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Abstract: A function M defined on a semigroup (group, Banach space etc.)
and taking values in an Abelian group is called monomial of order (at most) n
whenever

Ay M (z) = nlM(y).
We consider the functional inequality
[n!F(y) — AyF ()] < ®(x,y),

and we look for conditions ensuring the existence of a nonnegative constant c
such that

1 n
1 (@) < =@z, 2) + cfz]".

1. Introduction

Given functions F' and f satisfying the inequality
|1F(z+y) = Fz) = Fy)ll < fx) + fly) = flz+y)
(resp.
|F (zty)+F(z—y)=2F (2)-2F (y)|| < 2f (2)+2f (y) = f(z+y) = f(z—y)),
R. Ger was looking in [6] for conditions implying the existence of a con-

stant ¢ such that
1F(2)|| < fz)+cllz|| (resp. [[F(x)l| < f(x)+c|z]?).
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Under the assumption that the functions F' and f fulfill the in-

equality
[n!F(y) = AyF(@)]| < nlf(y) — Ayf (),
we were looking in [3] and [4] for conditions ensuring the existence of a
nonnegative constant ¢ such that
[F ()|l < f(z) + cl|z]|™.
Now we deal with the following functional inequality
[n!F(y) = AyF(z)]] < ®(z,y).

We will look for conditions implying the existence of a constant ¢ such
that

1 n
IF (@)l < —®(z, z) + clj]".

2. Difference operator and monomial functions

Definition 1. Let (S,+) be a semigroup, and let (G, +) stand for an
Abelian group. Let f: S — G and y € S be fixed. Then a difference
operator A, is defined by the formula

Nyf(z) = f(x+y) — f(z) for all z € S.
Let further yi,...,y, € S be given. Then A, , is defined by
Dy @) =Dy 0000, f(z)
for all x € S.

In the case when y; = ... = y, = y, we will use the symbol A7 f(z)
instead of A, _,f(z).

We will apply the following, well-known lemmas (see e.g. M. Kuczma
[7] or L. Székelyhidi [9].
Lemma 1. Let (S,+) and (G, +) be Abelian groups, and let f : S — G

be a function. For everyn € N and for every x,vy,,...,Yy, € S we have
1
Dyoguf @)= > (=17 EFFon) fla by 4 20y,
€1ye,En=0

In particular,

Ay f(r) = Z(—l)”‘j (?)f(x + jy) forall z,y € S.
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Lemma 2. Let (S, +) and (G, +) be Abelian groups. Let F : S* — G be
a symmetric k-additive function, and let f : S — G be the diagonaliza-
tion of F, i.e. f(x)=F(x,...,z) for allxz € S. For everyn € N, n >k,

and for every x,yi,...,y, € S we have
| K F(y1,... k), ifn=F,
B f (@) = { 0, if n > k.

Lemma 3. Let (S,4) be an Abelian semigroup, and let (G,+) be an
Abelian group uniquely divisible by n!. Then, for any monomial function
f 8 — G of order n, there exists exactly one n-additive and symmetric
function F : S™ — G such that f coincides with the diagonalization
of F.
Lemma 4. Let (X, ||-||) be a real normed linear space. Let F': X" — R
be a symmetric n-additive function, and let f : X — R be the diagonal-
ization of F. If the function f is continuous on X, then so is the function
F on X™.
We will also need the following lemma (see e.g. I. W. Sandberg [8],

R. Ger [6] or W. W. Breckner, T. Trif [2]):
Lemma 5. Let (X,| - ||) be a Banach space, and let (Y,| -|) be a
normed linear space. Let further {®, : a« € T} be a nonempty family
of n-linear symmetric and continuous operators from X™ into Y. If, for
every (x1,...,x,) € X", the set {®u(z1,...,2,) : a € T} is bounded in
Y, then

sup || @, < oo.

aeT

3. Monomial selections of set-valued maps

If S is a nonempty set, then by B(S,R) we denote the real linear
space of all bounded real-valued functions defined on S, equipped with
the uniform norm.

Definition 2. A mapping M : B(S,R) — R is called a mean provided
that it has the following properties:

(i) M is linear ;

(i) inf f(S) < M(f) <sup f(S) for all f € B(S,R).

Definition 3. Let (S, +) be a semigroup. Consider a map f: S — R
and fix arbitrarily a t € S. The function f; : S — R, given by the
formula
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fi(x):= f(z+1t) forall x €S,
is called the right translate of f.
Definition 4. The semigroup (S, +) is called right amenable if there
exists a mean M on B(S,R) which is invariant with respect to the right
translations, i.e., if

M(f) = M(f) forall fe B(S,R) and all t € S.

The notions of left invariant mean and left amenability can be de-
fined analogously. If both left and right invariant mean exist, then S is
called amenable.

Remark 1. Any Abelian group is amenable.
Remark 2. Let M : B(S,R) — R be a mean. Then
IMOT<IMIL-IAT = ILFIF for all f e B(S,R).

R. Badora, Z. Pales and L. Székelyhidi have proved the theorem
about monomial selections of multifunctions (see Th. 3 in [1]). In the
case when S is an Abelian group, X = R and n = 1, this theorem may
be stated as follows
Theorem 1. Let (S, +) be an Abelian group. Let ¥ : S — 2% be a map
with values being compact intervals. Assume that there exists a function

f 8 — R such that
1
o AY f(x) e ¥(t) forall xz,teS.

Then there exists a monomial function F : S — R of order n such that

F(x) € U(z) for allx € S.

Remark 3. The function F' in Th. I is given by the formula
F(t)=M(y) forall teS,

where 1), : S — R is defined by

() = % A} f(x) forall ze€ S,

and M : B(S,R) — R is an invariant mean.

4. Results

In the proof of our first theorem we shall be using the following
version of Taylor’s formula (see e.g. J. Dieudonné [5]).
Theorem II. Let (X, || -||) and (Y,]|| -||) be real Banach spaces. Further
let F': X —'Y be an n-times continuously differentiable function, and
let xg € X. Then, for every x € X, we have
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Flr) = Z kidkF(xo)(x ~ 20) + Rla),
where

R(x) = /0 %d"}?(% +&(x — z0))(z — ) dE.

Moreover, if there exists a constant o such that
|d"F(z)|| <a forall zeX,
then
IR(z)| < %Hx —ao|" forall z€X.

In the above-mentioned theorem D*F(z) denotes the k-th Fréchet
differential of the function F at a point x. Clearly, D¥F(z) is a k-
additive and symmetric mapping. The monomial generated by D*F(z)
is denoted by d*F(x). The integral occuring here is understood in the
sense of Bochner.

Theorem 1. Let (X, |- ||) and (Y, |- ||) be real Banach spaces. Further,
let F: X — Y be an n-times continuously differentiable function, and
let ® : X2 — R be a function such that the inequality

(1) [ntF(y) = AgF ()] < @(z,y)

holds for all x,y € X. If the function X > x — |d"F(z)| is bounded,
then there exists a nonnegative constant ¢ such that

1
|F(2)| <cf|z]|™ + ﬁq)(x,x) for all z e X.

Proof. By virtue of Th IT applied for o = 0 we obtain
Zkldk )+ R(z) forall ze€ X,

with

Rz) = /0 %d”F(&:)(z)df.

Fix arbitrarily z,y € X. By Lemma 2, we infer that
(2) AJF(z) = AJR(x).

Now Lemma 1 and the subadditivity of the norm imply the inequal-
ity
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3 185 @l < Y- ()16 + k)l

k=0

Then, by (1), (2) and (3), we deduce that
[ E(y)l| < @(z,y) + || Ay F(2)]| = @(2,y) + | Ay R(x)]| <

Dy +Z( )G + )l

In particular, for x = y, one obtains

(4) Hn!F()|<<I>x:c+Z()||R (k+1)z)|.

Since the function X 3 z — ||d"F(z)|| is bounded, there exists a
constant o such that

(5) |d"F(z)|| <a forall zeX.
Hence, by (4), (5) and Th. II we obtain

|In'F(z)]| < ®(z,z +Z( )—a|| k+1)z||" forall ze X.

Put
O (k+1)"

Then we have )
[F ()| < =®(x, @) +c[[z]|" forall zeX,
n!

which completes the proof. ¢
Remark 4. Under the assumptions of Th. 1, we may show that also the
following inequality is true:

1
|F(2)| < ECI)(O,x) + Cllz||* for all z e X,
where

_ax~ ()
C‘E;k!(n—k)l

In fact, it suffices to take x = 0 and y = x in the inequality

IR F(y)|| < ®(z,y) +Z( )||Rx+k:y)]|
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In the case when function ® depends only upon the second vari-
able, our assumption about the space Y as well as the assumption upon
the function F' may considerably be weakened. Namely, the following
theorem holds true.

Theorem 2. Let (X, || - ||) be a real Banach space, and let (Y, -]|) be
a real normed linear space. Let F': X — Y be a continuous function,
and let ¢ : X — R be a function such that inequality

(6) [ntF(y) = Ay F()]] < o(y)

holds for all x,y € X. Then there exists a nonnegative constant ¢ such
that

1
| F(x)|| < mgp(:ﬂ) +cllz||™ for all z € X.

Proof. For each y* € Y* with ||y*|| = 1 and for all z,y € X we have

(7) —p(y) <nly* o F(y) — Ajy" o F(x) < p(y).

Fix arbitrarily a y* € Y* with ||y*|| = 1 and define the functions
Hy: X — R and ¥« : X — 2% by the formulas
Hy(x):=—y"oF(z) forall zeX
and

1 1
Wy (@) i= | —=x(e) =y 0 F(a), —plw) —y" o Flx)| forall w€ X,

respectively. Clearly, the values of the function W,- are compact intervals.
By (7) and by the definition of the function ¥, we obtain

1 n
a Ay Hy* (ZII’) S \I]y* (y)

for all y* € Y* with ||y*|| =1 and for all z,y € X.
By virtue of Th. I, for every y* € Y* with ||y*|| = 1 there exists a
monomial function M« : X — R of order n such that
My (z) € ¥y (x) forall ze X.
Hence we obtain

(8) V(@) + My ()] < () forall e X,

for all y* € Y* with [|y*|| = 1, and, consequently,

(9) My ()] < Iy (F()| + —p(a) < [ F(@)]] + p(a) for all & € X.
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Moreover, in view of Rem. 3, My (t) = M(¢,~) for all t € X,
where M : B(X,R) — R is an invariant mean, and for every ¢t € X we
have

1
wt,y* (,’L’) = E Ag Hy* (,’L’), T € X,

and
Hy*
Let y* € Y* with ||y*|| = 1 be fixed. We will show that the function
M, is continuous. Fix arbitrarily a ¢, € X. Then, for any ¢t € X, one

obtains

(r) = —y" o F(r) whenever z € X.

‘My* (t) - My* (to)‘ = ‘M(wtvy*) - M(@Dto,y*)} = }M(@Dt,y* - wtovy*) <
< ||M|| ' H@Dt,y* - ¢to7y* < H@Dt,y* - ¢to7y*
= Sup‘wt,y* (l’) - ¢t0,y* (l’)‘
zeX
For all t € X and all x € X we have
‘wt,y* (l’) - ¢t0,y* (l’)‘ =
1 1
= nl AW Hy*(x) - AZ) Hy*(f) =
1] ¢ —i (T : - n—i T -
= Z(—l)” (i)Hy*(x—i-zt) - (-1 (Z,)Hy*(:chzto) <
i=0 i=0
1 = /n . )
S ﬁ (Z)‘Hy*(l"l‘zt)—Hy*(l"l‘zto)}
i=1

Fix arbitrarily an € > 0. By the continuity of function H,-, there exists
for each ¢ € {1,...,n} a §; > 0 such that for all z,¢ € X one has

|(z +it) = (z +ito) || < 6 = |Hy(x +it) — Hye (x + itg)| < ﬁ

Let § :=min{% :i € {1,...,n}}. Then

1 n
o 0) = b @] < 2 3 () 4 i0) = 4 it0)] <
Ti=1

1« /n € €
< = -
for all x € X and all t € X such that ||t — ¢|| < 0.
Hence we deduce that

| My (t) — My (to)| < iggwt,y*(x) — iy ()] <

° <
— <c
2n!
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for all t € X such that ||t — ¢y|| < 6. Therefore, the function M, is
continuous, as claimed.

Since My~ is a monomial function of order n, by Lemma 3, there
exists an n-additive symmetric function M,. : X™ — R such that

My (x) = My (z,...,z) forall z€X.

In view of the continuity of M., it follows by virtue of Lemma 4 that
My* is continuous. Therefore, My* is n-linear.

Now we will show that the set

{My*(xl, o xy) syt eY Y| = 1}

is bounded for all (xy,...,x,) € X™. Let (z1,...,2,) € X" and y* € Y*
with ||y*|| = 1 be fixed. Then, by Lemma 2 and (9), we have

_ 1
‘My* (Il, e ,$n)} - 'g A$17..-7xn My* (0)‘ =
1 1
= | Z (—1) =@t e M (o2 + .+ ey | <
€1,.-,6n=0
1 1
Sﬁ Z ‘My*(éll’l—i‘---"i‘gnxn)‘ S
€15000,6n=0
1 < 1
<= Y (||F(81:C1 ot el + el +5nf’5n>)’
€1,000,6n=0

Since the family {M,- : y* € Y™, |ly*|| = 1} satisfies the assumptions of
Lemma 5, there exists a nonnegative constant ¢ such that

sup ||M,| <ec.
lly*[I=1

Hence, by (8), one obtains

. 1 — 1
v 0 F(o)| < My ()] + () = (W2, 2)] + (o) <

< HMy

Nl + (@) < cllall” + ()

for all z € X and all y* € Y* with ||y*|| = 1. Consequently, for all x € X,
the inequality

.1
1F' @) < ellzl" + ()
is satisfied, which completes the proof. ¢
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