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1. A few basic facts on relations and functions

A subset F of a product set X×Y is called a relation on X to Y . If
in particular F ⊂ X2, then we may simply say that F is a relation on X.
Thus, a relation F on X to Y is also a relation on X ∪ Y .

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the
sets F (x) = {y ∈ Y : (x, y) ∈ F} and F [A] =

⋃

a∈A F (a) are called the
images of x and A under F , respectively.

Moreover, the sets DF = {x ∈ X : F (x) 6= ∅} and RF = F [DF ] are
called the domain and range of F , respectively. If in particular DF = X,
then we say that F is a relation of X to Y , or that F is a total relation
on X to Y .

If F is a relation on X to Y , then the values F (x), where x ∈ X,
uniquely determine F since we have F =

⋃

x∈X{x} × F (x). Therefore,
the inverse relation F−1 can be defined such that F−1(y) = {x ∈ X : y ∈
∈ F (x)} for all y ∈ Y .

Moreover, if in addition G is a relation on Y to Z, then the com-
position relation G ◦ F can be defined such that (G ◦ F )(x) = G[F (x)]
for all x ∈ X. Thus, we also have (G ◦ F )[A] = G[F [A]] for all A ⊂ X.

In particular, a relation f on X to Y is called a function if for
each x ∈ Df there exists y ∈ Y such that f(x) = {y}. In this case, by
identifying singletons with their elements, we may simply write f(x) = y
in place of f(x) = {y}.

If ≤ is a relation on X and + is a function of X2 to X, then the
ordered pairs X(≤) = (X,≤) and X(+) = (X, +) are called a goset
and a groupoid, respectively. In this case, for any x, y ∈ X, we simply
write x ≤ y and x + y in place of (x, y) ∈ ≤ and +((x, y)), respectively.
Moreover, we simply write X in place of X(≤) and X(+).

The most basic order theoretic and algebraic notions can also be
naturally defined in a goset and a groupoid, respectively. For instance,
for any subset A of a goset X, we may naturally define

lb(A) =
⋂

a∈A

] −∞, a] and ub(A) =
⋂

a∈A

[a, +∞[ ,

where ] − ∞, a] = {x ∈ X : x ≤ a} and [a, +∞[ = {x ∈ X : a ≤ x},
and

max(A) = A ∩ ub(A) and inf(A) = max
(

lb(A)
)

.

Moreover, for any subsets A and B of a groupoid X, we may nat-
urally define
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A + B =
{

a + b : a ∈ A, b ∈ B
}

.

Thus, a relation F on one groupoid X to another Y may be naturally
called additive if

F (x + y) = F (x) + F (y)

for all x, y ∈ X.
In the sequel, R will stand for the conditionally complete ordered

field of real numbers. Moreover, we shall also use the notation

R = R ∪ {−∞, +∞}.

In R we shall consider the natural extensions of the inequality and
addition in R. Moreover, having in mind the upper addition of Moreau
[8], we also define

−∞ + (+∞) = +∞ and + ∞ + (−∞) = +∞.

Thus, we can at once state the following

Theorem 1.1. R, with the extended inequality, is a complete ordered

set.

Remark 1.2. The completeness of R means that inf(A) 6= ∅ and
sup(A) 6= ∅ for all A ⊂ R. (See, for instance, [2].)

By the anti-symmetry of the inequality in R, inf(A) is actually
singleton for all A ⊂ R which will be identified with its element.

Moreover, we can also easily check the following

Theorem 1.3. R, with the extended addition, is a commutative semi-

group with zero element.

Remark 1.4. To check the associativity of the addition in R, note that
if at least one of the quantities x, y, z ∈ R is equal to +∞, then both
(x + y) + z and x + (y + z) are also equal to +∞.

2. Additivity properties of the relations < and ≤

In this section, slightly improving the treatment of Moreau [8], we
prove some basic facts concerning the compatibility of the inequality and
the addition in R.

Proposition 2.1. If x, y, z, w ∈ R such that x < z and y < w, then

x + y < z + w.

Proof. Because of x < z and y < w, we necessarily have −∞ < z,
−∞ < w and x < +∞, y < +∞. Hence, it follows that −∞ < z + w
and x + y < +∞.



26 Á. Figula and Á. Száz

Now, we can note that if either z = +∞ or w = +∞, then because
of x+y < +∞ and z+w = +∞, the required inequality holds. Therefore,
we may assume that z < +∞ and w < +∞.

In this case, because of −∞ < z and −∞ < w, we necessarily have
z, w ∈ R. Therefore, if in particular x, y ∈ R also holds, then by the
corresponding property of R the required inequality is true. While, if in
particular either x = −∞ or y = −∞, then because of x + y = −∞ and
z + w ∈ R, the required inequality again holds. ♦

Proposition 2.2. If x, y, τ ∈ R such that x + y < τ , then there exist

z, w ∈ R such that x < z, y < w and τ = z + w.

Proof. Because of x + y < τ , we necessarily have −∞ < τ and x + y <
< +∞. Hence, it follows that x < +∞ and y < +∞.

Now, we can note that if in particular τ = +∞, then the extended
numbers z = +∞ and w = +∞ have the required properties. Therefore,
we may assume that τ < +∞.

In this case, because of −∞ < τ , we necessarily have τ ∈ R. There-
fore, if in particular x, y ∈ R also holds, then by taking r = τ − (x + y)
we can easily check that the numbers z = x + r/2 and w = y + r/2 have
the required properties.

Therefore, we need only consider the case when either x = −∞ or
y = −∞. For this, note that if for instance x = −∞ and y ∈ R, then we
can take w = y +1 and z = τ − (y +1). While, if x = −∞ and y = −∞,
then we can take z = τ/2 and w = τ/2. Now, by the commutativity of
the addition in R, it is clear that the required assertion is always true. ♦

Now, as a common generalization of the above propositions, we can
prove the following

Theorem 2.3. For any x, y ∈ R, we have

]x + y, +∞] = ]x, +∞]+ ]y, +∞].

Proof. If τ ∈ ]x, +∞]+ ]y, +∞], then there exist z ∈ ]x, +∞] and w ∈
∈ ]y, +∞] such that τ = z + w. The above inclusions imply that x < z
and y < w. Hence, by Prop. 2.1, it follows that x+y < z+w. Therefore,
τ = z + w ∈ ]x + y, +∞]. This shows that ]x, +∞]+ ]y, +∞] ⊂ ]x + y, +
+∞].

Conversely, if τ ∈]x + y, +∞], then x + y < τ . Thus, by Prop. 2.2,
there exist z, w ∈ R such that x < z, y < w and τ = z + w. Hence, it
is clear that τ = z + w ∈ ]x, +∞]+ ]y, +∞]. Therefore, ]x + y, +∞] ⊂
⊂ ]x, +∞]+ ]y, +∞] is also true. ♦

Analogously to Prop. 2.1, we can also easily prove the following
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Proposition 2.4. If x, y, z, w ∈ R such that x ≤ z and y ≤ w, then

x + y ≤ z + w.

Proof. Because of the corresponding property of R, we need only con-
sider the case when at least one of the above numbers is equal to either
−∞ or +∞.

For this, note that if for instance x = +∞, then because of x ≤ z
we also have z = +∞. Therefore, z + w = +∞, and thus the required
inequality trivially holds.

While, if z = −∞, then because of x ≤ z we also have x = −∞.
Therefore, if y 6= +∞, then x+y = −∞, and thus the required inequality
trivially holds. While, if y = +∞, then because of y ≤ w we also have
w = +∞. Therefore, z + w = +∞, and thus the required inequality
again trivially holds. ♦

By using Prop. 2.2, we can also easily prove the following

Proposition 2.5. If x, y, τ ∈ R such that x + y ≤ τ , then there exist

z, w ∈ R such that x ≤ z, y ≤ w and τ = z + w.

Proof. Because of x + y ≤ τ , we have either x + y = τ or x + y < τ .
Note that, in the first case, we can simply take z = x and w = y. While,
in the second case, Prop. 2.2 can be applied. ♦

Now, as a common generalization of Props. 2.4 and 2.5, we can also
state

Theorem 2.6. For any x, y ∈ R, we have

[x + y, +∞] = [x, +∞] + [y, +∞].

Remark 2.7. The above two theorems show that < and ≤ are additive
relations on R.

In the sequel, we shall also need the following partial dual of Prop.
2.2.

Proposition 2.8. If x, y, τ ∈R such that τ <x+y, x 6=−∞ and y 6=−∞,

then there exist z, w ∈ R such that z < x, w < y and τ = z + w.

Proof. Because of τ < x + y, we necessarily have −∞ < x + y and
τ < +∞. Therefore, either x + y ∈ R or x + y = +∞. Moreover, either
τ = −∞ or τ ∈ R.

If in particular x + y ∈ R, then x, y ∈ R. Now, if in particular
τ ∈ R also holds, then by taking r = x + y − τ , we can easily check that
the numbers z = x − r/2 and w = y − r/2 have the required properties.
While, if τ = −∞, then we can simply take z = −∞ and w = −∞.



28 Á. Figula and Á. Száz

While, if in particular x + y = +∞, then either x = +∞ or y =
= +∞. Now, if in particular x = +∞ and y ∈ R, then we can easily
see that the numbers w = y − 1 and z = τ − (y − 1) have the required
properties. While, if x = +∞ and y = +∞, then we can simply take
z = τ/2 and w = τ/2 with the usual convention that τ/2 = −∞ if τ =
= −∞. Now, by the commutativity of the addition in R, it is clear that
the required assertion is always true. ♦

Remark 2.9. Note that if in particular x, y, τ ∈ R such that τ < x + y,
x 6= +∞ and y 6= +∞, then we necessarily have x 6= −∞ and y 6= −∞.
Therefore, the conclusion of the above proposition is again true.

Now, as a common generalization of Props. 2.1 and 2.8 and Rem. 2.9,
we can also state

Theorem 2.10. For any x, y ∈ R∪{−∞} or x, y ∈ R∪{+∞}, we have

[−∞, x + y[ = [−∞, x[ + [−∞, y[.

By using Prop. 2.8, we can also easily prove the following partial
dual of Prop. 2.5.

Proposition 2.11. If x, y, τ ∈ R such that τ ≤ x + y, x 6= −∞ and

y 6= −∞, then there exist z, w ∈ R such that z ≤ x, w ≤ y and τ = z+w.

Proof. Because of τ ≤ x + y, we have either τ = x + y or τ < x + y.
Note that, in the first case, we can simply take z = x and w = y. While,
in the second case Prop. 2.8 can be applied. ♦

Remark 2.12. Note that if x, y, τ ∈ R such that τ ≤ x + y, x 6= +∞
and y 6= +∞, then by Rem. 2.9 the conclusion of the above proposition
is also true.

Thus, in addition to Prop. 2.11, we can also state that if for instance
x, y, τ ∈ R such that τ ≤ x + y, x = −∞ and y 6= +∞, then the
conclusion of Prop. 2.11 is also true.

Now, as a common generalization of Props. 2.4 and 2.11 and Rem.
2.12, we can also state

Theorem 2.13. For any x, y ∈ R∪{−∞} or x, y ∈ R∪{+∞}, we have

[−∞, x + y] = [−∞, x] + [−∞, y].

Remark 2.14. The latter two theorems show that > and ≥ are additive
relations on both R ∪ {−∞} and R ∪ {+∞} to R.
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3. Further results on the inverse relation of ≤

For our subsequent purposes, it seems convenient to introduce a
particular notation for the inverse relation ≥ of ≤ in R.

Definition 3.1. We define a relation Φ on R such that Φ(x) = [−∞, x]
for all x ∈ R.

Thus, we can at once state the following proposition which shows
that Φ is just the inverse relation of ≤ in R.

Proposition 3.2. For any x, y ∈ R, we have
xΦy ⇐⇒ y ≤ x.

Proof. By the corresponding definitions, it is clear that
xΦy ⇐⇒ y ∈ Φ(x) ⇐⇒ y ∈ [−∞, x] ⇐⇒ y ≤ x. ♦

Remark 3.3. From this proposition, by using Th. 1.1, we can easily
derive that Φ is also a complete order relation on R.

In connection with the relations ≤ and Φ, we can also easily es-
tablish the following proposition which needs only the reflexivity and
transitivity of the inequality in R.

Proposition 3.4. For any x, y ∈ R, we have

x ≤ y ⇐⇒ Φ(x) ⊂ Φ(y).

Proof. If z ∈ Φ(x), then z ≤ x. Hence, if x ≤ y holds, we can infer that
z ≤ y, and thus z ∈ Φ(y). Therefore, Φ(x) ⊂ Φ(y) also holds.

Conversely, if the latter inclusion holds, then because of x ∈ Φ(x),
we also have x ∈ Φ(y). Therefore, x ≤ y also holds. ♦

Remark 3.5. From this proposition, we can already see that the set-
valued mapping x 7→ Φ(x), where x ∈ R, is an order monomorphism of
R to the family P(R) of all subsets of R.

Moreover, by using Prop. 3.4, we can easily prove the following

Theorem 3.6. For any family (xi)i∈I in R, we have

Φ

(

inf
i∈I

xi

)

=
⋂

i∈I

Φ(xi).

Proof. If x = infi∈I xi, then x ≤ xi for all i ∈ I. Hence, by Prop. 3.4, it
follows that Φ(x) ⊂ Φ(xi) for all i ∈ I, and thus Φ(x) ⊂

⋂

i∈I Φ(xi).
On the other hand, if y ∈

⋂

i∈I Φ(xi), then y ∈ Φ(xi) for all i ∈ I.
Hence, by the transitivity of Φ, it follows that

Φ(y) ⊂ Φ[Φ(xi)] = Φ2(xi) ⊂ Φ(xi)
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for all i ∈ I. Moreover, by Prop. 3.4, Φ(y) ⊂ Φ(xi) implies y ≤ xi for
all i ∈ I. Hence, by the definition of x, it is clear that y ≤ x, and thus
y ∈ Φ(x). Therefore,

⋂

i∈I Φ(xi) ⊂ Φ(x) is also true. ♦

In general, the inverse of an additive relation need not be additive.
However, by Th. 2.13, we can once state the following

Theorem 3.7. For any x, y ∈ R ∪ {−∞} or x, y ∈ R ∪ {+∞}, we have

Φ(x + y) = Φ(x) + Φ(y).

Remark 3.8. Because of this theorem, we can note that the restriction
of the set-valued mapping considered in Rem. 3.5 to either R∪{−∞} or
R∪ {+∞} is not only an order, but also an algebraic monomorphism to
P(R).

In general, the complement of an additive relation need not also be
additive. However, by using Th. 2.3, we can easily prove the following

Theorem 3.9. Under the notation Φc = R
2

\ Φ, for any x, y ∈ R, we

have
Φc(x + y) = Φc(x) + Φc(y).

Proof. By the corresponding definitions, it is clear that

Φc(x) = R \ Φ(x) = [−∞, +∞] \ [−∞, x] = ]x, +∞]

for all x ∈ R. Therefore, Th. 2.3 can be applied. ♦

4. Generalized infimum and intersection
convolutions

To briefly formulate the definitions of the above mentioned convo-
lutions, it seems convenient to introduce the following

Definition 4.1. Let X be a set and Γ be a relation on X to X2. More-
over, for any U, V ⊂ X, define

∆(x, U, V ) = Γ(x) ∩ (U × V ).

Remark 4.2. An important particular case is when X is groupoid and
for some relation ≤ on X we have

Γ(x) =
{

(u, v) ∈ X2 : x ≤ u + v
}

,

for all x ∈ X. Here, ≤ may, in particular, be the equality relation on X
which is only a partial order on X.

Definition 4.3. Under the notation of Def. 4.1, for any two functions f
and g on X to R, we define a function f ∗ g on X to R such that

(f ∗ g)(x) = inf
{

f(u) + g(v) : (u, v) ∈ ∆(x, Df , Dg)
}
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for all x ∈ X. The function f ∗ g will be called the infimum convolution
of f and g corresponding to the relation Γ.

Remark 4.4. Note that if f and g do not take on the value +∞, then
(f ∗ g)(x) = +∞ if and only if ∆(x, Df , Dg) = ∅. That is, Γ(x) ∩ (Df ×
× Dg) = ∅, or equivalently x /∈ Γ−1[Df × Dg].

The infimum convolution corresponding to the equality relation on
a semigroup was already applied by several mathematicians in minimiza-
tion problems and regularization processes. (See Moreau [8] and Ström-
berg [9].)

However, the infimum convolution corresponding to an inequality
relation on a groupoid has only been explicitly applied by the second
author in [14] to put the derivation of an increasing Hahn–Banach type
extension theorem of Fuchssteiner and Lusky [6, p. 13] into a proper
perspective.

Definition 4.5. Under the notation of Def. 4.1, for any two relations F
and G on X to a groupoid Y , we define a relation F ∗G on X to Y such
that

(F ∗ G)(x) =
⋂

{

F (u) + G(v) : (u, v) ∈ ∆(x, DF , DG)
}

for all x ∈ X. The relation F ∗G will be called the intersection convolu-
tion of F and G corresponding to the relation Γ.

Remark 4.6. The intersection convolution corresponding to the equality
relation on a group and a groupoid was first studied by the second author
in [10] and [11], respectively.

Some of the results of the former paper [10] have later been extended
to fuzzy multifunctions by Beg [1]. Moreover, motivated by the results
of [10], the intersection convolution has recently been also intensively
investigated in [3, 4, 5, 11, 12, 13].

Analogously to the infimum and intersection convolution, the supre-
mum and union convolutions can also be naturally introduced.

Definition 4.7. Under the notation of Def. 4.1, for any two relations F
and G on X to a groupoid Y , we define a relation F ⊛G on X to Y such
that

(F ⊛ G)(x) =
⋃

{

F (u) + G(v) : (u, v) ∈ ∆(x, DF , DG)
}

for all x ∈ X. The relation F ⊛ G will be called the union convolution
of F and G corresponding to the relation Γ.

Remark 4.8. Now, in contrast to Defs. 4.3 and 4.5, we may simply
write Γ(x) in place ∆(x, DF , DG).
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Namely, if either u /∈ DF or v /∈ DG, then we necessarily have
F (u) + G(v) = ∅ which does not influence the union.

However, in contrast to the intersection convolution, the union con-
volution corresponding to the equality relation need not, in general, be
introduced since by a particular case of [7, Th. 3.1] we have the following

Theorem 4.9. If in particular X is a groupoid and

Γ(x) =
{

(u, v) ∈ X2 : x = u + v
}

for all x ∈ X, then for any two relations F and G on X to another

groupoid Y , we have
F ⊛ G = F ⊕ G.

Remark 4.10. In this theorem,

F ⊕ G =
{

(x + z, y + w) : (x, y) ∈ F, (z, w) ∈ G
}

.

is the global sum of the relations F and G.
This greatly differs from the more usual pointwise sum F +G which

is defined such that (F + G)(x) = F (x) + G(x) for all x ∈ X.

5. Graphical relationships between the various
convolutions

The intersection convolution is actually a particular case of a
straightforward generalization of the infimum convolution.

However, our purpose is here to investigate only the graphical re-
lationships between the above two particular kinds of convolutions.

For this, we shall also need the following definition of the hypograph
which slightly differs from the usual one. (See, for instance, [8, p. 140].)

Definition 5.1. For any function f on a set X to R, we define a relation
Hf on Df to R such that

Hf(x) = [−∞, f(x)]

for all x ∈ Df . The relation Hf will be called the hypograph of f .

Remark 5.2. Now, the complement Ef = (Df ×R) \Hf may be called
the strict epigraph of f .

Namely, thus Ef is a relation on Df to R such that

Ef(x) = R \ Hf(x) = [−∞, +∞] \ [−∞, f(x)] = ]f(x), +∞]

for all x ∈ Df .
Note that, in contrast to DHf

= Df , we now only have DEf
= Df \

\ f−1(+∞). Moreover, by [9, p. 7], the set Ef ∩ (X×R) should be called
the strict epigraph of f .
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Proposition 5.3. For any function f on a set X to R, we have
Hf = Φ ◦ f.

Proof. By the corresponding definitions, it is clear that
Hf(x) = [−∞, f(x)] = Φ(f(x)) = (Φ ◦ f)(x)

for all x ∈ Df . Thus, in particular the required equality is also true. ♦

Remark 5.4. Now, we can also easily see that

Ef (x) = R \ Hf(x) = R \ Φ
(

f(x)
)

= Φc
(

f(x)
)

= (Φc ◦ f)(x)

for all x ∈ Df . Therefore, Ef = Φc ◦ f is also true.

Moreover, by using Prop. 5.3, we can also prove the following

Theorem 5.5. Under our former notation, for any two functions f and

g on X to either R ∪ {−∞} or R ∪ {+∞}, we have

Hf∗g = Hf ∗ Hg.

Proof. By using Prop. 5.3 and Ths. 3.6 and 3.7, we can see that

Hf∗g(x) =
(

Φ ◦ (f ∗ g)
)

(x) = Φ
(

(f ∗ g)(x)
)

=

= Φ
(

inf
{

f(u) + g(v) : (u, v) ∈ ∆(x, Df , Dg)
})

=

=
⋂

{

Φ
(

f(u) + g(v)
)

: (u, v) ∈ ∆(x, Df , Dg)
}

=

=
⋂

{

Φ
(

f(u)
)

+ Φ
(

g(v)
)

: (u, v) ∈ ∆(x, Df , Dg)
}

=

=
⋂

{

(Φ ◦ f)(u) + (Φ ◦ g)(v) : (u, v) ∈ ∆(x, Df , Dg)
}

=

=
⋂

{

Hf(u)+Hg(v) : (u, v)∈∆(x, DHf
, DHg

)
}

=(Hf ∗Hg)(x)

for all x ∈ X. Therefore, the required equality is also true. ♦

Now, as a dual of the latter theorem, we can also prove the following

Theorem 5.6. Under our former notation, for any two functions f and

g on X to R, we have
Ef∗g = Ef ⊛ Eg.
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Proof. By the proof of Th. 5.5, Rem. 5.4 and Th. 3.9, it is clear that

Ef∗g(x)= R \ Hf∗g(x) =

= R \
⋂

{

Φ
(

f(u) + g(v)
)

: (u, v) ∈ ∆(x, Df , Dg)
}

=

=
⋃

{

R \ Φ
(

f(u) + g(v)
)

: (u, v) ∈ ∆(x, Df , Dg)
}

=

=
⋃

{

Φc
(

f(u) + g(v)
)

: (u, v) ∈ ∆(x, Df , Dg)
}

=

=
⋃

{

Φc
(

f(u)
)

+ Φc
(

g(v)
)

: (u, v) ∈ ∆(x, Df , Dg)
}

=

=
⋃

{

Ef(u) + Eg(v) : (u, v) ∈ ∆(x, Df , Dg)
}

=

=
⋃

{

Ef(u)+ Eg(v) : (u, v)∈∆(x, DEf
, DEg

)
}

=(Ef ⊛ Eg)(x)

for all x ∈ X. Therefore, the required equality is also true. ♦

From this theorem, by using Th. 4.9, we can immediately get the
following counterpart of [8, Prop. 7.b] and [9, Th. 2.2(b)].

Corollary 5.7. If in particular X is a groupoid and

Γ(x) =
{

(u, v) ∈ X2 : x = u + v
}

for all x ∈ X, then for any two functions f and g on X to R, we have
Ef∗g = Ef ⊕ Eg.
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gesting the investigation of the graphical relationships between the infi-
mum and intersection convolutions.

Moreover, the authors wish to thank the referee for pointing out
that Th. 5.5 remains true in the more general case when the sums f(u)+
+ g(v) and F (u)+ G(v), in Defs. 4.3 and 4.5, are replaced by some more
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(

f(u), g(v)
)

and Q
(

F (u), G(v)
)

, respectively.
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