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Abstract: Using one favorable algorithm in research of bicentric n-gons we
have established certain important properties and relations concerning bicentric
n-gons. First part of the article deals with certain relations concerning bicentric
n-gons where n is odd. The second part deals with 2-parametric presentation
of Fuss’ relations.

1. Introduction

First about some terms which will be used.
A polygon A1 . . . An is called chordal polygon if there is a cir-

cle which contains each of the points (vertices) A1, . . . , An. A polygon
A1 . . . An is called tangential polygon if there is a circle such that seg-
ments A1A2, . . . , AnA1 are tangential segments of the circle.

A polygon which is both chordal and tangential is shortly called
bicentric polygon. If A1 . . . An is a bicentric polygon then it is usually
that radius of its circumcirlce is denoted by R, radius od incircle by r

E-mail address: mradic@ffri.hr
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and distance between centers of circumcircle and incircle by d.
Let A1 . . . An be a bicentric polygon and let A1T1, T1A2, . . .

. . . , AnTn, TnA1 be segments such that T1, . . . , Tn are tangential points
of the segments A1A2, . . . , AnA1. Then the lengths |A1T1|, . . . , |TnA1|
are called tangent lengths of the polygon A1 . . . An.

The first one that was concerned with bicentric polygons is German
mathematician Nicolaus Fuss (1755–1826). He found relations (condi-
tions) for bicentric quadrilaterals, pentagons, hexagons, heptagons and
octagons, These relations can be written as

(R2 − d2)2 = 2r2(R2 + d2)(1.1a)

p3q3 + p2q2r(p + q) − pqr2(p + q)2 − r3(p + q)(p − q)2 = 0,(1.1b)

3p4q4 − 2p2q2r2(p2 + q2) − r4(p2 − q2)2 = 0,(1.1c)

(pq−r(p−q)−2r2)2pqr
√

(p−r)(p+q)+(p2q2−r2(p2+q2))×(1.1d)

×2r
√

(q−r)(p+q)=±(pq−r(p−q))(p2q2+r2(p2−q2)),

(r2(p2 + q2) − p2q2)4 − 16p4q4r4(p2 − r2)(q2 − r2) = 0,(1.1e)

where p = R + d, q = R − d.
The corresponding relation for triangle is

(1.2) R2 − d2 − 2Rr = 0,

and had already been given by Euler.
Although Fuss found relations for R, d, r only for bicentric n-gons,

4 ≤ n ≤ 8, it is in his honor to call such relations Fuss’ relations also in
the case n > 8.

The very remarkable theorem concerning bicentric polygons is given
by French mathematician Poncelet (1788–1867). This theorem, so called
Poncelet’s closure theorem for circles, can be stated as follows.

Let C1 and C2 be two circles, where C2 is inside of C1. If there
is a bicentric n-gon A1 . . . An such that C1 is its circumcircle and C2

its incircle then for every point P1 on C1 there are points P1, . . . , Pn on
C1 such that P1 . . . Pn is a bicentric n-gon whose circumcircle is C1 and
incircle C2.

Although this famous Poncelet’s closure theorem dates from nine-
teenth century, many mathematicians have been working on number of
problems in connection with this theorem. In this article we deal with
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certain important properties and relations in this connection. The fol-
lowing notation and known facts will be used.

A bicentric n-gon A1 . . . An is called k-outscribed if

(1.3) 2

n
∑

i=1

arctan
ti

r
= k · 360◦,

where k is a positive integer and t1, . . . , tn are tangent lengths of the
n-gon A1 . . . An.

As it is known, the following holds. If n ≥ 3 is an odd integer, then
for each positive integer k ≤ n−1

2
which is relatively prime to n, there is

a bicentric n-gon which is k-outscribed. In the case when n is even, then
for each positive integer k ≤ n−2

2
which is relatively prime to n, there is

a bicentric n-gon which is k-outscribed.
Let, for brevity, Fuss’ relation for k-outscribed bicentric n-gons be

denoted by

(1.4) F (k)
n (R, d, r) = 0.

As it is known, for each positive solution (R, d, r) of Fuss’ relation

F
(k)
n (R, d, r) = 0 there is a class C

(k)
n (R, d, r) of bicentric polygons such

that all polygons from this class have the same circumcircle and the same
incircle and that the following is valid. If by C1 is denoted circumcircle
and by C2 is denoted incircle then for every point P1 on C1 there are
points P2, . . . , Pn on C1 such that P1 . . . Pn is a k-outscribed bicentric
n-gon whose circumcircle is C1 and incircle C2. Of course, also it is valid

R = radius of C1, r = radius of C2,
d = distance between centers of C1 and C2.
For example, if n = 5 and k = 2, then by Poncelet’s closure theorem

every pentagon from the class C
(2)
5 (R, d, r) is 2-outscribed (see Fig. 1).

Thus, for every point P1 on C1 we can construct a 2-outscribed bicentric
pentagon. Conversely, if a 2-outscribed bicentric pentagon is given, we
can construct circles C1 and C2 using lines of symmetry of the segment
P1P2 and P2P3, respectively, of angles ∢P1 and ∢P2.
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Figure 1

In [4] it is shown that F
(1)
5 (R, d, r) = 0 can be written as

(1.5) r = r

√

R − d − r

2R
+ (R − d)

√

1 −
(

r

R + d

)2
√

R + d + r

2R

and that F
(2)
5 (R, d, r) = 0 can be written as

(1.6) r = (R − d)

√

1 −
(

r

R + d

)2
√

R + d − r

2R
− r

√

R − d + r

2R
.

Also it is shown that relations F
(k)
7 (R, d, r) = 0, k = 1, 2, 3, can be

written, respectively, as

(1.7)





√

1−
(

r

R + d

)2
√

R−d−r

2R
− r

R+d

√

R+d+r

2R





2

=

(

r

R − d

)2

·

·
(
√

R−d−r

2R
− r

R+d

)2

+

(

r

R+d

)2




√

1−
(

r

R+d

)2

−
√

R+d+r

2R





2

,

(1.8)





√

1−
(

r

R+d

)2
√

R−d+r

2R
+

r

R+d

√

R+d−r

2R





2

=

(

r

R−d

)2

·

·
(
√

R−d+r

2R
+

r

R+d

)2

+

(

r

R+d

)2




√

1−
(

r

R+d

)2

−
√

R+d−r

2R





2

,
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(1.9)





√

1−
(

r

R+d

)2
√

R−d−r

2R
− r

R+d

√

R+d+r

2R





2

=

(

r

R−d

)2

·

·
(
√

R−d−r

2R
+

r

R+d

)2

+

(

r

R+d

)2




√

1−
(

r

R+d

)2

+

√

R+d+r

2R





2

.

From (1.5), after rationalization and factorization, we get relation

F
(1)
5 (R, d, r) = 0 written as

3R4d2 − R6 − 3R2d4 + d6 − 2R5r + 4R3d2r−(1.10)

− 2Rd4r + 4R4r2 − 4R2d2r2 + 8Rd2r3 = 0,

and from (1.6) we get relation F
(2)
5 (R, d, r) = 0 written as

R6 − 3R4d2 + 3R2d4 − d6 − 2R5r + 4R3d2r−(1.11)

− 2Rd4r − 4R4r2 + 4R2d2r2 + 8Rd2r3 = 0.

Also from (1.7), (1.8) and (1.9) can be obtained relations for bicen-
tric heptagons written in this form.

Let, for brevity in the following, by

(1.12) C(k)
n (R, d, r)

be denoted a class of k-outscribed bicentric n-gons such that
R = radius of circumcircle of C

(k)
n (R, d, r),

r = radius of incircle of C
(k)
n (R, d, r),

d = distance between centers of circumcircle and incirle.

Important role in the following will play lengths tm and tM given
by

(1.13) tm =
√

(R − d)2 − r2, tM =
√

(R + d)2 − r2.

See Fig. 2, where by C1 is denoted circumcircle of the polygons from the
class C

(k)
n (R, d, r) and by C2 is denoted incircle of the polygons from the

class C
(k)
n (R, d, r). As can be easily seen, tm is the length of the least

tangent that can be drawn from C1 to C2 and tM is the length of the
largest tangent that can be drawn from C1 to C2.
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Figure 2: t2M = (R + d)2 − r2, t2m = (R − d)2 − r2

The lengths tm and tM can be called minimal and maximal tangent
lengths of the class C

(k)
n (R, d, r).

It is clear from Poncelet’s closure theorem that the following holds.
If t1 is any given length such that tm ≤ t1 ≤ tM , where tm and tM are
given by (1.13), then there is a bicentric n-gon from the class C

(k)
n (R, d, r)

such that its first tangent has the length t1. Such an n-gon will be denoted
by

(1.14) P (k)
n (R, d, r; t1).

For calculation of tangent lengths of bicentric polygons can be used
the following known formula

(1.15) (t2)1,2 =
(R2 − d2)t1 ±

√
D

r2 + t21
,

where D = t21(R
2 − d2)2 + (r2 + t21)[4R

2d2 − r2t21 − (R2 + d2 − r2)2]. If t1
is given then its consequent is (t2)1 or (t2)2.

Concerning signs + and − in expression ±
√

D it does not matter,
since for each integer i such that 1 < i < n, the following is valid. If

ti+1 = (R2−d2)ti+
√

D

r2+t2
i

then ti−1 = (R2−d2)ti−
√

D

r2+t2
i

and vice versa.

Analogously holds for i = 1.
Important role in the following will play Cor. 3 of Th. 1 given in

[5] here something modified and written as Th. A.
Theorem A. Let A1 . . . An be any given bicentric n-gon and let

R0 = radius of the circumcircle of A1 . . . An,
r0 = radius of the incircle of A1 . . . An,
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d0 = distance between centers of the circumcircle and incircle.
Then there are lengths (in fact positive numbers) R, r, d such that

R2 + d2 − r2 = R2
0 + d2

0 − r2
0,(1.16)

Rd = R0d0,(1.17)

R2 − d2 = 2R0r.(1.18)

Using computer algebra it can be easily found that(positive) solu-
tions of the above system in R, d, r are given by

R2
1 = R0(R0 + r0 +

√

(R0 + r0)2 − d2
0),(1.19)

d2
1 = R0(R0 + r0 −

√

(R0 + r0)2 − d2
0), r2

1 = (R0 + r0)
2 − d2

0(1.20)

and

R2
2 = R0(R0 − r0 +

√

(R0 − r0)2 − d2
0),(1.21)

d2
2 = R0(R0 − r0 −

√

(R0 − r0)2 − d2
0), r2

2 = (R0 − r0)
2 − d2

0.(1.22)

Thus, it is valid
R2

1 + d2
1 − r2

1 = R2
2 + d2

2 − r2
2 = R2

0 + d2
0 − r2

0

R1d1 = R2d2 = R0d0,

R2
1 − d2

1 − 2R0r1 = R2
2 − d2

2 − 2R0r2 = 0.

That R1, d1, r1 and R2, d2, r2 given by (1.19)–(1.22) are two solu-
tions of the system in Th. A can be also easily seen by hand (without
using computer algebra). So, using relations (1.19) and (1.20) we can
write

R2
1 + d2

1 − r2
1 = 2R0(R0 + r0) − r2

1 = R2
0 − d2

0 − r2
0,

R2
1d

2
1 = R2

0((R0 + r0)
2 − (R0 + r0)

2 + d2
0) = R2

0d
2
0,

R2
1 − d2

1 = 2R0

√

(R0 + r0)2 − d2
0 = 2R0r1.

Also can be easily seen that

R2
1 − d2

1

2r1
=

R2
2 − d2

2

2r2
= R0,

2R1d1r1

R2
1 − d2

1

=
2R2d2r2

R2
2 − d2

2

= d0,(1.23)

− (R2
1 + d2

1 − r2
1) +

(

R2
1 − d2

1

2r1

)2

+

(

2R1d1r1

R2
1 − d2

1

)2

=(1.24)

= −(R2
2 + d2

2 − r2
2) +

(

R2
2 − d2

2

2r2

)2

+

(

2R2d2r2

R2
2 − d2

2

)2

= r2
0.
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So using relations (1.19) and (1.20) we can write
R2

1 − d2
1

2r1

=
2R0r1

2r1

= R0,
2R1d1r1

R2
1 − d2

1

=
2R0d0r1

2R0r1

= d0.

In the same way can be seen that (1.24) is valid.
Now let R0, d0, r0 be as in Th. A and let A1 . . . An be k-outscribed.

Then by Poncelet’s closure theorem every n-gon from the class
C

(k)
n (R0, d0, r0) is a k-outscribed bicentric n-gon. We state the follow-

ing conjecture.

Conjecture 1. Let R1, d1, r1 and R2, d2, r2 be given by (1.19)–(1.22) and
let n be even. Then there are classes

(1.25) C
(k)
2n (R1, d1, r1), C

(n−k)
2n (R2, d2, r2)

where the first is a class of k-outscribed bicentric 2n-gons and the second
is a class of (n − k)-outscribed bicentric 2n-gons.

Now let n be odd. Then only one of the classes given by (1.25) is a
class of bicentric 2n-gons and the other is a class of double k-outscribed
bicentric n-gons.

It is not difficult to prove that this conjecture is a true one for even
n = 4, 6, 8 and for odd n = 3, 5, 7. Here is an example for which this
conjecture is proved. From this example can be seen the way of proving
for each other example.

Let n = 4. Then k = 1 since there are only 1-outscribed bi-
centric quadrilaterals. Let R0, d0, r0 be any given positive solution of
Fuss’ relation for bicentric quadrilaterals given by (1.1a) and for brevity

of writing here denoted by F
(1)
4 (R, d, r) = 0. Let R0, d0, r0 in relation

F
(1)
4 (R0, d0, r0) = 0 be replaced, respectively, by corresponding expres-

sions given by (1.23) and (1.24), that is, by

R2
1 − d2

1

2r1

,
2R1d1r1

R2
1 − d2

1

, −(R2
1 + d2

1 − r2
1) +

(

R2
1 − d2

1

2r1

)2

+

(

2R1d1r1

R2
1 − d2

1

)2

where R1, d1, r1 are given by (1.19) and (1.20). It is not difficult to show

that obtained equation can be written as F
(1)
8 (R1, d1, r1) = 0, where

F
(1)
8 (R, d, r) = 0 is Fuss’ relation for 1-outscribed bicentric octagons.

(See later stated relation given by (2.29).) Thus, (R1, d1, r1) is a solution

of Fuss’ relation F
(1)
8 (R, d, r) = 0.

In the same way can be seen that (R2, d2, r2), where R2, d2, r2 are

given by (1.21) and (1.22) is a solution of Fuss’ relation F
(3)
8 (R, d, r) = 0

given by (2.30).
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From this it is clear that C
(1)
8 (R1, d1, r1) is a class of 1-outscribed

bicentric octagons and C
(3)
8 (R2, d2, r2) is a class of 3-outscribed bicentric

octagons and that for their outscriptions 1 and 3 it is valid 1+3 = 4 = 8
2
.

It is easy to show that F
(1)
8 (R, d, r) · F

(3)
8 (R, d, r) = F8(R, d, r),

where F8(R, d, r) = 0 is Fuss’ relation for both 1-outscribed and for 3-
outscribed bicentric octagons.

In this connection let us remark that from above said can be con-
cluded that the following holds good.

If R, d, r in relation F
(1)
4 (R, d, r) = 0 we replace, respectively, by

R2 − d2

2r
,

2Rdr

R2 − d2
, −(R2 + d2 − r2) +

(

R2 − d2

2r

)2

+

(

2Rdr

R2 − d2

)2

we get Fuss’ relation F8(R, d, r) = 0. (It is not difficult to establish even
by hand (without using computer algebra.)

Of course, now instead of starting from F
(1)
4 (R, d, r) = 0 we can

start from F
(1)
8 (R, d, r) = 0 or from F

(3)
8 (R, d, r) = 0. Analogy is com-

plete.
More about this will be in connection with Conj. 2 which is con-

nected with Conj. 1. For this purpose the following corollaries of Th. A
will be used. (These corollaries are not stated in [5].)

The following corollaries of Th. A (which are not given in [5]) will
be used.
Corollary A.1. Let instead of R0, d0, r0 in the system stated in Th. A
be put, respectively, R1, r1, d1 given by (1.19) and (1.20). Then positive
solutions of the so obtained system in R, d, r, that is, of the system

R2 + d2 − r2 = R2
1 + d2

1 − r2
1, Rd = R1d1, R2 − d2 = 2R1r,

are (R, d, r)1 = (R11, d11, r11) and (R, d, r)2 = (R12, d12, r12), where

R2
11 = R1(R1 + r1 +

√

(R1 + r1)2 − d2
1),(1.26)

d2
11 = R1(R1 + r1 −

√

(R1 + r1)2 − d2
1), r2

11 = (R1 + r1)
2 − d2

1(1.27)

and

R2
12 = R1(R1 − r1 +

√

(R1 − r1)2 − d2
1),(1.28)

d2
12 = R1(R1 − r1 −

√

(R1 − r1)2 − d2
1), r2

12 = (R1 − r1)
2 − d2

1.(1.29)
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Corollary A.2. Let instead of R0, d0, r0 in the system stated in Th. A
be put, respectively, R2, d2, r2 given by (1.21) and (1.22). Then positive
solutions of the so obtained system in R, r and d are

R2
21 = R2(R2 + r2 +

√

(R2 + r2)2 − d2
2),(1.30)

d2
21 = R2(R2 + r2 −

√

(R2 + r2)2 − d2
2), r2

21 = (R2 + r2)
2 − d2

2(1.31)

and

R2
22 = R2(R2 − r2 +

√

(R2 − r2)2 − d2
2),(1.32)

d2
22 = R2(R2 − r2 −

√

(R2 − r2)2 − d2
2), r2

22 = (R2 − r2)
2 − d2

2.(1.33)

In the same way can be proceed and seen that the following algo-
rithm is valid.

Algorithm determined by Th. A

Let i1, . . . , ik be any given integers such that each of them belongs
to the set {1, 2}. Let, for brevity, i1 . . . ik−1 be denoted by u and i1 . . . ik
be denoted by v. Then, if ik = 1,

R2
v = Ru

(

Ru + ru +
√

(Ru + ru)2 − d2
u

)

,(1.34)

d2
v = Ru

(

Ru + ru −
√

(Ru + ru)2 − d2
u

)

, r2
v = (Ru + ru)

2 − d2
u.(1.35)

But, if ik = 2, then

R2
v = Ru

(

Ru − ru +
√

(Ru − ru)2 − d2
u

)

,(1.36)

d2
v = Ru

(

Ru − ru −
√

(Ru − ru)2 − d2
u

)

, r2
v = (Ru − ru)

2 − d2
u.(1.37)

Concerning indices, let us remark that the situation is in some way
connected with the fact that there are 2k k-digit integers with digits from
the set {1, 2}. For example, if k = 3, we have indices

(1.38) 111, 112, 121, 122, 211, 212, 221, 222

and we have

R2
111 = R11

(

R11 + r11 +
√

(R11 + r11)2 − d2
11

)

,

R2
112 = R11

(

R11 − r11 +
√

(R11 − r11)2 − d2
11

)

, and so on.
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Sometimes in using this algorithm can be convenient a sketch as

C(k)
n (R0, d0, r0)

ր C
(k)
2n (R1, d1, r1)

ց C
(n−k)
2n (R2, d2, r2).

The following two corollaries will also be useful in the following.
Corollary A.3. Let h be given by h = tmtM , where

tm =
√

(R0 − d0)2 − r2
0, tM =

√

(R0 + d0)2 − r2
0.

Then
r1r2 = r11r12 = r21r22 = r111r112 = r121r122 = · · · = h,

that is, generally holds

(1.39) ru1ru2 = h

where
r2
u1 = (Ru + ru)

2 − d2
u, r2

u2 = (Ru − ru)
2 − d2

u

and u = i1 . . . ik, i1, . . . , ik ∈ {1, 2}.
Corollary A.4. Let Ru, du, ru and Rv, dv, rv be given by (1.34) and
(1.35) or by (1.36) and (1.37). Then

R2
v − d2

v

2rv

= Ru,
2Rvdvrv

R2
v − d2

v

= du,(1.40)

− (R2
v + d2

v − r2
v) +

(

R2
v − d2

v

2rv

)2

+

(

2Rvdvrv

R2
v − d2

v

)2

= r2
u.(1.41)

Conjecture 2. Let R0, d0, r0 be any given lengths (in fact positive num-

bers) such that F
(k)
n (R0, d0, r0) = 0. Let R0, d0, r0 in F

(k)
n (R0, d0, r0) = 0

be replaced, respectively, by
(1.42)

R2−d2

2r
,

2Rdr

R2−d2
,

√

−(R2 + d2 − r2)+

(

R2−d2

2r

)2

+

(

2Rdr

R2−d2

)2

.

Then, if n is even, the equation
(1.43)

F (k)
n

(

R2−d2

2r
,

2Rdr

R2−d2
,

√

−(R2+d2−r2)+

(

R2−d2

2r

)2

+

(

2Rdr

R2−d2

)2
)

=0
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becomes Fuss’ relation for both k-outscribed and (n−k)-outscribed bicen-
tric 2n-gons and can be denoted by

(1.44) F
(k,n−k)
2n (R, d, r) = 0.

But, if n is odd, and GCD(k, 2n) = 1, then equation (1.43) is only
Fuss’ relation for k-outscribed bicentric 2n-gons. If GCD(k, 2n)=2, then
equation (1.43) is only Fuss’ relation for (n− k)-outscribed bicentric 2n-
gons. (Here let us remark that from GCD(k, n) = 1 and GCD(k, 2n) > 1
it follows GCD(k, 2n) = 2.)

Of course, if n is odd then corresponding Fuss’ relation is also a
relation for corresponding double bicentric n-gons.

Remark 1. We have proved this conjecture for many n. Anyone, using
computer algebra, can easily check this conjecture for, say, even n =
4, 6, 8, 10 and odd n = 3, 5, 7, 9. (In the case when n = 3 or n = 4 it can
be easily checked even by hand, without using computer algebra.)

Conj. 2 is very connected with Conj. 1 where we have already con-
sidered example starting from n = 4 and using relations (1.19)–(1.22).
Here we shall start from n = 8 and use relations (1.26)–(1.33).

Let R1, d1, r1 in F
(1)
8 (R1, d1, r1) = 0 be replaced, respectively, by

(1.45)

R2 − d2

2r
,

2Rdr

R2 − d2
, −(R2 + d2 − r2)+

(

R2 − d2

2r

)2

+

(

2Rdr

R2 − d2

)2

.

Let the obtained equation be denoted by F
(1,7)
16 (R, d, r) = 0. Using

computer algebra it is easy to show that (R11, d11, r11) and (R12, d12, r12)

are solutions of the equation F
(1,7)
16 (R, d, r) = 0.

Now let R2, d2, r2 in F
(3)
8 (R2, d2, r2) = 0 be replaced respectively

by expressions given by (1.45) and let obtained equation be denoted

by F
(3,5)
16 (R, d, r) = 0. Using computer algebra it is easy to show that

(R21, d21, r21) and (R22, d22, r22) are two solutions of the equation

F
(3,5)
16 (R, d, r) = 0.

Using computer algebra also can be shown that the following holds.
If R, d, r in F8(R, d, r) = 0 is replaced respectively by expres-

sions given by (1.45) we get Fuss’ relation F16(R, d, r) = 0 for 1, 3, 5, 7-
outscribed bicentric 16-gons.

As can be seen, it is valid 1 + 7 = 3 + 5 = 8 =
16

2
(analogously as

in the starting from n = 4).
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We have found that analogously holds for many n what strongly
suggests that stated conjectures must be true ones.

From this can be concluded that Th. A has important role in in-
vestigation of bicentric polygons.
Corollary A.5. Let in Conj. 1 be d0 = 0. Then such conjecture can be
relatively easily proved.

Proof. Let in Th. A be d0 = 0 and let R1, d1, r1 and R2, d2, r2 be given
by (1.19)–(1.23), where now d0 = 0. Then, using algorithm determined
by Th. A, we have

R2
1 = 2R0(R0 + r0), r2

1 = (R0 + r0)
2,(1.46)

R2
2 = 2R0(R0 − r0), r2

2 = (R0 − r0)
2.(1.47)

Let P1 . . . P2n and Q1 . . . Q2n be two bicentric 2n-gons if n is even or one
bicentric and the other be a double bicentric n-gon if n is odd. Let

R1 = radius of circumcircle of P1 . . . P2n,
r1 = radius of incircle of P1 . . . P2n,
R2 = radius of circumcircle of Q1 . . . Q2n,
r2 = radius of incircle of Q1 . . . Q2n.

Let by t be denoted the length of the tangents of P1 . . . P2n. Then, since
(1.46) and (1.47) are valid, we have

t =
√

R2
1 − r2

1 =
√

R2
2 − r2

2 =
√

R2
0 − r2

0

and

(1.48)
t

r1
=

√

R0 − r0

R0 + r0
= tan

k1 · 2π
4n

,
t

r2
=

√

R0 + r0

R0 − r0
= tan

k2 · 2π
4n

,

where k1 is outscription of P1 . . . P2n and k2 is outscription of Q1 . . . Q2n.
Thus

(1.49) arctan
t

r1
=

k1π

2n
, arctan

t

r2
=

k2π

2n
.

We have to prove that k1+k2 = n. To prove this we shall use the equality

(1.50) arctan

√

R0 − r0

R0 + r0
+ arctan

√

R0 + r0

R0 − r0
=

π

2
,

since, as it is well known, for every positive real number a it is valid
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arctan a + arctan
1

a
=

π

2
.

So, using relations (1.48) and (1.49), we can write

(1.51)
k1π

2n
+

k2π

2n
=

π

2
or k1 + k2 = n.

Cor. A.5 is proved. ♦

Now in short about the following fact. If k is outscription of the n-
gon A1 . . . An in Th. A, then k is also outscription of the 2n-gon P1 . . . P2n

in Cor. A.5, that is, it is easy to show that

2n arctan

√

R2
0 − r2

0

r0

= 4n arctan

√

R2
0 − r2

0

R0 + r0

.

Remark 2. Cor. A.5 strongly suggests that the Conj. 1 is a true one.
Even from this corollary can be concluded, at least intuitively, that
Conj. 1 is valid. See, for example, Fig. 3. If d → 0, then because of
continuity with regard to Poncelet’s closure theorem, 2-outscribed pen-
tagon becomes 2-outscribed pentagon with d = 0 and vice versa.

O
I

dd       0

Figure 3

Cor. A.5 can also be very useful in proving Conj. 2 for some given n.

2. One algorithm in research of bicentric polygons

Using algorithm explained in Introduction we shall first deal with
certain relations concerning bicentric n-gons where n is odd. In the sec-
ond part we shall deal with 2-parametric presentation of Fuss’relations.

The case when n = 5. First we have the following theorem.
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Theorem 1. Let R1, d1, r1 be any given lengths (in fact positive numbers)

such that F
(1)
5 (R1, d1, r1) = 0 and let R2, d2, r2 be given by

(2.1)

R2 =
R2

1 − d2
1

2r1

, d2 =
2R1d1r1

R2
1 − d2

1

,

r2
2 = −(R2

1 + d2
1 − r2

1) +

(

R2
1 − d2

1

2r1

)2

+

(

2R1d1r1

R2
1 − d2

1

)2

.

Then

(2.2) F
(2)
5 (R2, d2, r2) = 0.

Reversely, let R2, d2, r2 be given any lengths such that
F

(2)
5 (R2, d2, r2) = 0 and let R1, d1, r1 be given by

(2.3)

R1 =
R2

2 − d2
2

2r2
, d1 =

2R2d2r2

R2
2 − d2

2

,

r2
1 = −(R2

2 + d2
2 − r2

2) +

(

R2
2 − d2

2

2r2

)2

+

(

2R2d2r2

R2
2 − d2

2

)2

.

Then

(2.4) F
(1)
5 (R1, d1, r1) = 0.

In other words, it is valid

(2.5) F
(1)
5 (R1, d1, r1) = 0 ⇔ F

(2)
5 (R2, d2, r2) = 0.

Proof. Using computer algebra it can be found that

F
(2)
5 (R2, d2, r2) = F

(1)
5 (R1, d1, r1)F

(2)
5 (R1, d1, r1),

where R2, d2, r2 are given by (2.1). Thus, (2.2) is valid since

F
(1)
5 (R1, d1, r1) = 0. Starting from (2.3), it can be found that

F
(1)
5 (R1, d1, r1) = F

(2)
5 (R2, d2, r2)F

(1)
5 (R2, d2, r2).

(Relations (1.10) and (1.11) can be used.)
This proves Th. 1. ♦

Corollary 1.1. From relations

R2
1 = R2(R2 + r2 +

√

(R2 + r2)2 − d2
2),

d2
1 = R2(R2 + r2 −

√

(R2 + r2)2 − d2
2),

r2
1 = (R2 + r2)

2 − d2
2,
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we can get relations given by (2.1). So, we have

R2
1 − d2

1

2r1
=

2R2r1

2r1
= R2.

Corollary 1.2. From the following relations

R2
2 = R1(R1 − r1 +

√

(R1 − r1)2 − d2
1),

d2
2 = R1(R1 − r1 −

√

(R1 − r1)2 − d2
1),

r2
2 = (R1 − r1)

2 − d2
1,

we can get relations given by (2.3). So, we have

R2
2 − d2

2

2r2
=

2R1r2

2r2
= R1.

Remark 3. Relations

R2
22 = R2(R2 − r2 +

√

(R2 − r2)2 − d2
2),

d2
22 = R2(R2 − r2 −

√

(R2 − r2)2 − d2
2),

r2
22 = (R2 − r2)

2 − d2
2,

refer to 3-outscribed bicentric 10-gons, and the relations

R2
11 = R1(R1 + r1 +

√

(R1 + r1)2 − d2
1),

d2
11 = R1(R1 + r1 −

√

(R1 + r1)2 − d2
1),

r2
11 = (R1 + r1)

2 − d2
1,

refer to 1-outscribed bicentric 10-gons.
It can be established using computer algebra that

F
(1)
10 (R11, d11, r11) = 0, F

(3)
10 (R22, d22, r22) = 0.

Of course, for relations in Cor. 1.1 and Cor. 1.2 it is valid

F
(1)
5 (R1, d1, r1) = 0, F

(2)
5 (R2, d2, r2) = 0.

As can be seen, the important role in this has Th. A and its corol-
laries listed in Introduction.

Corollary 1.3. Let R1, d1, r1 and R2, d2, r2 be as in Th. 1. Then, by
algorithm determined by Th. A, we have

C
(1)
5 (R1, d1, r1)

ր C
(1)
10 (R11, d11, r11)

ց C
(4)
10 (R12, d12, r12), R12 = R2, d12 = d2, r12 = r2
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C
(2)
5 (R2, d2, r2)

ր C
(2)
10 (R21, d21, r21), R21 = R1, d21 = d1, r21 = r1

ց C
(3)
10 (R22, d22, r22)

Thus C
(4)
10 (R12, d12, r12) is a class of double 2-outscribed bicentric

pentagons and C
(2)
10 (R21, d21, r21) is class of double 1-outscribed pentagons.

(Here may be interesting that R1, d1, r1 and R2, d2, r2 are as in Th. 1.)

Corollary 1.4. It is valid

(2.6) R1d1 = R2d2, R2
1 + d2

1 − r2
1 = R2

2 + d2
2 − r2

2.

Proof. It follows from (2.1) and (2.3). ♦

Corollary 1.5. There are lengths tm and tM such that

(R1 − d1)
2 − r2

1 = (R2 − d2)
2 − r2

2 = t2m,(2.7)

(R1 + d1)
2 − r2

1 = (R2 + d2)
2 − r2

2 = t2M .(2.8)

Definition 1. Let R1, d1, r1 and R2, d2, r2 be as in Th. 1. Then classes
such as C

(1)
5 (R1, d1, r1) and C

(2)
5 (R2, d2, r2) will be called conjugate classes

of bicentric pentagons.

Since (2.7) and (2.8) hold we can also state the following definition.

Definition 2. Let t1 be any given length such that tm ≤ t1 ≤ tM , where
tm and tM are given by (2.7) and (2.8). Then pentagons

(2.9) P
(1)
5 (R1, d1, r1; t1), P

(2)
5 (R2, d2, r2; t1)

will be called conjugate bicentric pentagons.

From Th. 1 it is clear that so defined binary relation be conjugate in
the set of bicentric pentagons is a symmetric relation but neither reflexive
nor transitive.

Theorem 2. Conjugate bicentric pentagons have the same tangent
lengths only with different ordering, that is, if t1, . . . , t5 are tangent lengths
of the pentagon P

(1)
5 (R1, d1, r1; t1) and u1, . . . , u5 are tangent lengths of

the pentagon P
(2)
5 (R2, d2, r2; t1) then

ui = t1+(i−1)2, i = 1, 2, . . . , 5.

Proof. Using relation given by (1.15) and computer algebra, it is not
difficult to establish that above theorem holds good. ♦
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Example 1.

R1 = 7, d1 = 2, r1 = 4.789111662 . . .

R2 = 4.698157318 . . . , d2 = 2.979891701 . . . , r2 = 0.942351978 . . .

Since in this case tm = 1.436805307 . . . , tM = 7.620000623 . . . , we can
take, say, t1 = 2. Using formula given by (1.15) we get

t2 = 5.160129225 . . . , t3 = 7.370217485 . . . , t4 = 3.425898801 . . .

t5 = 1.522479047 . . . , where t1 = 2,

ui = t1+(i−1)2, i = 1, 2, . . . , 5

The case when n = 7. First we have the following theorem.

Theorem 3. Let R1, d1, r1 be any given lengths (in fact positive numbers)

such that F
(1)
7 (R1, d1, r1) = 0 and let

(2.10)

R2 =
R2

1 − d2
1

2r1

, d2 =
2R1d1r1

R2
1 − d2

1

,

r2
2 = −(R2

1 + d2
1 − r2

1) +

(

R2
1 − d2

1

2r1

)2

+

(

2R1d1r1

R2
1 − d2

1

)2

,

(2.11)

R3 =
R2

2 − d2
2

2r2
, d3 =

2R2d2r2

R2
2 − d2

2

,

r2
3 = −(R2

2 + d2
2 − r2

2) +

(

R2
2 − d2

2

2r2

)2

+

(

2R2d2r2

R2
2 − d2

2

)2

.

Then
F

(2)
7 (R2, d2, r2) = 0, F

(3)
7 (R3, d3, r3) = 0.

Also it is valid

(2.12)

R2
3 − d2

3

2r3

= R1,
2R3d3r3

R2
3 − d2

3

= d1,

−(R2
3 + d2

3 − r2
3) +

(

R2
3 − d2

3

2r3

)2

+

(

2R3d3r3

R2
3 − d2

3

)2

= r2
1.

Proof. Analogous to the proof of Th. 1, but here needs something more
calculation to establish that

F
(2)
7 (R2, d2, r2) = F

(1)
7 (R1, d1, r1)F

(2)
7 (R1, d1, r1),

F
(3)
7 (R3, d3, r3) = F

(2)
7 (R2, d2, r2)F

(3)
7 (R2, d2, r2),

F
(1)
7 (R1, d1, r1) = F

(3)
7 (R3, d3, r3)F

(1)
7 (R3, d3, r3),
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where R2, d2, r2 are given by (2.10), R3, d3, r3 by (2.11) and R1, d1, r1 by
(2.12). ♦

Corollary 3.1. Let R2, d2, r2, R3, d3, r3 and R1, d1, r1 be as in Th. 3.
Then the following relations are valid:

R2
1 = R2

(

R2 + r2 +
√

(R2 + r2)2 − d2
2

)

,

d2
1 = R2

(

R2 + r2 −
√

(R2 + r2)2 − d2
2

)

,

r2
1 = (R2 + r2)

2 − d2
2,

R2
2 = R3

(

R3 − r3 +
√

(R3 − r3)2 − d2
3

)

,

d2
2 = R3

(

R3 − r3 −
√

(R3 − r3)2 − d2
3

)

,

r2
2 = (R3 − r3)

2 − d2
3,

R2
3 = R1

(

R1 − r1 +
√

(R1 − r1)2 − d2
1

)

,

d2
3 = R1

(

R1 − r1 −
√

(R1 − r1)2 − d2
1

)

,

r2
3 = (R1 − r1)

2 − d2
1.

Remark 4. The following three relations refer to 5-outscribed bicentric
14-gons

R2
22 = R2

(

R2 − r2 +
√

(R2 − r2)2 − d2
2

)

,

d2
22 = R2

(

R2 − r2 −
√

(R2 − r2)2 − d2
2

)

,

r2
22 = (R2 − r2)

2 − d2
2.

The following three relations refer to 3-outscribed bicentric 14-gons

R2
31 = R3

(

R3 + r3 +
√

(R3 + r3)2 − d2
3

)

,

d2
31 = R3

(

R3 + r3 −
√

(R3 + r3)2 − d2
3

)

,

r2
31 = (R3 + r3)

2 − d2
3.

The following three relations refer to 1-outscribed bicentric 14-gons

R2
11 = R1

(

R1 + r1 +
√

(R1 + r1)2 − d2
1

)

,

d2
11 = R1

(

R1 + r1 −
√

(R1 + r1)2 − d2
1

)

,

r2
11 = (R1 + r1)

2 − d2
1.



238 M. Radić

Important role in this has Th. A and its corollaries.

Corollary 3.2. Let R1, d1, r1, R2, d2, r2 and R3, d3, r3 be as in Th. 3.
Then, by algorithm determined by Th. A, we have

C
(1)
7 (R1, d1, r1)

ր C
(1)
14 (R11, d11, r11)

ց C
(6)
14 (R12, d12, r12), R12 = R3, d12 = d3, r12 = r3

C
(2)
7 (R2, d2, r2)

ր C
(2)
14 (R21, d21, r21), R21 = R1, d21 = d1, r21 = r1

ց C
(5)
14 (R22, d22, r22)

C
(3)
7 (R3, d3, r3)

ր C
(3)
14 (R31, d31, r31)

ց C
(4)
14 (R32, d32, r32), R32 = R2, d32 = d2, r32 = r2

There is a complete analogy with the case when n = 5. So
C

(6)
14 (R12, d12, r12) is a class of double 3-outscribed bicentric heptagons,

C
(2)
14 (R21, d21, r21) is a class of double 1-outscribed bicentric heptagons,

and C
(4)
14 (R32, d32, r32) is a class of double 2-outscribed bicentric hep-

tagons.

Corollary 3.3. It is valid

R1d1 = R2d2 = R3d3,(2.13)

R2
1 + d2

1 − r2
1 = R2

2 + d2
2 − r2

2 = R2
3 + d2

3 − r2
3.(2.14)

Proof. As in Cor. 1.1. ♦

Corollary 3.4. There are lengths tm and tM such that

(R1 − d1)
2 − r2

1 = (R2 − d2)
2 − r2

2 = (R3 − d3)
2 − r2

3 = t2m,(2.15)

(R1 + d1)
2 − r2

1 = (R2 + d2)
2 − r2

2 = (R3 + d3)
2 − r2

3 = t2M .(2.16)

Definition 3. Let R1, d1, r1, R2, d2, r2 and R3, d3, r3 be as in Th. 3.
Then classes such as C

(1)
7 (R1, d1, r1), C

(2)
7 (R2, d2, r2), C

(3)
7 (R3, d3, r3) will

be called conjugate classes of bicentric heptagons.

Since (2.15) and (2.16) hold we can also state the following defnition

Definition 4. Let t1 be any given length such that tm ≤ t1 ≤ tM , where
tm and tM are given by (2.15) and (2.16). Then heptagons

(2.17) P
(1)
7 (R1, d1, r1; t1), P

(2)
7 (R2, d2, r2; t1), P

(3)
7 (R3, d3, r3; t1)

will be called conjugate bicentric heptagons.
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Theorem 4. Conjugate bicentric heptagons have the same tangent
lengths only with different ordering, that is, if t1, . . . , t7 are tangent lengths
of the heptagon P

(1)
7 (R1, d1, r1; t1), u1, . . . , u7 are tangent lengths of the

heptagon P
(2)
7 (R2, d2, r2; t1) and v1, . . . , v7 are tangent lengths of the hep-

tagon P
(3)
7 (R3, d3, r3; t1), then

ui = t1+(i−1)2, vi = ti+(i−1)3, i = 1, 2, . . . , 7.

Proof. Using formula given by (1.15) and computer algebra it can be
established that above theorem holds good. ♦

Example 2.

R1 = 7, d1 = 2, r1 = 4.979113505 . . . ,

R2 = 4.518876699 . . . , d2 = 3.098115069 . . . , r2 = 1.345412540 . . . ,

R3 = 4.021788600 . . . , d3 = 3.481038261 . . . , r3 = 0.289796869 . . .

Since tm = 0.456539926 . . . , tM = 7.497228068 . . . , we can take,
say, t1 = 4. Using formula (1.15) it can be found that

t2 = 7.488438928 . . . , t3 = 4.334039372 . . . , t4 = 1.463009127 . . . ,

t5 = 0.554976771 . . . , t6 = 0.526981475 . . . , t7 = 1.336913675 . . .

ui = t1+(i−1)2, vi = t1+(i−1)3, i = 1, 2, . . . , 7.

Also can be found that

2
7
∑

i=1

arctan
ti

r1

=360◦, 2
7
∑

i=1

arctan
ui

r2

=2 ·360◦, 2
7
∑

i=1

arctan
vi

r3

=3 ·360◦.

Theorem 5. Let n = 9 and let F
(1)
9 (R1, d1, r1) = 0. Let

R2 =
R2

1 − d2
1

2r1
, d2 =

2R1d1r1

R2
1 − d2

1

,

r2
2 = −(R2

1 + d2
1 − r2

1) +

(

R2
1 − d2

1

2r1

)2

+

(

2R1d1r1

R2
1 − d2

1

)2

,

R4 =
R2

2 − d2
2

2r2
, d4 =

2R2d2r2

R2
2 − d2

2

,

r2
4 = −(R2

2 + d2
2 − r2

2) +

(

R2
2 − d2

2

2r2

)2

+

(

2R2d2r2

R2
2 − d2

2

)2

,

R1 =
R2

4 − d2
4

2r4
, d1 =

2R4d2r4

R2
4 − d2

4

,

r2
1 = −(R2

4 + d2
4 − r2

4) +

(

R2
4 − d2

4

2r4

)2

+

(

2R4d4r4

R2
4 − d2

4

)2

.
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Then F
(2)
9 (R2, d2, r2) = 0, F

(4)
9 = (R4, d4, r4) = 0.

The proof is complete analogous with the proof of Th. 3. Here
let us remark that there are no R3, d3, r3 since there is no 3-outscribed
bicentric 9-gon.

Corollary 5.1. Let R1, d1, r1, R2, d2, r2 and R4, d4, r4 be as in Th. 5.
Then

C
(1)
9 (R1, d1, r1)

ր C
(1)
18 (R11, d11, r11)

ց C
(8)
18 (R12, d12, r12), R12 = R4, d12 = d4, r12 = r4

C
(2)
9 (R2, d2, r2)

ր C
(2)
18 (R21, d21, r21), R21 = R1, d21 = d1, r21 = r1

ց C
(7)
18 (R22, d22, r22)

C
(3)
9 (R4, d4, r4)

ր C
(4)
18 (R41, d41, r41), R41 = R2, d41 = d2, r41 = r2

ց C
(5)
18 (R42, d42, r42).

The following conjecture is strongly suggested.

Conjecture 3. Let n > 9 be an odd integer. Then similarly holds as
in the cases when n = 5, 7, 9. Only ordering of outscription may be
varied and may be that one solution is not enough for obtaining all other
solutions as in the case when n = 5, 7, 9.

We have found that this conjecture is connected with one partition

of the set
{

1, 2, . . . ,
n − 1

2

}

, where n is an odd integer. About this and

connection with Fuss’ relations we have recently submitted for Comptes
Rendus Mathématique Acad. Sci. Paris, the following manuscript:

One way of establishing Fuss’ relations.
Conj. 1 in this article is a complement to the above stated Conj. 3.
The following part of the article deals with 2-parametric presenta-

tion of Fuss’ relations. First we prove the following theorem.

Theorem 6. Let Rv, dv, rv be given by (1.34) and (1.35) or by (1.36)
and (1.37). Let tM and tm be given by

(2.18) t2M = (R0 + d0)
2 − r2

0, t2m = (R0 − d0)
2 − r2

0
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where R0, d0, r0 are as in Th. A. Then

Rv =

√

Ru(Ru + ru +
√

(Ru + ru)2 − d2
u) =

1

2

(
√

r2
v + t2M +

√

r2
v + t2m

)

,

(2.19)

dv =

√

Ru(Ru + ru −
√

(Ru + ru)2 − d2
u) =

1

2

(
√

r2
v + t2M −

√

r2
v + t2m

)

,

(2.20)

where in the case when v = u1 we have

(2.21) r2
v = (Ru + ru)

2 − d2
u =

= r2
u +

√

(r2
u + t2M)(r2

u + t2m) + ru

(
√

r2
u + t2M +

√

r2
u + t2m

)

,

but in the case when v = u2 we have

(2.22) r2
v = (Ru − ru)

2 − d2
u =

= r2
u +

√

(r2
u + t2M)(r2

u + t2m) − ru

(
√

r2
u + t2M +

√

r2
u + t2m

)

.

Proof. That (2.19) and (2.20) are valid is clear from
√

r2
v + t2M =

√

r2
v + (Rv + dv)2 − r2

v =
√

(Rv + dv)2 = Rv + dv,
√

r2
v + t2m =

√

r2
v + (Rv − dv)2 − r2

v =
√

(Rv − dv)2 = Rv − dv,
(
√

r2
v + t2M +

√

r2
v + t2m

)

= (Rv + dv) + (Rv − dv) = 2Rv,

(
√

r2
v + t2M −

√

r2
v + t2m

)

= (Rv + dv) − (Rv − dv) = 2dv.

To prove that (2.21) is valid we can write

r2
v = (Ru + ru)

2 − d2
u = r2

u + R2
u − d2

u + 2Ruru,

from which, using relations

Ru =
1

2

(
√

r2
u + t2M +

√

r2
u + t2m

)

, du =
1

2

(
√

r2
u + t2M −

√

r2
u + t2m

)

,

we get (2.21).
In the same way can be proved that (2.22) is valid. ♦

Theorem 7. Let (R, d, r) be any given triple from R
3
+ such that

F4(R, d, r) = 0 and let tM and tm be given by

(2.23) t2M = (R + d)2 − r2, t2m = (R − d)2 − r2.
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Then
(2.24)

R=
1

2

(
√

r2+t2M+
√

r2+t2m

)

, d=
1

2

(
√

r2+t2M−
√

r2 + t2m

)

, r2 = tmtM .

Proof. From (2.23) it follows

(2.25)
R+d =

√

r2 + t2M , R − d =
√

r2 + t2m

R =
1

2

(
√

r2+t2M +
√

r2+t2m

)

, d=
1

2

(
√

r2+t2M−
√

r2 + t2m

)

.

Replacing R and d in Fuss’ relation for bicentric quadrilaterals

(2.26) (R2 − d2)2 − 2r2(R2 + d2) = 0

by expressions given by (2.25) we get the following equation in r2

(2.27) (r2 + t2m)(r2 + t2M) − r2(2r2 + t2m + t2M) = 0

whose positive root is only r2 = tM tm. ♦

Corollary 7.1. Let a and b be any given positive numbers such that
a ≥ b and let R and d be given by

(2.28) R =
1

2

(√
r2 + a2 +

√
r2 + b2

)

, d =
1

2

(√
r2 + a2 −

√
r2 + b2

)

.

Replacing R and d in Fuss’ relation (2.26) by expressions given by (2.28)
we get the following equation in r2

(r2 + a2)(r2 + b2) − r2(2r2 + a2 + b2) = 0

whose positive root is only r2 = ab.

From Th. 7 and its Cor. 7.1 can be concluded that the following
theorem holds good.

Theorem 8. 2-parametric presentation of Fuss’ relation (2.26) can be
written as

R =
1

2

(
√

r2 + t2M +
√

r2 + t2m

)

,

d =
1

2

(
√

r2 + t2M −
√

r2 + t2m

)

, r =
√

tmtM .

where tM and tm are parameters from R+ and tM ≥ tm.
Thus for every two positive numbers tM and tm, where tM ≥ tm, we

get one solution (R, d, r) of equation (2.26). This solution is completely
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determined by tM and tm. In other words, for every two lengths tM and
tm, where tM ≥ tm, there exist two circles, circumcircle and incircle,
such that tM is the length of the largest tangent that can be drawn from
circumcircle to incircle, and tm is the length of the least tangent that can
be drawn from circumcircle to incircle.

Before stating 2-parametric presentation for 1-outscribed bicentric
octagons and 3-outscribed bicentric octagons let us remark that Fuss’
relation for bicentric octagons can be written as PQ = 0, where

P = r2(p2 + q2) − p2q2 − 2pqr 4

√

(p2 − r2)(q2 − r2),

Q = r2(p2 + q2) − p2q2 + 2pqr 4

√

(p2 − r2)(q2 − r2)

and p = R+d, q = R−d. Putting P = 0 and Q = 0 we get Fuss’ relation
for 1-outscribed bicentric octagons and Fuss’ relation for 3-outscribed
bicentric octagons

2r2(R2 + d2) − (R2 − d2)2−(2.29)

− 2r(R2 − d2) 4

√

[(R + d)2 − r2][(R − d)2 − r2] = 0,

2r2(R2 + d2) − (R2 − d2)2+(2.30)

+ 2r(R2 − d2) 4

√

[(R + d)2 − r2][(R − d)2 − r2] = 0.

Theorem 9. 2-parametric presentation of Fuss’ relation for 1-outscribed
bicentric octagons is given by
(2.31)

R =
1

2

(
√

r2 + t2M +
√

r2 + t2m

)

, d =
1

2

(
√

r2 + t2M −
√

r2 + t2m

)

, r,

where

(2.32) r2 = r2
0 +

√

(r2
0 + t2M)(r2

0 + t2m) + r0

(
√

r2
0 + t2M +

√

r2
0 + t2m

)

,

r2
0 = tM tm and parameters tM and tm are from R+ such that tM ≥ tm.

Analogously holds for 3-outscribed bicentric octagons. In this case r2 is
given by

(2.33) r2 = r2
0 +

√

(r2
0 + t2M)(r2

0 + t2m) − r0

(
√

r2
0 + t2M +

√

r2
0 + t2m

)

.

Proof. Replacing R and d in relation (2.29) by their expressions given by
(2.31) and using computer algebra we get equation whose only positive
root is r2 given by (2.32).
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Here let us remark that r2 given by r2 = (R0 + r0)
2 − d2

0 can be, by
Th. 6, written as r2 given by (2.32).

In the same way can be proved that analogously holds for 3-out-
scribed bicentric octagons. In this case r2 given by (2.33) can be written
as r2 = (R0 − r0)

2 − d2
0. ♦

That this theorem holds good can be directly concluded from the
following theorem.

Theorem 10. Let R0, d0, r0 be as in Th. A and let R0, d0, r0 can be
expressed as

(2.34) R0 = f0(tM , tm), d0 = g0(tM , tm), r0 = h0(tM , tm)

where tM and tm are parameters from R+ and f0(tM , tm), g0(tM , tm),
h0(tM , tm) are corresponding expressions of tM and tm. Then Ru, du, ru

for every u = 1, 2, 11, 12, 21, 22, . . . , can be expressed as
Ru = fu(tM , tm), du = gu(tM , tm), ru = hu(tM , tm)

where fu(tM , tm), gu(tM , tm), hu(tM , tm) are corresponding expressions of
tM and tm.

Proof. It follows from Cor. A.3. Of course, Algorithm determined by
Th. A has important role. ♦

Thus, Th. 9 is in fact a corollary of Th. 8 and Th. 10.
For convenience in stating the following corollaries of Th. 8 and

Th. 10 we shall, in accordance with notation used in Th. A and its
corollaries, instead of notation r2 in (2.32) use notation r2

1 and instead
of notation r2 in (2.33) use notation r2

2. Also r2
0 = tM tm. Thus

r2
0 = tM tm(2.35)

r2
1 = r2

0 +
√

(r2
0 + t2M)(r2

0 + t2m) + r0

(
√

r2
0 + t2M +

√

r2
0 + t2m

)

,(2.36)

r2
2 = r2

0 +
√

(r2
0 + t2M)(r2

0 + t2m) − r0

(
√

r2
0 + t2M +

√

r2
0 + t2m

)

.(2.37)

The following two theorems are corollaries of Th. 8 and Th. 10.

Theorem 11. For 2-parametric presentation of Fuss’ relations for k-
outscribed bicentric 16-gons, k = 1, 7, 3, 5, we have the following relations

Ru =
1

2

(
√

r2
u + t2M +

√

r2
u + t2m

)

, du =
1

2

(
√

r2
u + t2M−

√

r2
u + t2m

)

, ru
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where u = 11, 12, 21, 22 and

r2
11 = r2

1 +
√

(r2
1 + t2M)(r2

1 + t2m) + r1

(
√

r2
1 + t2M +

√

r2
1 + t2m

)

,(2.38)

r2
12 = r2

1 +
√

(r2
1 + t2M)(r2

1 + t2m) − r1

(
√

r2
1 + t2M +

√

r2
1 + t2m

)

,(2.39)

r2
21 = r2

2 +
√

(r2
2 + t2M)(r2

2 + t2m) + r2

(
√

r2
2 + t2M +

√

r2
2 + t2m

)

,(2.40)

r2
22 = r2

2 +
√

(r2
2 + t2M)(r2

2 + t2m) − r2

(
√

r2
2 + t2M +

√

r2
2 + t2m

)

,(2.41)

r2
1 and r2

2 are given by (2.36) and (2.37). Parameters tM and tm are from
R+ and tM ≥ tm.

Relations r2
11, r

2
12, r

2
21, r

2
22 can be obtained, by Th. 6, starting from

relations
r2
11 = (R1 + r1)

2 − d2
1, r2

12 = (R1 − r1)
2 − d2

1,

r2
21 = (R2 + r2)

2 − d2
2, r2

22 = (R2 − r2)
2 − d2

2.

Theorem 12. For 2-parametric presentation of Fuss’ relations for k-
outscribed 32-gons, k = 1, 15, 7, 9, 3, 13, 5, 11, we have the following rela-
tions

Ru =
1

2

(
√

r2
u + t2M +

√

r2
u + t2m

)

, du =
1

2

(
√

r2
u + t2M−

√

r2
u + t2m

)

, ru

where u = 111, 112, 121, 122, 211, 212, 221, 222 and

r2
111 = r2

11 +
√

(r2
11 + t2M)(r2

11 + t2m) + r11

(
√

r2
11 + t2M +

√

r2
11 + t2m

)

,

r2
112 = r2

11 +
√

(r2
11 + t2M)(r2

11 + t2m) − r11

(
√

r2
11 + t2M +

√

r2
11 + t2m

)

,

r2
121 = r2

12 +
√

(r2
12 + t2M)(r2

12 + t2m) + r12

(
√

r2
12 + t2M +

√

r2
12 + t2m

)

,

r2
122 = r2

12 +
√

(r2
12 + t2M)(r2

12 + t2m) − r12

(
√

r2
12 + t2M +

√

r2
12 + t2m

)

,

r2
211 = r2

21 +
√

(r2
21 + t2M)(r2

21 + t2m) + r21

(
√

r2
21 + t2M +

√

r2
21 + t2m

)

,

r2
212 = r2

21 +
√

(r2
21 + t2M)(r2

21 + t2m) − r21

(
√

r2
21 + t2M +

√

r2
21 + t2m

)

,

r2
221 = r2

22 +
√

(r2
22 + t2M)(r2

22 + t2m) + r22

(
√

r2
22 + t2M +

√

r2
22 + t2m

)

,

r2
222 = r2

22 +
√

(r2
22 + t2M)(r2

22 + t2m) − r22

(
√

r2
22 + t2M +

√

r2
22 + t2m

)

,

r2
11, r

2
12, r

2
21, r

2
22 are given by (2.38)–(2.41) and parameters tM and tm are

from R+ and tM ≥ tm.
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In the following theorem we start from n = 3.

Theorem 13. Let instead letters R, d, r in Euler’s relation (1.2) be
written R0, d0, r0, that is, let Euler’s relation for triangles be written as

(2.42) R2
0 − d2

0 − 2r0R0 = 0.

Then its 2-parametric presentation can be written as
(2.43)

R0 =
1

2

(
√

r2
0 + t2M +

√

r2
0 + t2m

)

, d0 =
1

2

(
√

r2
0 + t2M −

√

r2
0 + t2m

)

, r0

where tM and tm are parameters from R+ such that tM ≥ tm and r2
0 is

given by

(2.44) r2
0 = −1

3
(t2m + t2M) +

1

2

√

−4

3
t2mt2M +

4

9
(t2m + t2M )2 +

2

3
λ +

+
1

2

√

√

√

√−8

3
t2mt2M +

8

9
(t2m + t2M)2− 2

3
λ +

32
3
t2mt2M(t2m + t2M) − 64

27
(t2m + t2M)3

4
√

−4
3
t2mt2M + 4

9
(t2m + t2M )2 + 2

3
λ

where λ = 3

√

−2t4mt4M(t2m − t2M)2.

Proof. Replacing R0 and d0 in relation (2.42) with their expressions
given by (2.43) we get equation in r2

0 which can be written as

3r8
0 + 4r6

0(t
2
M + t2m) + 6r4

0t
2
M t2m − t4M t4m = 0.

It is not difficult to see that this equation has only one positive root and
that it is r2

0 given by (2.44). ♦

The following three theorems are corollaries of Th. 10 and Th. 13.

Theorem 14. Let, for convenience in the following theorems, instead of
R, d, r in Fuss’ relation (1.1c) for bicentric hexagons be written R1, d1, r1.
Then its 2-parametric presentation can be written as
(2.45)

R1 =
1

2

(
√

r2
1 + t2M +

√

r2
1 + t2m

)

, d1 =
1

2

(
√

r2
1 + t2M−

√

r2
1 + t2m

)

, r1

where

(2.46) r2
1 = r2

0 +
√

(r2
0 + t2M)(r2

0 + t2m) + r0

(
√

r2
0 + t2M +

√

r2
0 + t2m

)

and r2
0 is given by (2.44).
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Theorem 15. For 2-parametric presentation of Fuss’ relations for k-
outscribed bicentric 12-gons, k = 1, 5, we have the following relations

Ru =
1

2

(
√

r2
u + t2M +

√

r2
u + t2m

)

, du =
1

2

(
√

r2
u + t2M−

√

r2
u + t2m

)

, ru

where u = 11, 12 and

r2
11 = r2

1 +
√

(r2
1 + t2M)(r2

1 + t2m) + r1

(
√

r2
1 + t2M +

√

r2
1 + t2m

)

,(2.47)

r2
12 = r2

1 +
√

(r2
1 + t2M)(r2

1 + t2m) − r1

(
√

r2
1 + t2M +

√

r2
1 + t2m

)

,(2.48)

r2
1 is given by (2.46).

Theorem 16. For 2-parametric presentation of Fuss’ relations for k-
outscribed bicentric 24-gons, k = 1, 11, 5, 7, we have the following rela-
tions

Ru =
1

2

(
√

r2
u+t2M +

√

r2
u+t2m

)

, du =
1

2

(
√

r2
u+t2M−

√

r2
u+t2m

)

, ru

where u = 111, 112, 121, 122 and

r2
111 = r2

11 +
√

(r2
11 + t2M)(r2

11 + t2m) + r11

(
√

r2
11 + t2M +

√

r2
11 + t2m

)

,

r2
112 = r2

11 +
√

(r2
11 + t2M)(r2

11 + t2m) − r11

(
√

r2
11 + t2M +

√

r2
11 + t2m

)

,

r2
121 = r2

12 +
√

(r2
12 + t2M)(r2

12 + t2m) + r12

(
√

r2
12 + t2M +

√

r2
12 + t2m

)

,

r2
122 = r2

12 +
√

(r2
12 + t2M)(r2

12 + t2m) − r12

(
√

r2
12 + t2M +

√

r2
12 + t2m

)

,

r2
11, r

2
12 are given by (2.47) and (2.48).

From the above given theorems concerning bicentric polygons it can
be concluded that the following very interesting theorem holds good.

Theorem 17. Let r2
u, where u ∈ {0, 1, 2, 11, 12, 21, 22, . . .}, be written

as in Th. 10, that is

r2
u = hu(tM , tm).

Then this relation becomes corresponding Fuss’ relation if tM and tm are
replaced, respectively, by

(Ru + du)
2 − r2

u, (Ru − du)
2 − r2

u.

So, for example, starting from r2
0 = tM tm we can write

r4
0 − t2M t2m = r4

0 − [(R0 + d0)
2 − r2

0][(R0 − d0)
2 − r2

0] =

= (R2
0 − d2

0) − 2r2
0(R

2
0 + d2

0) = 0.
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Thus, we get Fuss’ relation for bicentric quadrilaterals only instead of
letters R, d, r we have symbols R0, d0, r0.

Starting from relation (2.36) we get Fuss’ relation for 1-outscribed
bicentric octagon. And so on.

Such way of obtaining Fuss’ relations may be sometimes more con-
venient than that when Cor. A.4 is used. (See Conj. 2.)

In the end we state the following conjecture.

Conjecture 4. 2-parametric presentations of Fuss’ relations for n ≥ 5
can be obtained in analogous way as those obtained starting from n = 4
and n = 3.

Acknowledgement. The author wishes to express his gratitude to the
referee for useful remarks.
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[3] PONCELET, J. V.: Traité des propriétés des figures, t. I, Paris, 1865, first ed.
in 1822.
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[5] RADIĆ, M.: Certain relations obtained with three positive real numbers and their
connection with bicentric polygons, Comptes Rendus Mathématique (to appear).


