such that (6) is finite. Let Rk,s,h,m,V(N) be the number of solutions of (3)
with

v ∤ xj ∀v ∈ V
and

sqj
(xj) ≡ hj mod mj

for all j = 1, . . . , s. Then the asymptotic formula

(11) Rk,s,h,m,V(N) =
1

m1 · · ·ms

Sk,s,V(N)N s/k−1 + O

(
N s/k−1

(log log N)A

)

holds for all non negative A ∈ R.

The constants implied by the use of the symbols O and ≪ in this
paper may depend on k, s, A, the set V, δ and on qj , mj for all j = 1, . . . , s.
Recall that in Subsec. 1.1 we discussed the positivity of Sk,s,V(N).

Our method of proof does not permit the derivation of a better
error term (see Rem. 2 at the end of Sec. 2). Although the condition
s > 2k can be weakened as in the classical Waring’s Problem if one only
assumes that the variables meet (2), the assumption s > 2k is essential
in the proof of Th. 1 (see Rem. 1 after Lemma 1).

2. Preliminaries and the circle method

First, we need some results concerning the notion of our set V. For
details, we refer to [5]. We define

Π (V) :=

{

n =
∏

v∈V ′

v : V ′ is a finite subset ofV
}

and
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µV(n) :=

{

(−1)#V ′
if n ∈ Π (V) with n =

∏

v∈V ′ v,

0 otherwise,

a variant of the well known Möbius µ-function. Notice that 1 ∈ Π (V),
since we define the empty product as 1. Similarly to µ2(n) =

∑

d2|n µ(n),
the convolution formula

χV(n) =
∑

m∈Π(V)
m|n

µV(m)(12)

holds and is easy to verify. Besides, as (6) is finite, one has
∑

d>Y
d∈Π(V)

1

d
≪ Y −δ.(13)

Now, we apply the circle method. We fix A ∈ R arbitrarily large.
Thus

Rk,s,h,m,V(N) =

∫ 1

0

(
s∏

i=1

ui(P, θ)

)

e (−Nθ) dθ,(14)

where we define
ui(P, θ) :=

∑

ni<P
sqi

(ni)≡hi (mi)

χV(ni)e
(
nk

i θ
)

and P := ⌊N1/k⌋. As usual, e(θ) stands for e2πiθ. In order to remove the
congruence condition sqi

(ni) ≡ hi mod mi in ui(P, θ), we write

ui(P, θ) =
1

mi

mi−1∑

l=0

∑

n<P

χV(n)e

(

l
sqi

(n) − hi

mi

)

e
(
θnk

i

)

by following Gelfond [4]. We insert this into (14) and split the obtained
expression into a part where all li = 0 (i = 1, . . . s) and a remaining part.
This yields

Rk,s,h,m,V(N) =

=
1

m1 · · ·ms

∫ 1

0

∑

n1<P

χV(n1) · · ·
∑

ns<P

χV(ns)e
(
θ
(
nk

1 + · · · + nk
s − N

))
dθ+

+
1

m1 · · ·ms

m1−1∑

l1=0

· · ·
ms−1∑

ls=0
︸ ︷︷ ︸

l1+···+ls 6=0

∫ 1

0

(
s∏

i=1

Si,li(P, θ)

)

e (−Nθ) dθ

(15)
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with

Si,li(P, θ) :=
∑

ni<P

e

(

θnk
i + li

sqi
(n) − hi

mi

)

χV(ni).

Note that the first integral in (15) equals Rk,s,V(N) and we can utilize (7).
Let l := (l1, . . . ls) with 0 ≤ li ≤ mi − 1 (i = 1, . . . , 2) and l1 + · · ·+

+ls 6= 0, and we define

Ll :=

∫ 1

0

(
s∏

i=1

Si,li(P, θ)

)

e (−Nθ) dθ.

Th. 1 follows if we prove that Ll = O(N s/k−1/(log log N)A). Let lj be an
entry of l that is not equal to 0. Then

(16) |Ll| ≤ sup
θ∈[0,1)

{ ∣
∣Sj,lj(P, θ)

∣
∣
}

max
i∈{1,...,s}

{∫ 1

0

|Si,li(P, θ)|s−1 dθ

}

.

Since s > 2k, we have
∫ 1

0

|Si,li(P, θ)|s−1 dθ ≤

≤ P s−1−2k

∫ 1

0

Si,li(P, θ)2(k−1)

Si,li(P, θ)2(k−1)dθ ≤

≤ P s−1−2k

#
{
n1, . . . , ns < P : nk

1 + · · ·+ nk
2k−1 = nk

2k−1−1 + · · ·+ nk
2k

}
≪

≪ P s−k−1,

where we utilized Vaughan [11, Th. 2], a strong version of Hua’s Lemma.
We deduce from (16) that

Ll = O

(

sup
θ∈[0,1)

{ ∣
∣
∣Sj,lj(P, θ)s−2k

∣
∣
∣

}

P s−k−1

)

.

Hence, the following lemma yields Th. 1.

Lemma 1. Let l, m, k, q be positive integers with m ≥ 2, q ≥ 2 and

m ∤ l(q − 1). Then

S(N) :=
∑

n<N

e

(

θnk +
l

m
sq(n)

)

χV(n) ≪ N

(log log N)A

holds uniformly in θ ∈ [0, 1).
Remark 1. Above, we made use of Vaughan [11, Th. 2] where the
condition s > 2k is necessary. If s > 2k does not hold, relevant version’s
of Hua’s Lemma imply an additional factor P ε for an upper bound which
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is too big since we can not improve the bound S(N) ≪ N/(log log N)A

in Lemma 1.

Applying the convolution formula (12), we have

S(N) =
∑

d≥1
d∈Π(V)

µV(d)
∑

n<N/d

e

(

zkθnk +
l

m
sq(nd)

)

.(17)

Let T := A/δ We split up the sum into two parts with d ≥ (log log N)T

and d < (log log N)T . Therefore

S(N) ≪
∑

d≥(log log N)T

d∈Π(V)

N

d
+

∑

d<(log log N)T

d∈Π(V)

|µV(d)|
∣
∣
∣
∣
∣

∑

n<N/d

e

(

dkθnk+
l

m
sq(nd)

)
∣
∣
∣
∣
∣
≪

≪ N

(log log N)A
+

+ (log log N)T max
d<(log log N)T

d∈Π(V)

{∣
∣
∣
∣
∣

∑

n<N/d

e

(

dkθnk +
l

m
sq(nd)

)
∣
∣
∣
∣
∣

}

,

by using (6).

Theorem 2. Let B, D > 0 and let q, d ∈ N. Then one has
∑

n<N/d

e

(

θnk +
l

m
sq(nd)

)

≪ N

(log N)B

uniformly for θ ∈ R and d ≤ (log log N)D.

Th. 1 is proved by applying Th. 2 with D = T . Notice that
N(log log N)2A/(log N)B ≪ N/(log log N)A. The proof of Th. 2 is the
objective of the remaining paper.

Remark 2. The bound of Th. 2 is stronger than necessary. However,
we can not achieve a better error term in Th. 1 since the condition
d ≤ (log log N)D in Th. 2 is necessary and forces us to bound the sum-
mands in (17) with d ≥ (log log N)T trivially by N/d. Therefore, we are
not able to improve the error term O(N s/k−1/(log log N)A) in (11).

3. Weyl’s inequality

Let k ∈ N, ρ : N → C and n, h1, h2, . . . ∈ N. We define the higher
difference operators ∆k recursively by
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∆1(ρ(n); h1) := ρ(n + h1) − ρ(n)

and
∆j+1 := ∆1(∆j(ρ(n); h1, . . . , hj); hj+1)

for j ∈ N. Notice that ∆k(n
k; h1, . . . , hk) is independent on n.

We define I ⊆ N to be an interval of integers if I := {n ∈ N : a ≤
≤ n < b} for certain a, b ∈ N. The aim of this section is to show that the
following proposition implies Th. 2.

Proposition 1. Let B, D > 0 and let d, k, m, h, q, N be positive integers

such that m ≥ 2, q ≥ 2 and m ∤ h(q − 1). Let further U1, . . . Uk, J
be intervals of integers with

√
N/d < |Ui| for all i = 1, . . . , k. Assume

|J | ≤ N . We further define

Y (U1, . . . , Uk, J) :=
∑

h1∈Ui

· · ·
∑

hk∈Uk

∣
∣
∣
∣
∣

∑

n∈J

e

(
h

m
∆k (sq(dn); h1, . . . .hk)

)
∣
∣
∣
∣
∣

2

.

Then

Y (U1, . . . , Uk, J) ≪ |U1| · · · |Uk||J |2
1

(log N)B

holds uniformly for all d ≤ (log log N)D.

We can argue literally as in Sec. 8 of [9] to prove that Th. 2 can
be deduced from Prop. 1. Therefore, we only give a short sketch of this
statement.

Proof of (Prop. 1 ⇒ Th. 2). For abbreviation, let M := ⌊N/d⌋. Using
the classical version of Weyl’s Lemma (see e.g. [10, Lemma 2.3]), we get

∣
∣
∣
∣
∣

∑

n<M

e

(

θnk +
l

m
sq(dn)

)
∣
∣
∣
∣
∣

2k

≤

≤ (2M)2k−k−1
∑

|h1|,...,|hk|<M

∣
∣
∣
∣
∣
∣

∑

n∈Hk(h1,...hk)

e

(
l

m
∆k (sq(dn); h1, . . . , hk)

)
∣
∣
∣
∣
∣
∣

,

where Hk(h1, . . . hk) is an interval of integers depending linearly on
h1, . . . , hk. We remove this dependence by splitting up the sums into
parts of reasonable size. Besides, we make use of the Chauchy–Schwarz
inequality in order to get a square of the modulus of the innermost sum.
Now, we can apply Prop. 1. ♦

Remark 3. Prop. 1 follows from Th. 3.4 of [9] in the case of d = 1.
Thus it suffices to prove Prop. 1 for 2 ≤ d ≤ (log log N)D.
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4. Auto-correlation functions

Let d always denote an integer with 2 ≤ d ≤ (log log N)D. Let

Q := {0, 1, 2, . . . , q − 1},
M := {1, 2, . . . , k},
M ′ := {0, 1, 2, . . . , k + d},

and
F := {f : P(M) → M ′} ,

where P(M) denotes the set of all subsets of M . For r = (r1, r2, . . . , rk) ∈
∈ Qk, i ∈ Q and S ⊆ M we define

Ξr,i(f)(S) :=

⌊

di +
∑

t∈S

rt + f(S)

⌋

q

,

with ⌊x⌋q := ⌊x/q⌋. Notice that f ∈F implies Ξr,i(f)∈F . Let F0, F1∈F
be defined by

F0(S) := 0

for all S ⊆ M and
F1(M) := 1, F1(S) := 0

for all S ( M . Further, we define iterates of Ξr,i by
Ξ{rl,iℓ}1≤ℓ≤L

:= ΞrL,iL ◦ · · · ◦ Ξr1,i1 ,

where the composition is defined by
(Ξr2,i2 ◦ Ξr1,i1) (f)(S) := Ξr2,i2 (Ξr1,i1(f)) (S)

for f ∈F , S⊆M . For the sake of a simple notation, let Ξ{rℓ,iℓ}ℓ∈∅
(f) := f ,

where ∅ denotes the empty set.
Let L∈N, ℓ≤L and rℓ∈Qk, iℓ1, iℓ2∈Q. Let further f1, f1, g1, g2∈F .

We define

(f1, f2)
(rℓ,iℓ1,iℓ2)1≤ℓ≤L−−−−−−−−−→ (g1, g2)

to be an equivalent expression for
Ξ{rℓ,iℓ1}1≤ℓ≤L

(f1) = g1 ∧ Ξ{rℓ,iℓ2}1≤ℓ≤L
(f2) = g2.

Lemma 2. There is a sequence (r̂ℓ, îℓ1, îℓ2)1≤ℓ≤L′ with L′ ≤ log(d(k+d))
log q

+

+k + 2 such that for any (f1, f2) ∈ F2 one has

(f1, f2)
(̂rℓ ,̂iℓ1 ,̂iℓ2)1≤ℓ≤L′−−−−−−−−−−→ (F1, F0).

We denote such a sequence a (F1, F0)-sequence with length L′.

Proof. The (F1, F0)-sequence can be thus constructed by a composition
of three sequences that are defined below.
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First, it is easy to see that

(f1, f2)
(0,0,0)1≤ℓ≤L1−−−−−−−−→ (F0, F0)(18)

holds for L1 = ⌊log(k + d)/ log q⌋ + 1.
Given a sequence (rℓ, iℓ1, iℓ2)l≤ℓ≤L, we define G1, H1, G2, H2, . . . ∈ F

such that

(F0, F0)
(r1,i11,i12)−−−−−−→ (G1, H1)

(r2,i21,i22)−−−−−−→ (G2, H2)
(r3,i31,i32)−−−−−−→ (G3, H3)

...−→ . . .

holds.
For 1 ≤ β ≤ q − 1, let β∗ ∈ F be defined by

β∗(S) := β

for all S ⊆ M . We show that there is an integer 1 ≤ β ≤ q − 1 and a
sequence (rℓ, iℓ1, iℓ2)1≤ℓ≤L2 with

(F0, F0)
(rℓ,iℓ1,iℓ2)1≤ℓ≤L2−−−−−−−−−−→ (β∗, F0)(19)

and L2 ≤ log d/ log q + 1.
Recall that we can assume d ≥ 2 by Rem. 3. If 2 ≤ d < q, we set

i11 = q − 1, i12 = 0 and r1 = (0, . . . , 0). Thus

1 ≤ G1(S) = ⌊d(q − 1)⌋q ≤ q − 1

since 2 ≤ d ≤ q − 1 and G1(S) is independent on S. Clearly, we have

H1(S) = F0(S)

for all S ⊆ M . We take L2 := 1 and β := G1(S) and the sequence in
(19) is constructed.

Now, we assume that d ≥ q. We take i11 = 1, i12 = 0 and r1 =
= (0, . . . , 0). Hence

G1(S) = ⌊d⌋q = α1,

where α1 ∈ N is defined via d = qα1 + β1 with β1 ∈ Q. Again, we have
H1 = F0 Notice that α1 > 0 by our assumption d ≥ q. If α1 ∈ Q we take
L2 := 1 and H1 = β∗ with β = α1. Besides, let J ∈ N. For all 2 ≤ j ≤ J
we take ij1 := ij2 := 0 and rj = (0, . . . , 0). Since rj = (0, . . . , 0) the value
of Gj(S) and Hj(S) is independent on S. Now, we have Hj(S) = F0

and 0 ≤ Gj(S) < Gj−1(S) for all 2 ≤ j ≤ J . We take L2 ∈ {2, 3, 4 . . .}
minimal such that GL2(S) ∈ Q for the first time. Notice that we have
GL2(S) > 0. For if

0 = GL2J(S) = ⌊GL2−1(S)⌋q
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we have GL2−1 ∈ Q and this contradicts the minimality of L2. We define
β := GL2(S) = β∗(S). Notice that L2 ≤ log d/ log q + 1.

Given a sequence (rℓ, iℓ1, iℓ2)l≤ℓ≤L let G̃1, H̃1, G̃2, H̃2, . . . ∈ F be
defined via

(β∗, F0)
(r1,i11,i12)−−−−−−→ (G̃1, H̃1)

(r2,i21,i22)−−−−−−→ (G̃2, H̃2)
(r3,i31,i32)−−−−−−→ (G̃3, H̃3)

...−→ . . . .

Finally, we construct a sequence (rℓ, iℓ1, iℓ2)1≤ℓ≤k with

(β∗, F0)
(rℓ,iℓ1,iℓ2)1≤ℓ≤k−−−−−−−−−→ (F1, F0).(20)

For 1 ≤ ℓ ≤ k we take i1ℓ := i2ℓ := 0 and let
r1 := (q − β, 0, 0, . . . , 0).

Recall that 1 ≤ β ≤ q − 1. Hence

G̃1(S) =

⌊
∑

t∈S

rt + β

⌋

q

=

{

1 if 1 ∈ S,

0 otherwise

and

H̃1(S) =

⌊
∑

t∈S

rt

⌋

q

= F0(S)

Let r2 := (0, q − 1, 0, 0, . . . , 0). Thus

G̃2(S) =

⌊
∑

t∈S

rt + G̃1(S)

⌋

q

=

{

1 if 1, 2 ∈ S,

0 otherwise

and H̃2 = F0. In this manner, let

r3 := (0, 0, q − 1, 0, . . . , 0)

r4 := (0, 0, 0, q − 1, . . . , 0)
...

rk−1 := (0, 0, 0, 0, . . . , 0, q − 1, 0)

rk := (0, 0, 0, 0, . . . , 0, q − 1).

Hence

G̃ℓ(S) =

⌊
∑

t∈S

rt + G̃ℓ−1(S)

⌋

q

=

{

1 if 1, 2, . . . , ℓ ∈ S,

0 otherwise

and H̃ℓ = F0 for all 1 ≤ ℓ ≤ k. Thus we have G̃k = F1 and H̃k = F0.
The lemma follows from (18), (19), and (20). ♦
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Let

r∗ := (q − k, 1, 1, 1, . . . , 1) ∈ Qk.(21)

Notice that the sum of the entries of r∗ equals q−1. Thus, the equations

(22)

Ξ(r∗,0)(F0) = F0,

Ξ(r∗,0)(F1) = F1,

Ξ(0,0)(F1) = F0,

Ξ(0,0)(F0) = F0

are easily proved. Let

L := L′ + 2,(23)

where L′ is as in Lemma 2.
We define two sequences

V1 = (rl, il1, il2)1≤l≤L and V2 = (r̃l, ĩl1, ĩl2)1≤l≤L

that play an important role in the proof of Th. 1: for 1 ≤ l ≤ L′ let

(rl, il1, il2) := (r̂l, îl1, îl2) and

(r̃l, ĩl1, ĩl2) := (r̂l, îl1, îl2),

where (r̂l, îl1, îl2) are the entries of the (F1, F0)-sequence with length L′

defined in Lemma 2. Let further

rl := (0, 0, . . . , 0), r̃l := r∗ for l = L − 1,

rl = r̃l := (0, 0, . . . , 0) for l = L,

il1 = il2 = ĩl1 = ĩl2 := 0 for l = L − 1 or l = L.

(24)

Thus we conclude by (22) and Lemma 2 that

(25) (f1, f2)
(F1,F0)–sequence

//

V1

55

(F1, F0)
(0,0,0)

// (F0, F0)
(0,0,0)

// (F0, F0)

and

(f1, f2)
(F1,F0)–sequence

//

V2

55

(F1, F0)
(r∗,0,0)

// (F1, F0)
(0,0,0)

// (F0, F0)(26)
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holds for all (f1, f2) ∈ F2.
Later, the following lemma will be of use. Its proof is straightfor-

ward.

Lemma 3. Let G be a finite set and A := (aij)i,j∈G be a matrix with non

negative real entries. For y ∈ N, let
(
a

(y)
ij

)

i,j∈G
:= Ay. Let X > 0 with

∑

k∈G aik ≤ X, for all i ∈ G. One has
∑

k∈G

a
(y)
ik ≤ Xy

for all i ∈ G.

5. Iterations

Recall that our aim is to show Prop. 1. Let B, D > 0 and 2 ≤ d ≤
≤ (log log N)D.

Let I be an interval of integers, i.e. I := {n ∈ N : a ≤ n < b} for
certain integers a < b. For c ∈ N we define cI := {n ∈ N : ca ≤ n < cb}.
For f1, f2 ∈ F and I1, . . . , Ik, J intervals of integers let

Φ (h1, . . . , hk; J, f1) :=
∑

n∈J

e

(

h

m

∑

S⊆M

(−1)k−|S|sq

(

dn +
∑

t∈S

ht + f1(S)

))

.

We further define

Ψ (I1, . . . , Ik−1; Ik, J, f1, f2) :=
∑

hk∈Ik

Φ(h1, . . . , hk; J, f1)Φ (h1, ..., hk; J, f2)

and

X (I1, . . . , Ik; J, f1, f2) :=
∑

h1∈I1

· · ·
∑

hk−1∈Ik−1

Ψ (h1, . . . , hk−1; Ik, J, f1, f2) .

Since

∆k (sq(dn), h1, . . . , hk) =
∑

S⊆M

(−1)k−|S|sq

(

dn +
∑

t∈S

dht

)

,

we have
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Y (U1, . . . , Uk, J) =

=
∑

h1∈U1

· · ·
∑

hk∈Uk

∣
∣
∣
∣
∣

∑

n∈J

e

(

h

m

∑

S⊆M

(−1)k−|S|sq

(

dn +
∑

t∈S

dht

))∣
∣
∣
∣
∣

2

≤

≤
∑

h1∈dU1

· · ·
∑

hk∈dUk

∣
∣
∣
∣
∣

∑

n∈J

e

(

h

m

∑

S⊆M

(−1)k−|S|sq

(

dn +
∑

t∈S

ht

))∣
∣
∣
∣
∣

2

=

= X (I1, . . . , Ik; J, F0, F0) ,

where Ii := dUi. Thus
√

N < |Ii|. Note that we substitute in the inner
sum dhi by hi since we extend the intervals Ui to Ii = dUi. This is the
essential trick of this paper. Our aim is now to show

(27) X (I1, . . . , Ik; J, f1, f2) ≪ |I1| · · · |Ik||J |2
1

(log N)2B

for arbitrary f1, f2 ∈ F ,

(28)
√

N < |Ii| and |J | ≤ N.

Recall that d ≤ (log log N)D. Provided that we can show (27), we take
f1, f2 = F0 and obtain

Y (U1, . . . , Uk, J) ≤ X (I1, . . . , Ik; J, F0, F0) ≪

≪ |I1| · · · |Ik||J |2
1

(log N)2B
≪

≪ |U1| · · · |Uk||J |2(log log N)kD 1

(log N)2B
≪

≪ |U1| · · · |Uk||J |2
1

(log N)B
.

Thus, to prove Prop. 1 and consequently to prove Th. 1, it suffices to
show (27), which is the matter of the remaining paper. To do so, we need
the following technical lemma which is similar to [9, Prop. 5.1].

Lemma 4. For f1, f2 ∈ F , L ∈ N we have

X
(
qLI1, . . . , q

LIk; q
LJ, f1, f2

)
=(29)

=
∑

r1,...,rL∈Qk

∑

i1,...iL∈Q2

L∏

ℓ=1

α
(
Ξ{rj ,ij1}1≤j≤ℓ−1

(f1), Ξ{rj ,ij2}1≤j≤ℓ−1
(f2), rℓ, iℓ1, iℓ2

)

X
(
I1, . . . , Ik, J ; Ξ{r1,iℓ1}1≤ℓ≤L

, Ξ{r1,iℓ2}1≤ℓ≤L
(f1)

)
,
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where

α (f1, f2, r, i1, i2) := e

(

h

m

∑

S⊆M

(−1)k−|S| (b(f1, S, r, i1) − b(f2, S, r, i2))

)

,

and b(f, S, r, i) ∈ Q is defined via

di +
∑

t∈S

rt + f(S) = zq + b(f, S, r, i)

with z ∈ N.

Remark 4. Note that z = Ξr,i(f)(S) = ⌊di +
∑

t∈S rt + f(S)⌋q.

Proof. Note that for an interval of integers I, we have
qI = {qh + r : h ∈ I, r ∈ Q}.

We first prove the case L = 1. Therefore, we consider

Φ (qh1 + r1, . . . , qhk + r1; qJ, f1) =

=
∑

i∈Q

∑

n∈J

e

(

h

m

∑

S⊆M

(−1)k−|S|sq

(

q

(

dn +
∑

t∈S

ht

)

+ di +
∑

t∈S

rt+f1(S)

))

.

Since

di +
∑

t∈S

rt + f1(S) = qΞr,i(f1)(S) + b(f1, S, r, i),

we get due to the q-additivity of the sum-of-digits function

sq

(

q

(

dn +
∑

t∈S

ht

)

+ di +
∑

t∈S

rt + f1(S)

)

=

= sq

(

dn +
∑

t∈S

ht + Ξr,i(f1)(S)

)

+ b(f1, S, r, i).

By the definition of X (I1, . . . , Ik; J, f1, f2), the lemma is proved in the
case L = 1. Repeating the procedure L − 1 times yields the result. ♦

Lemma 5. One has
α(F0, F0, 0, 0, 0) = 1,

α(F1, F0, 0, 0, 0) = e

(
h

m

)

and

α(F1, F0, r
∗, 0, 0) = e

(

(1 − q)
h

m

)

,

where r∗ is defined in (21).
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Proof. Let

Υr,i(f)(S) := di +
∑

t∈S

rt + f(S).

The remainder occurring at the division of Υr,i(f)(S) by q is b(f, S, r, i).
Since Υ0,0(F0)(S)=0 for all S ⊆ M , the first statement of the lemma is
valid. We have further Υ0,0(F1)(S)=0 for all S (M and Υ0,0(F1)(M) = 1,
thus α (F1, F0, 0, 0, 0) = e (h/m).

It remains to prove the last statement of the lemma. For all S ( M
we have Υr∗,0(F1)(S) = Υr∗,0(F0)(S) and consequently b(F1, S, r∗, 0) =
= b(F0, S, r∗, 0). Hence

α(F1, F0, r
∗, 0, 0) = e

(
h

m
(b(F1, M, r∗, 0) − b(F0, M, r∗, 0))

)

.

We have Υr∗,0(F1)(M) = q and Υr∗,0(F0)(M) = q − 1. Hence

b(F1, M, r∗, 0) − b(F0, M, r∗, 0) = 1 − q,

and the lemma follows. ♦

Recall that we need to show (27) in order to proof Th. 1.

Lemma 6. Let L := L′ + 2, where L′ as in Lemma 2. Let further

m ∤ h(q − 1), and f1, f2 ∈ F . Then the inequality
∣
∣X(qLtI1, . . . , q

LtIk, q
LtJ ; f1, f2)

∣
∣ ≤

≤
(

1 − π2

(4m2q(k+2)L)

)t
(
qLt|I1|

)
· · ·
(
qLt|Ik|

) (
qLt|J |

)2

holds for all t ∈ N.

Proof. We extract two summands V1 and V2 from (29) that correspond
to the sequences V1 and V2 respectively defined in (24). Thus Lemma 4
yields

X
(
qLI1, . . . , q

LIk; q
LJ, f1, f2

)
=

(30)

= V1 + V2 +
∑

Γ

L∏

ℓ=1

α
(
Ξ{rj ,ij1}1≤j≤ℓ−1

(f1), Ξ{rj ,ij2}1≤j≤ℓ−1
(f2), rl, iℓ1, iℓ2

)

X
(
I1, . . . , Ik, J ; Ξ{r1,iℓ1}1≤ℓ≤L

, Ξ{r1,iℓ2}1≤ℓ≤L
(f1)

)
,

where Γ denotes the set off all (r1, . . . , rL, i1, . . . iL) ∈ (Qk)L×(Q2)L apart
from the two elements corresponding to V1 or V2. Thus |Γ| = q(k+2)L −2.
We use the abbreviation
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A(f1, f2) :=

L−2∏

ℓ=1

α
(
Ξ{rj ,ij1}1≤j≤ℓ−1

(f1), Ξ{rj ,ij2}1≤j≤ℓ−1
(f2), rℓ, iℓ1, iℓ2

)
.

We obtain by (25) and (26) that

V1 = A(f1, f2)α(F1, F0, 0, 0, 0)α(F0, F0, 0, 0, 0)X (I1, . . . , Ik, J ; F0, F0)

and

V2 = A(f1, f2)α(F1, F0, r
∗, 0, 0)α(F1, F0, 0, 0, 0)X (I1, . . . , Ik, J ; F0, F0) .

By Lemma 5, we thus get

V1 + V2 = A(f1, f2)e

(
h

m

)(

1 + e

(

(1 − q)
h

m

))

X (I1, . . . , Ik, J, F0, F0) .

For given functions f1, f2, g1, g2 ∈ F , let Ef1,f2,g1,g2 denote the set
of all (r1, . . . , rL, i1, . . . iL) ∈ Γ satisfying

X
(
I1, . . . , Ik, J ; Ξ{r1,iℓ1}1≤ℓ≤L

, Ξ{r1,iℓ2}1≤ℓ≤L
(f1)

)
= X (I1, . . . , Ik, J, g1, g2) .

We define

a′(f1, f2, g1, g2) :=
∑

Ef1,f2,g1,g2

α (f1, f2, r, i1, i2) .

Recall that |Γ| = q(k+2)L − 2. The absolute value of the function α is at
most 1. Hence, for all f1, f2 ∈ F one has

∑

(g1,g2)∈F2

|a′(f1, f2, g1, g2)| ≤ q(k+2)L − 2.

We rearrange the sum (30) and get

X
(
qLI1, . . . , q

LIk; q
LJ, f1, f2

)
=

=
∑

(F0,F0)6=(g1,g2)∈F

a′(f1, f2, g1, g2)X (I1, . . . , Ik, J, g1, g2)+

+

(

a′(F0, F0) + A(f1, f2)e

(
h

m

)(

1 + e

(

(1 − q)
h

m

)))

X (I1, . . . , Ik, J, F0, F0) .

Let
a(f1, f2, g1, g2) := a′(f1, f2, g1, g2)

if (g1, g2) 6= (F0, F0) and let

a(f1, f2, F0, F0) := a′(f1, f2, F0, F0) + A(f1, f2)e

(
h

m

)(

1+e

(

(1−q)
h

m

))

.
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We have∣
∣
∣
∣
e

(
h

m

)(

1 + e

(

(1 − q)
h

m

))∣
∣
∣
∣
≤
∣
∣
∣
∣
1 + e

(
1

m

)∣
∣
∣
∣
≤ 2 −

( π

2m

)2

,

by our assumption m ∤ h(q − 1). We therefore obtain
(31)
∑

(g1,g2)∈F2

|a(f1, f2, g1, g2)| ≤ q(k+2)L−
( π

2m

)2

= q(k+2)L

(

1− π2

(4m2q(k+2)L)

)

.

Now, we define an |F2| × |F2| matrix Z by
Z := (|a(f1, f2, g1, g2)|)(f1,f2)∈F2,(g1,g2)∈F2 .

We get the inequality

(
|X(qLI1, . . . , q

LIk, q
L; f1, f2)|

)

(f1,f2)∈F2 ≤(32)

≤ Z (|X(qI1, . . . , qIk, q; g1, g2)|)(g1,g2)∈F2

which is meant componentwise.
Let t ∈ N. Due to (31), we are able to apply Lemma 3 and we

obtain by the t-fold iterations of the inequality (32) together with the
trivial bound

|X(I1, . . . , Ik, J ; f1, f2)| ≤ |I1| · · · |Ik||J |2
the inequality

∣
∣X(qLtI1, . . . , q

LtIk, q
LtJ ; f1, f2)

∣
∣ ≤

≤
(

1 − π2

(4m2q(k+2)L)

)t
(
qLt|I1|

)
· · ·
(
qLt|Ik|

) (
qLt|J |

)2
. ♦

6. Conclusion

Let D, B > 0. We assume N ≥ k. We take

t :=

⌊

log N

8D log log log N

⌋

.

Since d ≤ (log log N)D, we have

L ≤ log(d(k + d))

log q
+ 4 + k ≤ 2D

(
log log log N

log q
+ 1

)

for D sufficiently large and

qLt ≤ N1/4+log q/(4 log log log N)
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for all N ∈ N with (log log N)D ≥ k. Thus there is an integer N0 and
some ε > 0, depending only on q, k and D such that for all N ≥ N0 we
have √

N

qLt
≤ N−ǫ.(33)

For any 0 < σ < 1 one has (1 − σ)t < e−tσ. Thus we get
(

1 − π2

(4m2q(k+2)L)

)t

≪ e−c log N/(log log log N(log log N)(2D+1)(k+2)),

where c = π2/(36Dm2). Hence

(

1− π2

(4m2q(k+2)L)

)t

≪ (log N)−c log N/(log log log N(log log N)(2D+1)(k+2)+1) ≪

≪ (log N)−2B.

(34)

Now, we are able to show (27) which yields Prop. 1 and concludes
the proof of Th. 1. We need to estimate

X (I1, . . . , Ik; J, f1, f2)
where the intervals satisfy (28). For 1 ≤ j ≤ k + 1, the integers aj and
bj are defined by Ij = [aj , bj] and J = [ak+1, bk+1]. Besides the integers
uj, vj , rj, sj with 0 ≤ rj , sj < qLt are uniquely defined by

aj = qLtuj + rj , bj = qLtvj + sj

for all 1 ≤ j ≤ k + 1. Notice that uj 6= vj by (28) and (33). We finally
define

Ĩj := [uj, vj ], J̃ := [uk+1, vk+1]

for 1 ≤ j ≤ k. It is a straightforward exercise to verify
X(I1, . . . , Ik, J ; f1, f2) =

= X(qLtĨ1, . . . , q
LtĨk, q

LtJ̃ ; f1, f2) + O

(

|I1| · · · |Ik||J |2
√

N

qLt

)

.

By Lemma 6, we finally get

X(I1, . . . , Ik, J ; f1, f2) ≪
((

1 − π2

(4m2q(k+2)L)

)t

+

√
N

qLt

)

|I1| · · · |Ik||J |2.

Prop. 1 is proved by applying (33) and (34).



58 M. Jancevskis: A hybrid result related to Waring’s Problem

References

[1] BAKER, R. C. and BRÜDERN, J.: Sums of cubes of square-free numbers,
Monatsh. Math. 111 (1991), 1–21.
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