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Abstract: A generalization of Carahteodory’s cutting theorem is proved for
graphs of continuous functions over convex domains. This fact gives a chance
to find an appropriate upper estimate of “nonconvexity” for such transversal
perturbations of convex sets. As a corollary, a series of results on continuous
selections of nonconvex-valued mappings are presented.

1. One-dimensional case

The famous Caratheodory’s theorem [6,7] states that the convex
hull conv (A) of a subset A of an N -dimensional real vector space EN

coincides with the set conv N+1(A) which is defined as the union of all
at most N -dimensional simplexes with vertexes from the set A. For a
specific subsets A ⊂ E some stronger results are true. In fact, [6, Th.
2.29] for a connected A it is sufficient to collect all at most (N − 1)-
dimensional simplexes with vertexes from the set.

Unlikely, sizes of such (N −1)-dimensional simplexes in general are
principally greater than sizes of simplexes in the representation conv (A) =
= conv N+1(A). For example, if
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A = S ∪ [B0, C0] ∪ [B1, C1] ∪ [B2, C2]
where

S = {(cos t, sin t) : 0 ≤ t ≤ 2π},

Bk =

(

cos
2πk

3
, sin

2πk

3

)

, Ck =

(

ε · cos
2πk

3
, ε · sin

2πk

3

)

then the origin (0, 0) lies in some ε-small two-dimensional simplex from
conv 3(A), but the length of an arbitrary segment from conv 2(A), passing
through the point (0, 0), is more than 1.

The main aim of the present paper is to prove that for the graphs of
continuous functions with convex domains such an effect is not possible.
Roughly, for this type of a connected sets A the size of each simplex
from conv N(A) always is less than or equal to the size of some simplex
from conv N+1(A). First, let us consider the rather elementary case of
functions from R into itself.

Theorem 1.1. Let f : I → R be a continuous function over the

segment I. Let A, B, C be points on the graph Γf of f and let D ∈
∈ conv {A, B, C} = ∆. Then D ∈ [E; F ] for some points E ∈ Γf , F ∈ Γf

with EF ≤ max{AB, BC, AC}. Moreover, one can assume that the seg-

ment [E; F ] is parallel to one of the sides of the triangle ∆.

Sketch of proof. For definiteness let xA < xB < xC and let the point B
be placed above the line AC. If the point D stands below the graph Γf

then it suffices to draw the line through D parallel to AC and to apply
the theorem on intermediate values for segments [xA; xB] and [xB; xC ]. If
D is above the graph Γf and xA < xD < xB (or xB < xD < xC) then it
analogously suffices to draw the line throw D parallel to AB (or parallel
to BC). ♦

Roughly speaking Th. 1.1 states that conv (Γf) coincides not only
with conv 3(Γf) as in Caratheodory theorem but with conv 2(Γf) and,
additionally, the sizes of one-dimensional simplexes from conv 2(Γf ) are
less than or equal to sizes of two-dimensional simplexes from conv 3(Γf).

Let us demonstrate an application in the theory of continuous se-
lection. Using E. Michael’s approach [2], for a nonempty closed subset
P ⊂ Y of a Banach space (Y, ‖ · ‖) and for an open ball D ⊂ Y of radius
r, one can define

δ(P, D) = sup{dist(q, P )/r | q ∈ conv (P ∩ D)},
where δ(P, D) = 0 for the empty intersection P ∩D. Clearly, for a closed
set P with nonempty intersection P ∩D, the equality δ(P, D) = 0 means
that the intersection P ∩ D is a convex subset of D.
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For any nonempty closed subset P ⊂ Y of a Banach space (Y, ‖ · ‖)
the value of its function of nonconvexity αP at a point r > 0 is defined
as αP (r) = sup{δ(P, D)}, where supremum is taken over the family of
all open balls of radius r. Next a subset of a Banach space is said to be
α-paraconvex if its function of nonconvexity majorates by the preassigned
constant α ∈ [0, 1).

Corollary 1.2 [3]. Let f : I → R be a Lipshitz with constant k function

or be a continuous monotone function over the closed convex domain I.
Then the graph Γf of f is α-paraconvex subset of Euclidean plane R

2 with

α = sin(arctan(k)), or with α = sin(arctan(1)) = 2−0,5, respectively.

Sketch of proof. For an open ball D ⊂ R
2 of radius r pick a point

Q ∈ conv (Γf ∩D). By Caratheodori’s theorem Q ∈ conv {A, B, C} = ∆
for some A, B, C ∈ Γf ∩ D. Clearly,max{AB, BC, AC} < 2r. Due
to Th. 1.1 one can assume that Q ∈ conv {E, F} = [E; F ] for some
E, F ∈ Γf ∩ D. Moreover, EF ≤ max{AB, BC, AC} < 2r.

Hence it suffices to estimate the distances dist(Q, Γf) between points
Q of segments [E; F ] with endpoints in graph and the graph itself. More-
over, it is easy to check that it suffices to estimate these distances only
for the middle points Q of segments [E; F ].

For definiteness let f : I → R be a continuous and increasing
function over the closed convex domain I and xE < xF . Draw the lines
y = yE , x = xF and denote K = (xF ; yE) its intersection. Draw the lines
x = xQ, y = yQ and let L = (xF , yQ), M = (xQ, yE). Triangles ∆EMQ
and ∆QLF are equal and the graph Γf intersects both the sides QM
and QL. But QM2 + QL2 = QF 2 < r2. Therefore QM < 2−0,5r or
QL < 2−0,5r. That is why dist(Q, Γf) < 2−0,5r and αΓf

(·) ≤ 2−0,5. ♦

Denote G(R2) the family of all closed subsets of the plane which are
graphs of continuous functions defined on a convex domain with respect
to some (not fixed!) orthogonal coordinate system. Denote respectively
G Lipk(R

2) and G Mon(R2) the subfamilies of G(R2) consisting of graphs
of Lipshitz with constant k functions and graphs of monotone functions.
Observe that in fact G Mon(R2) ⊂ G Lip1(R

2). To demonstrate the in-
clusion it suffice for increasing function (for decreasing function) to rotate
the coordinate system in the clockwise direction (in the counterclockwise
direction).

Cor. 1.2 together with E. Michael’s selection theorem for para-
convex-valued mappings [2] show that the following statement is true.
For basic facts on the selection theory see for example [1, 5].
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Corollary 1.3. Any lower semicontinuous mapping F : X → G Lipk(R
2)

from a paracompact space X admits a continuous singlevalued selection.

2. Two-dimensional case

The analog of Th. 1.1 is true for any dimensions, but the proof
is more complicated and based in fact on the proof for the case of two
variables. We formulate such a statement in purely affine terms. For the
shortness we denote [X1, . . . , Xk] the convex hull conv {X1, . . . , Xk} and
(X1, . . . , Xk) the set of all inner (in convex sense) points of [X1, . . . , Xk].

Theorem 2.1. Let E be a three-dimensional real vector space and P ⊂ E
be a subset of E such that P = Γf for some basis {e1, e2, e3} of E, for

some convex two-dimensional subset V ⊂ span (e1, e2) and for some con-

tinuous function f : V → span (e3). Then for any points A0, A1, A2, A3

of the set P and for each point Q ∈ [A0, A1, A2, A3] there are points

Q1, Q2, Q3 of the set P such that Q ∈ [Q1, Q2, Q3] = ∆ and the triangle

∆ can be moved into some of the faces of the tetrahedron [A0, A1, A2, A3]
by means of some parallel shift.

Proof. For a point A ∈ E denote l(A) the line through A parallel to
span (e3). Due to the affine invariance of the assumptions and statement
of Th. 2.1 one can assume that:

– the point A0 is placed above the plane span {A1, A2, A3};
– the line l(A0) meets the triangle [A1, A2, A3] in its inner point,

say H ; and
– the point Q ∈ [A0, A1, A2, A3] belongs to the tetrahedron

[A0, A1, A2, H ].
Draw two planes through the point Q. The first – the plane α

parallel to the face [A1, A2, A3] and the second – the plane β parallel
to the face [A1, A2, A0]. Denote H ′ = α ∩ l(A0) and H ′′ = β ∩ l(A0).
Consider two parallel shifts. First, the shift of the face [A1, A2, A3] into

the plane α defined by the vector
−−→
HH ′. Let Bi = Ai +

−−→
HH ′, i = 1, 2, 3.

Second, the shift of the face [A1, A2, A0] into the plane β defined by the

vector
−−−→
A0H

′′. Let Cj = Aj +
−−−→
A0H

′′, j = 0, 1, 2.
Triangles [B1, B2, B3] and [C1, C2, C0] are intersected by the seg-

ment, say [D1; D2]. More precisely, Dk = (H ′; Bk) ∩ (C0; Ck), k = 1, 2.
Clearly D ∈ (D1; D2) and [D1; D2] = α ∩ β ∩ [A0, A1, A2, H ]. The lines
l(Dk), k = 1, 2 meet the graph P = Γf at the points Pk, k = 1, 2. Rest
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of the proof depends on the position of the points P1 and P2 relatively
the plane α.

So, let both two points P1 and P2 be placed above the plane α (or
belong to α). Applying the proof of Th. 1.1 to three segments [A1; H ],
[A2; H ] and [A3; H ] we find three points Q1 ∈ Γf ∩ [B1; D1], Q2 ∈ Γf∩
∩[B2; D2], Q3 ∈ Γf ∩ [B3; H

′]. Then Q ∈ [Q1, Q2, Q3] ⊂ [B1, B2, B3] and

[B1, B2, B3] = [A1, A2, A3] +
−−→
HH ′.

Next, let both two points P1 and P2 be placed below the plane α.
Then points Pk and A0, k = 1, 2 are in the different half-spaces with re-
spect to the plane β. Hence there are Gk ∈ Γf ∩ (Dk, C0), k = 1, 2. Simi-
larly, there are Fk ∈ Γf∩(Dk, Ck), k = 1, 2. Clearly Q ∈ [F1, F2, G1, G2] ⊂

⊂ [C0, C1, C2] and [C0, C1, C2] = [A0, A1, A2] +
−−−→
A0H

′′.
Finally, considering the third possibility, let P1 lies below the plane

α whereas P2 lies above α. Then there exists D3 ∈ Γf ∩ (D1, D2). Con-
sidering analogously to the previous steps the cases Q ∈ (D1; D3) or
Q ∈ (D2; D3) one can find the desired triangle [Q1, Q2, Q3] in [C0, C1, C2]
or respectively, in [B1, B2, B3]. ♦

Remarks. 1. Clearly in Th. 2.1 there are no chances to replace triangles
[Q1, Q2, Q3] by a segments.

2. In the proof we never use the fact that the set P exactly is
the graph Γf of continuous function f . Really it suffices to consider an
arbitrary subset P ⊂ E which is “continuous” with respect to the third
basic vector e3. Last sentence means that Th. 2.1 holds for each subset
P ⊂ E with the following property:

If (a1, a2, a3) ∈ P and (b1, b2, b3) ∈ P then [(a1, a2, c); (b1, b2, c)]∩
∩P 6= ∅ for every c between a3 and b3.

Obviously this property holds for curvilinear trapeziums, not only
for graphs of continuous functions.

3. The question about possible analog of Ths. 1.1 and 2.1 for con-
tinuous mappings from R to R

2 is still open.

3. General case

Theorem 3.1. Let E be a (n + 1)-dimensional real vector space and

P ⊂ E be a subset of E such that P = Γf for some basis {e1, e2, . . . , en+1}
of E, for some convex n-dimensional subset V ⊂ span (e1, . . . , en) and

for some continuous function f : V → span (en+1). Then for any points
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A0, A1, A2, . . . , An+1 of the set P and for each point

Q ∈ [A0, A1, A2, . . . , An+1]

there are points Q1, Q2, . . . , Qn+1 of the set P such that

Q ∈ [Q1, Q2, . . . , Qn+1] = ∆

and the n-simplex ∆ can be moved into some of the faces of the (n + 1)-
simplex [A0, A1, A2, . . . , An+1] with respect to some parallel shift.

Proof. Repeating notations from the proof of Th. 2.1 we denote l(A) the
line through A ∈ E parallel to span (en+1) and restrict ourselves to the
case when the point A0 is placed above the plane span {A1, A2, . . . , An}
and

H = l(A0) ∩ [A1, A2, . . . , An+1] ∈ (A1, A2, . . . , An+1),

Q ∈ (A0, A1, . . . , An, H).

Let the hyperplane α be parallel to the face [A1, A2, . . . , An+1],
Q ∈ α and the hyperplane β be parallel to the face [A0, A1, . . . , An],
Q ∈ β. Denote:

a) H ′ = α ∩ l(A0), H ′′ = β ∩ l(A0);

b) Bi = Ai +
−−→
HH ′, i = 1, 2, . . . , n + 1;

c) Cj = Aj +
−−−→
A0H

′′, j = 0, 1, . . . , n;
d) Dk = (H ′; Bk) ∩ (C0; Ck), k = 1, 2, . . . , n;
e) Pk = l(Dk) ∩ P, k = 1, 2, . . . , n.
As in the proof of Th. 2.1 the simplex D = conv {D1, . . . , Dn}

coincides with the intersection α ∩ β ∩ [A0, A1, . . . , An, H ] and contains
the point Q.

Renumbering the indexes one can assume that all points P1, . . . , Pm

are placed below the hyperplane α whereas each of the points Pm+1, . . . , Pn

is placed above the hyperplane α or belongs to α. For every pair (s; t)
of indexes with 1 ≤ s ≤ m < t ≤ n pick a point Dst ∈ P ∩ (Ds, Dt) and
define the simplexes D− and D+ by settings

D− = conv {Ds, Dst : 1 ≤ s ≤ m < t ≤ n},

D+ = conv {Dt, Dst : 1 ≤ s ≤ m < t ≤ n},

Clearly Q ∈ D = D− ∪ D+. Let Q ∈ D−. Then Q =
∑

λpSp,
0≤λp≤1,

∑

λp = 1 for some points Sp ∈ {Ds, Dst : 1 ≤ s ≤ m < t ≤ n}.
Applying Th. 2.1 to every point from the set {Ds, Dst : 1 ≤ s ≤

≤ m < t ≤ n} we see that it belongs to some subtriangle of the sim-
plex [C0, C1, . . . , Cn]. Hence, the point Q (as a convex combination of
such points) belongs to some subsimplex of the simplex [C0, C1, . . . , Cn].



Transversal perturbations of convexity 255

Applying the Caratheodory’s cutting theorem to this subsimplex we
can replace it by some n-dimensional subsimplex of [C0, C1, . . . , Cn] =

= [A0, A1, . . . , An] +
−−−→
A0H

′′. Similarly, for the case Q ∈ D+. So, Th. 3.1
is proved. ♦

4. Applications

In this section we shortly list some applications of Th. 3.1.

Corollary 4.1. Let P = Γf where f : R
n → R is a continuous real-

valued function with convex closed n-dimensional domain. Suppose that

all restrictions f |l over one-dimensional lines l are monotone functions.

Then P is α-paraconvex subset of the Euclidean space R
n+1 for some

constant α = α(n) ∈ [0; 1).

Corollary 4.2 [4]. Graph of any Lipschitz function with constant k
function over convex closed finite-dimensional domain is α-paraconvex

subset of the Hilbert space, α = sin(arctan(k)).

Corollary 4.3 [4]. For every n ∈ N and C > 0 there exists an increasing

continuous function α : (0; +∞) → [0; 1) such that for every polynomial

f = f(x1, . . . , xn) =
∑

aijxixj +
∑

akxk +a0 of degree two with |aij | ≤ C
the function of nonconvexity of its graph Γf is pointwise less or equal

than α.

Each of Cors. 4.1–4.3 implies some selection theorem for graph-
valued lower semicontinuous mappings as it has been pointed out in the
Sec. 1 above.

Note that without uniform restrictions on coefficients the statement
of Cor. 4.3 is false and a corresponding selection theorem in general is
false, too.

Unfortunately the degree two is maximal for positive results in this
direction. Even for polynomials ft(x, y) = x3 + txy, 0 < t < 1 of third
degree on two variables the supremum of their functions of nonconvexity
identically equals to 1. For more higher degree’s the worse possibility
occurs even for a single polynomial.

Corollary 4.4 [4]. Let f(x, y) = x9 + x3y. Then the function of non-

convexity of the graph Γf identically equals to 1.
Finally let us state an interesting purely geometrical problem.

Question 4.5. Let f : R→R
2 be a continuous mapping, A, B, C, D∈Γf

and E ∈ conv {A, B, C, D}. Is it true that E ∈ conv {F, G, H} for some
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points F, G, H ∈ Γf with the property that the triangle conv {F, G, H}
can be moved into one of the faces of tetrahedron conv {A, B, C, D} with
respect to some parallel shift?

As a more “selection” version we have the following question.

Question 4.6. Let f : R → R
2 be a Lipschitz mapping. Is it true that

the graph Γf is α-paraconvex subset of three-dimensional Euclidean space

for some appropriate α ∈ [0; 1)?

Even for very special case of the helix curve Quest. 4.6 is open.
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