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Abstract: The topic of our paper is the hat problem. In that problem, each
of n people is randomly fitted with a blue or red hat. Then everybody can try
to guess simultaneously his own hat color looking at the hat colors of the other
people. The team wins if at least one person guesses his hat color correctly
and no one guesses his hat color wrong, otherwise the team loses. The aim
is to maximize the probability of win. In this version every person can see
everybody excluding him. In this paper we consider such problem on a graph,
where vertices are people and a person can see these people, to which he is
connected by an edge. We prove some general theorems about the hat problem
on a graph and solve the problem on trees. We also consider the hat problem on
a graph with given degrees of vertices. We give an upper bound that is based
only on the degrees of vertices on the chance of success of any strategy for the
graph G. We show that this upper bound together with integrality constraints
is tight on some toy examples.

1. Introduction

In the hat problem, a team of n people enters a room and a blue or
red hat is randomly placed on the head of each person. Each person can
see the hats of all of the other people but not his own. No communication
of any sort is allowed, except for an initial strategy session before the
game begins. Once they have had a chance to look at the other hats,
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each person must simultaneously guess the color of his own hat or pass.
The team wins if at least one person guesses his hat color correctly and
no one guesses his hat color wrong, otherwise the team loses. The aim is
to maximize the probability of win.

The hat problem with seven people called “seven prisoners puzzle”
was formulated by T. Ebert in his Ph.D. Thesis [10]. The hat problem
was also the subject of articles in The New York Times [20], Die Zeit [5],
and abcNews [19]. The hat problem with n people and two colors of hat
was investigated in [6]. It was solved for 2k − 1 people in [12]. The hat
problem and Hamming codes were also the subject of an article in Polish
math–physics–informatic magazine [9].

There are also known some variants and generalizations of hat prob-
lem. The authors of [18] investigate the generalized hat problem with q ≥
≥ 2 colors, they also consider variants in which there are arbitrary input
distributions, randomized playing strategies, and symmetric strategies.
In the papers [1], [8], and [17] there is considered another variant of
hat problem in which passing is not allowed, thus everybody has to try
to guess his hat color. The aim is to maximize the number of correct
guesses. In [14] the authors investigate several variants of hat problem
in which the aim is to design a strategy such that the number of correct
guesses is greater than or equal to the given positive integer. In the paper
[15] there is considered the hat problem, and also a variant in which the
probabilities of getting hats of each colors do not have to be equal. The
authors of [2] investigate a problem similar to the hat problem. There
are n people which have random bits on foreheads, and they have to vote
on the parity of the n bits.

The hat problem and its variants have many applications and con-
nections to other areas of science, for example: information technol-
ogy [4], linear programming [14, 16], genetic programming [7], economy
[1, 17], biology [15], approximating Boolean functions [2], and autore-
ducibility of random sequences [3, 10–13]. Therefore, it is hoped that the
hat problem on a graph considered in this paper, as a natural general-
ization, is worth exploring, and may also have many applications.

We consider the hat problem on a graph, where vertices are people
and a person can see these people, to which he is connected by an edge.
We prove some general theorems about the hat problem on a graph and
solve the problem on trees. We also consider the hat problem on a graph
with given degrees of vertices. We give an upper bound that is based
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only on the degrees of vertices on the chance of success of any strategy
for the graph G. We show that this upper bound together with integrality
constraints is tight on some toy examples.

The paper is organized as follows. In Sec. 2 we give the notation
and terminology used. In Sec. 3 first we make some general observations
about the hat problem on a graph. In Th. 4 we solve that problem on
paths, and in Th. 5 we solve the hat problem on trees. Then we consider
the hat problem on a graph with given degrees of vertices.

2. Preliminaries

For a graph G, by V (G) and E(G) we denote the set of vertices
and the set of edges of this graph, respectively. If H is a subgraph of G,
then we write H ⊆ G. Let v ∈ V (G). By NG(v) we denote the open
neighbourhood of v, that is NG(v) = {x ∈ V (G) : vx ∈ E(G)}. By NG[v]
we denote the closed neighbourhood of v, that is NG[v] = NG(v) ∪ {v}.
By dG(v) we denote the degree of the vertex v, that is the number of
its neighbours, thus dG(v) = |NG(v)|. By Pn we denote the path with n
vertices. By Cn we denote the cycle with n vertices. By Kn we denote
the complete graph with n vertices. Let f : X → Y be a function. If
Z ⊆ X, then by f|Z we denote the restriction of f to Z. If y ∈ Y , then
by f ≡ y we denote that for every x ∈ X we have f(x) = y.

Without loss of generality we may assume an ordering of the vertices
of a graph G, that is V (G) = {v1, v2, . . . , vn}.

Let {b, r} be the set of colors (b means blue and r means red). If
vi ∈ V (G), then c(vi) is the color of vi, so c : V (G) → {b, r} is a function.
By a case for the graph G we mean a sequence (c(v1), c(v2), . . . , c(vn)).
The set of all cases for the graph G we denote by C(G), of course |C(G)| =
= 2|V (G)|.

If vi ∈ V (G), then by si we denote a function si : V (G) → {b, r, ∗},
where si(vj) ∈ {b, r} is the color of vj if vi sees vj , and mark ∗ otherwise,
that is, si(vj) = c(vj) if vj ∈ NG(vi), while si(vj) = ∗ if vj ∈ V (G) \
\ NG(vi). By a situation of the vertex vi in the graph G we mean the
sequence (si(v1), si(v2), . . . , si(vn)). The set of all possible situations of
vi in the graph G we denote by Sti(G). Of course, |Sti(G)| = 2|NG(vi)|.

Let vi ∈ V (G). We say that a case (c1, c2, . . . , cn) for the graph G
corresponds to a situation (t1, t2, . . . , tn) of the vertex vi in the graph G if
it is created from this situation only by changing every mark ∗ to b or r.
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So, a case corresponds to a situation of vi if every vertex adjacent to vi,
in that case has the same color as in that situation. To every situation
of the vertex vi in the graph G correspond 2|V (G)|−|NG(vi)| cases, because
every situation of vi has |V (G)| − |NG(vi)| marks ∗.

Let G and H be graphs such that V (H) = {v1, v2, . . . , vm}, V (G) =
= {v1, v2, . . . , vm, . . . , vn}, and E(H) ⊆ E(G). We say that a case
(a1, a2, ..., am, ..., an) for the graph G corresponds to a case (b1, b2, ..., bm)
for the graph H if (a1, a2, ..., am) = (b1, b2, ..., bm), that is, every vertex
from the graph H in both cases has the same color. Of course, to every
case for the graph H correspond 2n−m cases for the graph G.

Let G and H be graphs such that V (H) = {v1, v2, . . . , vm}, V (G) =
= {v1, v2, . . . , vm, . . . , vn}, and E(H) ⊆ E(G). Let i ∈ {1, 2, . . . , m}. We
say that a situation (t1, t2, . . . , tm, . . . , tn) of the vertex vi in the graph G
corresponds to a situation (u1, u2, . . . , um) of the vertex vi in the graph
H if (t1, t2, . . . , tm) = (u1, u2, . . . , um), that is, every vertex adjacent to
vi in the graph H , in both of these situations has the same color.

By a statement of a vertex we mean its declaration about the color
it guesses it is. By the result of a case we mean a win or a loss. According
to the definition of the hat problem, the result of a case is a win if at
least one vertex states its color correctly and no vertex states its color
wrong. The result of a case is a loss if no vertex states its color or some
vertex states its color wrong.

By a guessing instruction for the vertex vi ∈ V (G) (denoted by gi)
we mean a function gi : Sti(G) → {b, r, p} which, for a given situation,
gives b or r meaning the color vi guesses it is, or the letter p if vi passes.
Thus a guessing instruction is a rule which determines the behavior of
the vertex vi in every situation. By a strategy for the graph G we mean a
sequence (g1, g2, . . . , gn). By F(G) we denote the family of all strategies
for the graph G.

Let vi ∈ V (G) and S ∈ F(G). We say that vi never states its color
in the strategy S if vi passes in every situation, that is gi ≡ p. We say
that vi always states its color in the strategy S if vi states its color in
every situation, that is, for every T ∈ Sti(G) we have gi(T ) ∈ {b, r}
(gi(T ) 6= p, equivalently).

If S ∈ F(G), then by Cw(S) and Cl(S) we denote the sets of cases
for the graph G in which the team wins or loses, respectively. Of course,
|Cw(S)| + |Cl(S)| = |C(G)|. Consequently, by the chance of success of

the strategy S we mean the number p(S) = |Cw(S)|
|C(G)|

. By the hat number
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of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}.
Certainly p(S) ≤ h(G). We say that the strategy S is optimal for the
graph G if p(S) = h(G). By F0(G) we denote the family of all optimal
strategies for the graph G.

Let t, m1, m2, . . . , mt ∈ {1, 2, . . . , n} be such that mj 6= mk and
cmj

∈ {b, r}, for every j, k ∈ {1, 2, . . . , t}.

By C(G, v
cm1

m1
, v

cm2

m2
, . . . , v

cmt
mt ) we denote the set of cases for the

graph G such that the color of vmj
is cmj

.

Let S∈F(G). By Cw(S, v
cm1

m1
, v

cm2

m2
, ..., v

cmt
mt ) (Cl(S, v

cm1

m1
, v

cm2

m2
, ..., v

cmt
mt ),

respectively) we denote the set of cases for G which belong to the set
C(G, v

cm1

m1
, v

cm2

m2
, . . . , v

cmt
mt ), and in which the team wins (loses, respec-

tively).
Let vi ∈ V (G). If for every j ∈ {1, 2, . . . , t} we have vmj

∈ NG(vi),

then by Sti(G, v
cm1

m1
, v

cm2

m2
, . . . , v

cmt
mt ) we denote the set of possible situa-

tions of vi in the graph G such that the color of vmj
is cmj

.

3. Results

First let us observe that indeed we can confine to deterministic
strategies (that is strategies such that the decision of each person is de-
termined uniquely by the hat colors of other people). We can do this since
for any randomized strategy there exists a not worse deterministic one.
It is true, because every randomized strategy is a convex combination
of some deterministic strategies. The probability of winning is a linear
function on the convex polyhedron corresponding to the set of all ran-
domized strategies which can be achieved combining those deterministic
strategies. It is well known that this function achieves its maximum on a
vertex of the polyhedron which corresponds to a deterministic strategy.

Let G and H be graphs. Assume that H ⊆ G. Since every vertex
from the set V (G) \ V (H) can always pass, and every vertex vi ∈ V (H)
can ignore the colors of vertices from the set NG(vi) \ NH(vi), it is easy
to see that the hat number of the graph G is greater than or equal to the
hat number of the graph H . It is that if H ⊆ G, then h(H) ≤ h(G).

Since K1 is a subgraph of every graph, we get h(G) ≥ 1
2
.

Let S be an optimal strategy for the graph G. By definition we
have p(S) = h(G). Since h(G) ≥ 1

2
, we get p(S) ≥ 1

2
.

Now we prove a fact characterizing the number of cases in which
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the loss of the team is caused by a statement of a vertex.

Fact 1. Let G be a graph and let vi be a vertex of G. Let S ∈ F(G). If
vi states its color in a situation, then the team loses in at least half of all
cases corresponding to this situation.

Proof. Assume that vi states its color in a situation T . Without loss
of generality we assume that in this situation vi states it is blue, that is
gi(T ) = b. In half of all cases corresponding to T we have c(vi) = r, it
means that vi is red. Thus, the team loses in every one of these cases,
because vi states its color wrong, as gi(T ) = b 6= r = c(vi). ♦

Corollary 2. Let G be a graph and let v be a vertex of G. If S ∈ F0(G)
is a strategy such that v always states its color, then h(G) = 1

2
.

Proof. Assumption indicates that in every case v states its color, so by
Fact 1 we have |Cl(S)| ≥ |C(G)|

2
. Consequently,

p(S) =
|Cw(S)|

|C(G)|
=

|C(G)| − |Cl(S)|

|C(G)|
≤

|C(G)| − |C(G)|
2

|C(G)|
=

1

2
.

Since p(S) ≤ 1
2

and S ∈ F0(G), we have h(G) ≤ 1
2

(by definition). On
the other hand we have h(G) ≥ 1

2
. ♦

In the following theorem we give a sufficient condition for deleting
a vertex of a graph without changing its hat number.

Theorem 3. Let G be a graph and let v be a vertex of G. If S ∈ F0(G)
is a strategy such that v never states its color, then h(G) = h(G − v).

Proof. Let S ′ ∈ F(G − v) be the strategy as follows: Every vertex not
adjacent to v in G behaves in the same way as in S, that is, if vi /∈ NG(v),
then g′

i = gi, where g′
i and gi are the guessing instructions for the vertex vi

in the strategies S ′ and S, respectively. First assume that |Cw(S, vb)| ≥
≥ |Cw(S, vr)|. Let every vertex adjacent to v in G behave in the same
way as in S when v is blue, that is, if vi ∈ NG(v), then g′

i = gi|Sti(G,vb).
The result of any case C ′ in the strategy S ′ is the same as the result of
the case C in the strategy S, where C is the corresponding case in which
v is blue, because in both strategies S ′ and S the vertex v never states
its color and every vertex in the strategy S ′ behaves in the same way as
in S when v is blue. This implies that |Cw(S ′)| = |Cw(S, vb)|. Now we
get

p(S ′) =
|Cw(S ′)|

2|V (G−v)|
=

|Cw(S, vb)|

2|V (G)|−1
=

2|Cw(S, vb)|

2|V (G)|
≥

≥
|Cw(S, vb)| + |Cw(S, vr)|

2|V (G)|
= p(S).
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If |Cw(S, vb)| < |Cw(S, vr)|, then similarly we get a strategy S ′ such that
p(S ′) > p(S). Since S ∈ F0(G) and S ′ ∈ F(G − v), we have

h(G) = p(S) ≤ p(S ′) ≤ h(G − v).

On the other hand we have h(G) ≥ h(G − v). ♦

Let S be a strategy for the graph G. Let C be a case in which some
vertex states its color. Since the rules of the hat problem are such that
one correct statement suffices to win, and one wrong statement causes
the loss, it is easy to see that a statement of any other vertex cannot
improve the result of the case C.

Now we solve the hat problem on paths.

Theorem 4. For every path Pn we have h(Pn) = 1
2
.

Proof. Let E(Pn) = {v1v2, v2v3, . . . , vn−1vn}. We distinguish six possi-
bilities: n = 1, n = 2, n = 3, n = 4, n = 5, and n ≥ 6.

First, we assume that n = 1. Since P1 = K1, we have h(P1) =
= h(K1) = 1

2
.

Now assume that n = 2. Let S be an optimal strategy for P2. If
some vertex, say vi, never states its color, then by Th. 3 we have h(P2) =
= h(P2 − vi). Since P2 − vi = P1, we have h(P2) = h(P1) = 1

2
. Now

assume that v1 and v2 state their colors. If one of them always states its
color, then by Cor. 2 we have h(P2) = 1

2
. If, neither v1 nor v2 always

states its color, then without loss of generality we assume that v1 states
its color when v2 is blue, and in this situation it states it is blue. We
consider the following four possibilities: g2(b, ∗) = b (Table 1); g2(b, ∗) =
= r (Table 2); g2(r, ∗) = b (Table 3); g2(r, ∗) = r (Table 4). In the next
tables b means blue, r means red, + means correct statement (success),
− means wrong statement (loss), and blank square means passing.

In Tables 1, 2, and 3 we have |Cw(S)| = 1, |C(P2)| = 4, so p(S) =
= 1

4
< 1

2
, a contradiction.
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Table 1

No The color of The statement of Result
v1 v2 v1 v2

1 b b + + +
2 b r − −
3 r b − −
4 r r −

Table 2

No The color of The statement of Result
v1 v2 v1 v2

1 b b + − −
2 b r + +
3 r b − −
4 r r −

Table 3

No The color of The statement of Result
v1 v2 v1 v2

1 b b + +
2 b r −
3 r b − + −
4 r r − −

Table 4

No The color of The statement of Result
v1 v2 v1 v2

1 b b + +
2 b r −
3 r b − − −
4 r r + +

In Table 4 we have |Cw(S)| = 2, |C(P2)| = 4, so p(S) = 2
4

= 1
2
.

Since S ∈ F0(P2), we have h(P2) = 1
2
.

Now assume that n = 3. Let S be an optimal strategy for P3. If
v1 or v3 never states its color, then without loss of generality we assume
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that it is v1. By Th. 3 we have h(P3) = h(P3−v1). Since P3−v1 = P2, we
have h(P3) = h(P2) = 1

2
. Now assume that v1 and v3 state their colors.

If v1 or v3 always states its color, then by Cor. 2 we have h(P3) = 1
2
. If

neither v1 nor v3 always states its color, then without loss of generality
we assume that v1 states its color when v2 is blue, and in this situation
it states it is blue. We have the following two possibilities: (1) v3 states
its color when v2 is blue; (2) v3 does not state its color when v2 is blue.

(1) Let the strategy S ′ differ from S only in that v3 does not state
its color when v2 is blue. Since in every case in which v2 is blue v1 states
its color, the statement of v3 cannot improve the result of any of these
cases. Therefore, p(S) ≤ p(S ′). Since S ∈ F0(P3), the strategy S ′ is also
optimal for P3. If v3 never states its color in the strategy S ′, then we
have the possibility already considered. The other possibility when v3

states its color we consider in the next paragraph.
(2) Certainly, v3 states its color when v2 is red. Since v1 (v3, re-

spectively) states its color when v2 is blue (red, respectively), by Fact 1
we have

|Cl(S, vb
2)| ≥

|C(P3, v
b
2)|

2

(

|Cl(S, vr
2)| ≥

|C(P3, v
r
2)|

2
, respectively

)

.

This implies that

|Cl(S)| = |Cl(S, vb
2)|+ |Cl(S, vr

2)| ≥
|C(P3, v

b
2)|

2
+

|C(P3, v
r
2)|

2
=

|C(P3)|

2
.

Consequently,

p(S) =
|Cw(S)|

|C(P3)|
=

|C(P3)| − |Cl(S)|

|C(P3)|
≤

|C(P3)| −
|C(P3)|

2

|C(P3)|
=

1

2
.

Since S ∈ F0(P3), we have h(P3) ≤
1
2
. Since h(P3) ≥

1
2
, we get h(P3) =

= 1
2
.

Now assume that n = 4. Let S be an optimal strategy for P4. If
some vertex, say vi, never states its color, then by Th. 3 we have h(P4) =
= h(P4 − vi). If i ∈ {1, 4}, then P4 − vi = P3, so h(P4) = h(P3) = 1

2
.

If i ∈ {2, 3}, then P4 − vi = P1 ∪ P2. Since P1 ∪ P2 ⊆ P3, we have
h(P1 ∪ P2) ≤ h(P3) = 1

2
. Therefore, h(P4) = h(P1 ∪ P2) ≤ 1

2
. Since

h(P4) ≥ 1
2
, we get h(P4) = 1

2
. Now assume that every vertex states its

color. If some vertex always states its color, then by Cor. 2 we have
h(P4) = 1

2
. If no vertex always states its color, then without loss of

generality we assume that v1 states its color when v2 is blue, and in this
situation it states it is blue. Similarly, since NP4

[v1] ∩ NP4
[v4] = ∅, we
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may assume that v4 states its color when v3 is blue, and in this situation
it states it is blue. We consider the following two possibilities: (1) v2

states its color when v3 is blue, or v3 states its color when v2 is blue; (2)
v2 does not state its color when v3 is blue, and v3 does not state its color
when v2 is blue.

(1) Let the strategy S ′ differ from S only in that v2 does not state its
color when v3 is blue, and v3 does not state its color when v2 is blue. Since
in every case in which v3 (v2, respectively) is blue v4 (v1, respectively)
states its color, the statement of v2 (v3, respectively) cannot improve the
result of any of these cases. Therefore, p(S) ≤ p(S ′). Since S ∈ F0(P4),
the strategy S ′ is also optimal for P4. If v2 or v3 never states its color
in the strategy S ′, then we have the possibility already considered. The
other possibility when v2 and v3 state their colors we consider in the next
paragraph.

(2) If c(v1) = r and c(v2) = b, or c(v3) = b and c(v4) = r, then in
each of the 7 cases, the team loses. Certainly, v2 can state its color
only when v3 is red. Thus there are the following four possibilities:
(2.1) g2(b, ∗, r, ∗) = b; (2.2) g2(b, ∗, r, ∗) = r; (2.3) g2(r, ∗, r, ∗) = b;
(2.4) g2(r, ∗, r, ∗) = r.

(2.1) Since

|Cl(S, vb
1, v

r
2, v

r
3)| = |C(P4, v

b
1, v

r
2, v

r
3)| = 2

and
C(P4, v

b
1, v

r
2, v

r
3) ∩ (C(P4, v

r
1, v

b
2) ∪ C(P4, v

b
3, v

r
4)) = ∅,

the team loses in at least 7 + 2 = 9 cases, and wins in at most 7 cases.
It means that p(S) ≤ 7

16
< 1

2
, a contradiction.

Possibilities (2.2) and (2.3) are similar to (2.1).
(2.4) Certainly, v3 can state its color only when v2 is red. Thus

we have the following four possibilities: (2.4.1) g3(∗, r, ∗, b) = b; (2.4.2)
g3(∗, r, ∗, b) = r; (2.4.3) g3(∗, r, ∗, r) = b; (2.4.4) g3(∗, r, ∗, r) = r.

In possibilities (2.4.1), (2.4.2), and (2.4.3), without considering the
consequences of statements of v2, we get a similar contradiction as in
(2.1), (2.2), and (2.3).

(2.4.4) In this possibility, analyzed in Table 5, we have |Cw(S)| = 8,
|C(P4)| = 16, so p(S) = 8

16
= 1

2
. Since S ∈ F0(P4), we have h(P4) = 1

2
.

Now assume that n = 5. Let S be an optimal strategy for P5. If
for some i ∈ {1, 3, 5} the vertex vi never states its color, then by Th. 3
we have h(P5) = h(P5 − vi). If i ∈ {1, 5}, then P5 − vi = P4, so h(P5) =
= h(P4) = 1

2
. If i = 3, then P5 − v3 = P2 ∪ P2. Since P2 ∪ P2 ⊆ P4,
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we have h(P2 ∪ P2) ≤ h(P4) = 1
2
, so h(P5) = h(P2 ∪ P2) ≤ 1

2
. Since

h(P5) ≥ 1
2
, we get h(P5) = 1

2
. Now assume that every vertex from the

set {v1, v3, v5} states its color. If some of these vertices always states
its color, then by Cor. 2 we have h(P5) = 1

2
. If no vertex from the

set {v1, v3, v5} always states its color, then without loss of generality we
assume that v1 states its color when v2 is blue, and in this situation it
states it is blue. Similarly, since NP5

[v1] ∩ NP5
[v5] = ∅, we may assume

that v5 states its color when v4 is blue, and in this situation it states it is
blue. We consider the following two possibilities: (1) v3 states its color
when v2 or v4 is blue; (2) v3 does not state its color when v2 or v4 is blue.

(1) Let the strategy S ′ differ from S only in that v3 does not
state its color when v2 or v4 is blue. Since in every case in which v2

(v4, respectively) is blue, v1 (v5, respectively) states its color, the state-
ment of v3 cannot improve the result of any of these cases. Therefore,
p(S) ≤ p(S ′). Since S ∈ F0(P5), the strategy S ′ is also optimal for P5.

Table 5

No The color of The statement of Result
v1 v2 v3 v4 v1 v2 v3 v4

1 b b b b + + +
2 b b b r + − −
3 b b r b + +
4 b b r r + +
5 b r b b + +
6 b r b r − − −
7 b r r b −
8 b r r r + +
9 r b b b − + −
10 r b b r − − −
11 r b r b − − −
12 r b r r − − −
13 r r b b + +
14 r r b r − − −
15 r r r b + +
16 r r r r + + +

If v3 never states its color in the strategy S ′, then we have the possibility
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already considered. The other possibility when v3 states its color we
consider in the next paragraph.

(2) If c(v1) = r and c(v2) = b, or c(v4) = b and c(v5) = r, then in
each of the 23 + 23 − 2 = 14 cases the team loses. Certainly, v3 states its
color only when v2 and v4 are red. Without loss of generality we assume
that in this situation v3 states it is blue. If c(v2) = c(v3) = c(v4) =
= r, then in each of the 4 cases, the team loses. Since (C(P5, v

r
1, v

b
2) ∪

∪C(P5, v
b
4, v

r
5))∩C(P5, v

r
2, v

r
3, v

r
4) = ∅, the team loses in at least 14+4 = 18

cases, and wins in at most 14 cases. This implies that p(S) ≤ 14
32

< 1
2
, a

contradiction.
The result for n ≥ 6 we prove by the induction on the number of

vertices of a path. Let us assume that n is an integer such that n ≥ 6,
and h(Pn−1) = 1

2
. We will prove that h(Pn) = 1

2
. Let S be an optimal

strategy for Pn. If for some i ∈ {1, 3, n} the vertex vi never states its
color, then by Th. 3 we have h(Pn) = h(Pn − vi). If i ∈ {1, n}, then
Pn − vi = Pn−1, so h(Pn) = h(Pn−1) = 1

2
. If i = 3, then Pn − v3 = P2 ∪

∪ Pn−3. Since P2 ∪ Pn−3 ⊆ Pn−1, we have h(P2 ∪ Pn−3) ≤ h(Pn−1) = 1
2
,

so h(Pn) = h(P2 ∪ Pn−3) ≤ 1
2
. Since h(Pn) ≥ 1

2
, we get h(Pn) = 1

2
.

Now assume that every vertex from the set {v1, v3, vn} states its color.
If some from these vertices always states its color, then by Cor. 2 we
have h(Pn) = 1

2
. If no vertex from the set {v1, v3, vn} always states its

color, then without loss of generality we assume that v1 states its color
when v2 is blue, and in this situation it states it is blue. Similarly, since
NPn

[v1]∩NPn
[vn] = ∅, we may assume that vn states its color when vn−1

is blue, and in this situation it states it is blue. We consider the following
two possibilities: (1) v3 states its color when v2 is blue; (2) v3 does not
state its color when v2 is blue.

(1) Let the strategy S ′ differ from S only in that v3 does not state
its color when v2 is blue. Since in every case in which v2 is blue, v1 states
its color, the statement of v3 cannot improve the result of any of these
cases. Therefore, p(S) ≤ p(S ′). Since S ∈ F0(Pn), the strategy S ′ is
also optimal for Pn. If v3 never states its color in the strategy S ′, then
we have the possibility already considered. The other possibility when
v3 states its color we consider in the next paragraph.

(2) If c(v1) = r and c(v2) = b, or c(vn−1) = b and c(vn) = r, then
in each of the (1

4
+ 1

4
− 1

42 )|C(Pn)| = 7
16
|C(Pn)| cases the team loses.

Certainly, v3 can state its color only when v2 is red. Without loss of
generality we assume that v3 states its color when v2 is red and v4 is
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blue, and in this situation it states it is blue. If c(v2) = c(v3) = r and
c(v4) = b, then the team loses. All the cases in which c(vn−1) = b and
c(vn) = r have been counted, so it remains to count the such ones that
c(v2) = c(v3) = r, c(v4) = b, and (c(vn−1) = r or c(vn) = b). There
are 1

23 · 3
4
· |C(Pn)| = 3

32
|C(Pn)| such cases. This implies that the team

loses in at least ( 7
16

+ 3
32

)|C(Pn)| = 17
32
|C(Pn)| cases, and wins in at most

15
32
|C(Pn)| cases. It means that p(S) ≤ 15

32
< 1

2
, a contradiction. ♦

Now we solve the hat problem on trees.

Theorem 5. For every tree T we have h(T ) = 1
2
.

Proof. The result we prove by induction on the number of vertices of a
tree. If T has one vertex, that is T = K1, it is obvious that the theorem
is true. Let T be any tree with n ≥ 2 vertices, and let us assume that
h(T ′) = 1

2
for every tree T ′ with n − 1 vertices. Every tree has at least

two leafs (that is vertices of a tree having exactly one neighbour). If T
has exactly two leafs, then T is a path, and by Th. 4 we have h(T ) =
= 1

2
. If T has at least three leafs, then let v1, v2, and v3 be any three

of them. Let S be an optimal strategy for T . Since v1, v2, and v3 are
leafs, there are exactly two possible situations of each of them. If for
some i ∈ {1, 2, 3} the vertex vi never states its color, then by Th. 3 we
have h(T ) = h(T − vi). Since T − vi is a tree with n− 1 vertices, by the
inductive assumption we have h(T − vi) = 1

2
, and therefore h(T ) = 1

2
.

Now assume that every vertex from the set {v1, v2, v3} states its color.
If one of them always states its color, then by Cor. 2 we have h(T ) = 1

2
.

Now assume that every vertex from the set {v1, v2, v3} states its color in
exactly one situation. We consider the following two possibilities: (1) at
least two leafs from the set {v1, v2, v3} have the same neighbour, that is,
NT (vi) = NT (vj) for certain i, j ∈ {1, 2, 3}, i 6= j; (2) every leaf from the
set {v1, v2, v3} has another neighbour, that is, NT (v1) 6= NT (v2) 6= NT (v3)
and NT (v1) 6= NT (v3).

(1) Let us denote {x} = NT (vi) = NT (vj). We consider the fol-
lowing two possibilities: (1.1) vi and vj state their colors in the same
situation; (1.2) vi and vj state their colors in different situations.

(1.1) Without loss of generality we assume that vi and vj state their
colors when x is blue. Let the strategy S ′ differ from S only in that vj

does not state its color when x is blue, that is, vj never states its color.
Since in every case in which x is blue vi states its color, the statement
of vj cannot improve the result of any of these cases. Therefore, p(S) ≤
≤ p(S ′). Since S ∈ F0(T ), the strategy S ′ is also optimal for T . Since vj
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never states its color in the strategy S ′, we have the possibility already
considered.

(1.2) Without loss of generality we assume that vi states its color
when x is blue and vj states its color when x is red. By Fact 1 we have

|Cl(S, xb)| ≥
|C(T, xb)|

2
and |Cl(S, xr)| ≥

|C(T, xr)|

2
.

This implies that

|Cl(S)| = |Cl(S, xb)| + |Cl(S, xr)| ≥
|C(T, xb)|

2
+

|C(T, xr)|

2
=

|C(T )|

2
.

Consequently,

p(S) =
|Cw(S)|

|C(T )|
=

|C(T )| − |Cl(S)|

|C(T )|
≤

|C(T )| − |C(T )|
2

|C(T )|
=

1

2
.

Since S ∈ F0(T ), we have h(T ) ≤ 1
2
. Since h(T ) ≥ 1

2
, we get h(T ) = 1

2
.

(2) If i ∈ {1, 2, 3}, then let us denote NT (vi) = {v′
i}. Without loss

of generality we assume that v1 states its color when v′
1 is blue, and in

this situation it states it is blue. Similarly, since v′
1 6= v′

2 6= v′
3 and v′

1 6=
6= v′

3, we may assume that v2 states its color when v′
2 is blue and in this

situation it states it is blue, and v3 states its color when v′
3 is blue and

in this situation it states it is blue. No vertex from the set {v1, v2, v3}
states its color if and only if c(v′

1) = c(v′
2) = c(v′

3) = r. If (c(v1) = r and
c(v′

1) = b) or (c(v2) = r and c(v′
2) = b), or (c(v3) = r and c(v′

3) = b), then
in each of the (1− (1− 1

4
)3)|C(T )| = 37

64
|C(T )| cases the team loses. This

implies that the team wins in at most 27
64
|C(T )| cases. Consequently,

p(S) =
|Cw(S)|

|C(T )|
≤

27
64
|C(T )|

|C(T )|
=

27

64
<

1

2
,

a contradiction. ♦

Now we consider the hat problem on a graph such that the only
information we know about are the degrees of vertices. In the following
theorem we give an upper bound on the chance of success of any strategy
for the hat problem on a graph with given degrees of vertices.

Theorem 6. Let G be a graph and let S be any strategy for this graph.
Then

|Cw(S)| ≤
∑

v∈V (G)

⌊

2dG(v)+1 −
|Cw(S)|

2|V (G)|−dG(v)−1

⌋

· 2|V (G)|−dG(v)−1.

Proof. Let vi be a vertex of G. Every statement of the color in any
situation done by vi is wrong in exactly 2|V (G)|−dG(vi)−1 cases, because
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to every situation of vi correspond 2|V (G)|−dG(vi) cases, and in the half of
them vi has another color than it states it has. The vertex vi cannot
state its color in at least

⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

+ 1

situations, otherwise its statements are wrong in at least

2|V (G)|−dG(vi)−1

(⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

+ 1

)

>

> 2|V (G)|−dG(vi)−1

(

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

)

= 2|V (G)| − |Cw(S)|

cases. This implies that the team loses in more than 2|V (G)| − |Cw(S)|
cases, and wins in less than

|C(G)| − (2|V (G)| − |Cw(S)|) = 2|V (G)| − 2|V (G)| + |Cw(S)| = |Cw(S)|

cases, but |Cw(S)| is the number of cases in which the team wins, a
contradiction. Since the vertex vi does not state its color in at least

⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

+ 1

situations, it states its color in at most
⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

situations. Every statement of the color in any situation done by vi is
correct in exactly 2|V (G)|−dG(vi)−1 cases, because to every situation of vi

correspond 2|V (G)|−dG(vi)−1 cases, and in the half of them vi has the color
it states it has. Therefore, the statements of vi are correct in at most

⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

· 2|V (G)|−dG(vi)−1

cases. This implies that the team wins in at most
∑

v∈V (G)

⌊

2dG(v)+1 −
|Cw(S)|

2|V (G)|−dG(v)−1

⌋

· 2|V (G)|−dG(v)−1

cases. ♦

In the following three facts we show that the upper bound from
the previous theorem together with integrality constraints is tight on
complete graphs with two, three, and four vertices, respectively.

Fact 7. h(K2) = 1
2
.

Proof. Let S be any strategy for K2. By Th. 6 we have
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|Cw(S)| ≤
∑

v∈V (K2)

⌊

2dK2
(v)+1 −

|Cw(S)|

2|V (K2)|−dK2
(v)−1

⌋

· 2|V (K2)|−dK2
(v)−1.

Since |V (K2)| = 2 and every vertex in K2 has exactly one neighbour, we
get

|Cw(S)| ≤ 2·⌊22−|Cw(S)|⌋ ⇔ |Cw(S)| ≤ 8−2|Cw(S)| ⇔ |Cw(S)| ≤ 2
2

3
.

This implies that |Cw(S)| ≤ 2, as n ∈ N . Consequently,

p(S) =
|Cw(S)|

|C(K2)|
≤

2

22
=

1

2
.

Since S is any strategy for K2, we have h(K2) ≤
1
2
. Since h(K2) ≥

1
2
, we

get h(K2) = 1
2
. ♦

Fact 8. h(K3) = 3
4
.

Proof. Let S be any strategy for K3. By Th. 6 we have

|Cw(S)| ≤
∑

v∈V (K3)

⌊

2dK3
(v)+1 −

|Cw(S)|

2|V (K3)|−dK3
(v)−1

⌋

· 2|V (K3)|−dK3
(v)−1.

Since |V (K3)| = 3 and every vertex in K3 has exactly two neighbours,
we get

|Cw(S)| ≤ 3·⌊23−|Cw(S)|⌋ ⇔ |Cw(S)| ≤ 24−3|Cw(S)| ⇔ |Cw(S)| ≤ 6.

Consequently,

p(S) =
|Cw(S)|

|C(K3)|
≤

6

23
=

3

4
.

Since S is any strategy for K3, we have h(K3) ≤
3
4
. Let S1 ∈ F(K3) be

the strategy such that every vertex considers colors of its two neighbours,
and if they are the same, it states it has the opposite color. If they
are different, it passes. It is easy to verify that |Cw(S1)| = 6. Since

|C(K3)| = 23 = 8, we have p(S1) = |Cw(S)|
|C(K3)|

= 6
8

= 3
4
. Since p(S1) ≤

≤ h(K3), we have h(K3) ≥ 3
4
. Since h(K3) ≥ 3

4
and h(K3) ≤ 3

4
, we get

h(K3) = 3
4
. ♦

Fact 9. h(K4) = 3
4
.

Proof. Let S be any strategy for K4. By Th. 6 we have

|Cw(S)| ≤
∑

v∈V (K4)

⌊

2dK4
(v)+1 −

|Cw(S)|

2|V (K4)|−dK4
(v)−1

⌋

· 2|V (K4)|−dK4
(v)−1.

Since |V (K4)| = 4 and every vertex in K4 has three neighbours, we get

|Cw(S)|≤4·⌊24−|Cw(S)|⌋⇔|Cw(S)| ≤ 64−4|Cw(S)|⇔|Cw(S)|≤12
4

5
.
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This implies that |Cw(S)| ≤ 12, as |Cw(S)| ∈ N . Consequently,

p(S) =
|Cw(S)|

|C(K4)|
≤

12

24
=

3

4
.

Since S is any strategy for K4, we have h(K4) ≤
3
4
. Since K3 ⊆ K4 and

h(K3) = 3
4
, we get h(K3) ≤ h(K4). Since h(K3) = 3

4
, we have h(K4) ≥

3
4
.

This implies that h(K4) = 3
4
. ♦

In the next fact we solve the hat problem on the graph K3 ∪ K2.

Fact 10. h(K3 ∪ K2) = 3
4
.

Proof. Let E(K3 ∪K2) = {v1v2, v2v3, v3v1, v4v5}. Let S be any strategy
for the graph K3 ∪ K2. By Th. 6 we have

|Cw(S)| ≤

≤
∑

v∈V (K3∪K2)

⌊

2dK3∪K2
(v)+1−

|Cw(S)|

2|V (K3∪K2)|−dK3∪K2
(v)−1

⌋

·2|V (K3∪K2)|−dK3∪K2
(v)−1.

Since dK3∪K2
(v1) = dK3∪K2

(v2) = dK3∪K2
(v3) = 2 and dK3∪K2

(v4) =
= dK3∪K2

(v5) = 1, we get

|Cw(S)| ≤ 3 · 22 ·

⌊

23 −
|Cw(S)|

22

⌋

+ 2 · 23 ·

⌊

22 −
|Cw(S)|

23

⌋

=

= 12

⌊

8 −
|Cw(S)|

4

⌋

+ 16

⌊

4 −
|Cw(S)|

8

⌋

.

This implies that

|Cw(S)| ≤ 12

(

8 −
|Cw(S)|

4

)

+ 16

(

4 −
|Cw(S)|

8

)

=

= 96 − 3|Cw(S)|+ 64 − 2|Cw(S)| = 160 − 5|Cw(S)|.

Now we easily get |Cw(S)| ≤ 160
6

= 262
3
. Since |Cw(S)| is an integer, we

have |Cw(S)| ≤ 26. Assume that |Cw(S)| = 26. We have

26 ≤ 12

⌊

8 −
26

4

⌋

+ 16

⌊

4 −
26

8

⌋

= 12 · 1 + 16 · 0 = 12,

a contradiction. Now assume that |Cw(S)| = 25. We have

25 ≤ 12

⌊

8 −
25

4

⌋

+ 16

⌊

4 −
25

8

⌋

= 12 · 1 + 16 · 0 = 12,

a contradiction. This implies that |Cw(S)| ≤ 24, and consequently,

p(S) = |Cw(S)|
|C(K3∪K2)|

≤ 24
32

. Since S is any strategy for K3 ∪ K2, we

have h(K3 ∪ K2) ≤ 3
4
. Since K3 ⊆ K3 ∪ K2 and h(K3) = 3

4
, we get

h(K3 ∪ K2) ≥ h(K3) = 3
4
. This implies that h(K3 ∪ K2) = 3

4
. ♦
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