Mathematica Pannonica

20/2 (2009), 209-218

MONOMIAL DIFFERENCES MAJORIZED BY GIVEN FUNCTIONS

Dorota Budzik

Institute of Matematics and Computer Science, Jan Dtugosz Academy of Czȩstochowa, Armii Krajowej 13/15, 42-201 Czȩstochowa, Poland

Received: May 2007, final revision June 2009
MSC 2000: 39 B 62, 39 B 82
Keywords: Stability, monomial function, selections of multifunctions.
Abstract: A function M defined on a semigroup (group, Banach space etc.) and taking values in an Abelian group is called monomial of order (at most) n whenever

$$
\triangle_{y}^{n} M(x)=n!M(y)
$$

We consider the functional inequality

$$
\left\|n!F(y)-\triangle_{y}^{n} F(x)\right\| \leq \Phi(x, y)
$$

and we look for conditions ensuring the existence of a nonnegative constant c such that

$$
\|F(x)\| \leq \frac{1}{n!} \Phi(x, x)+c\|x\|^{n}
$$

1. Introduction

Given functions F and f satisfying the inequality

$$
\|F(x+y)-F(x)-F(y)\| \leq f(x)+f(y)-f(x+y)
$$

(resp.
$\|F(x+y)+F(x-y)-2 F(x)-2 F(y)\| \leq 2 f(x)+2 f(y)-f(x+y)-f(x-y))$,
R . Ger was looking in [6] for conditions implying the existence of a constant c such that

$$
\left.\|F(x)\| \leq f(x)+c\|x\| \quad \text { (resp. } \quad\|F(x)\| \leq f(x)+c\|x\|^{2}\right)
$$

Under the assumption that the functions F and f fulfill the inequality

$$
\left\|n!F(y)-\triangle_{y}^{n} F(x)\right\| \leq n!f(y)-\triangle_{y}^{n} f(x)
$$

we were looking in [3] and [4] for conditions ensuring the existence of a nonnegative constant c such that

$$
\|F(x)\| \leq f(x)+c\|x\|^{n}
$$

Now we deal with the following functional inequality

$$
\left\|n!F(y)-\triangle_{y}^{n} F(x)\right\| \leq \Phi(x, y)
$$

We will look for conditions implying the existence of a constant c such that

$$
\|F(x)\| \leq \frac{1}{n!} \Phi(x, x)+c\|x\|^{n} .
$$

2. Difference operator and monomial functions

Definition 1. Let $(S,+)$ be a semigroup, and let $(G,+)$ stand for an Abelian group. Let $f: S \longrightarrow G$ and $y \in S$ be fixed. Then a difference operator \triangle_{y} is defined by the formula

$$
\triangle_{y} f(x)=f(x+y)-f(x) \text { for all } x \in S
$$

Let further $y_{1}, \ldots, y_{n} \in S$ be given. Then $\triangle_{y_{1}, \ldots, y_{n}}$ is defined by

$$
\triangle_{y_{1}, \ldots, y_{n}} f(x)=\triangle_{y_{1}} \circ \ldots \circ \triangle_{y_{n}} f(x)
$$

for all $x \in S$.
In the case when $y_{1}=\ldots=y_{n}=y$, we will use the symbol $\triangle_{y}^{n} f(x)$ instead of $\triangle_{y, \ldots, y} f(x)$.

We will apply the following, well-known lemmas (see e.g. M. Kuczma [7] or L. Székelyhidi [9].
Lemma 1. Let $(S,+)$ and $(G,+)$ be Abelian groups, and let $f: S \longrightarrow G$ be a function. For every $n \in \mathbb{N}$ and for every $x, y_{1}, \ldots, y_{n} \in S$ we have

$$
\triangle_{y_{1}, \ldots, y_{n}} f(x)=\sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}=0}^{1}(-1)^{n-\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)} f\left(x+\varepsilon_{1} y_{1}+\ldots+\varepsilon_{n} y_{n}\right)
$$

In particular,

$$
\triangle_{y}^{n} f(x)=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} f(x+j y) \text { for all } x, y \in S
$$

Lemma 2. Let $(S,+)$ and $(G,+)$ be Abelian groups. Let $F: S^{k} \longrightarrow G$ be a symmetric k-additive function, and let $f: S \longrightarrow G$ be the diagonalization of F, i.e. $f(x)=F(x, \ldots, x)$ for all $x \in S$. For every $n \in \mathbb{N}, n \geq k$, and for every $x, y_{1}, \ldots, y_{n} \in S$ we have

$$
\triangle_{y_{1}, \ldots, y_{n}} f(x)= \begin{cases}k!F\left(y_{1}, \ldots, y_{k}\right), & \text { if } n=k \\ 0, & \text { if } n>k\end{cases}
$$

Lemma 3. Let $(S,+)$ be an Abelian semigroup, and let $(G,+)$ be an Abelian group uniquely divisible by n !. Then, for any monomial function $f: S \longrightarrow G$ of order n, there exists exactly one n-additive and symmetric function $F: S^{n} \longrightarrow G$ such that f coincides with the diagonalization of F.
Lemma 4. Let $(X,\|\cdot\|)$ be a real normed linear space. Let $F: X^{n} \longrightarrow \mathbb{R}$ be a symmetric n-additive function, and let $f: X \longrightarrow \mathbb{R}$ be the diagonalization of F. If the function f is continuous on X, then so is the function F on X^{n}.

We will also need the following lemma (see e.g. I. W. Sandberg [8], R. Ger [6] or W. W. Breckner, T. Trif [2]):

Lemma 5. Let $(X,\|\cdot\|)$ be a Banach space, and let $(Y,\|\cdot\|)$ be a normed linear space. Let further $\left\{\Phi_{\alpha}: \alpha \in T\right\}$ be a nonempty family of n-linear symmetric and continuous operators from X^{n} into Y. If, for every $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$, the set $\left\{\Phi_{\alpha}\left(x_{1}, \ldots, x_{n}\right): \alpha \in T\right\}$ is bounded in Y, then

$$
\sup _{\alpha \in T}\left\|\Phi_{\alpha}\right\|<\infty
$$

3. Monomial selections of set-valued maps

If S is a nonempty set, then by $\mathcal{B}(S, \mathbb{R})$ we denote the real linear space of all bounded real-valued functions defined on S, equipped with the uniform norm.
Definition 2. A mapping $\mathcal{M}: \mathcal{B}(S, \mathbb{R}) \longrightarrow \mathbb{R}$ is called a mean provided that it has the following properties:
(i) \mathcal{M} is linear ;
(ii) $\inf f(S) \leq \mathcal{M}(f) \leq \sup f(S)$ for all $f \in \mathcal{B}(S, \mathbb{R})$.

Definition 3. Let $(S,+)$ be a semigroup. Consider a map $f: S \longrightarrow \mathbb{R}$ and fix arbitrarily a $t \in S$. The function $f_{t}: S \longrightarrow \mathbb{R}$, given by the formula

$$
f_{t}(x):=f(x+t) \text { for all } x \in S
$$

is called the right translate of f.
Definition 4. The semigroup $(S,+)$ is called right amenable if there exists a mean \mathcal{M} on $\mathcal{B}(S, \mathbb{R})$ which is invariant with respect to the right translations, i.e., if

$$
\mathcal{M}\left(f_{t}\right)=\mathcal{M}(f) \text { for all } f \in \mathcal{B}(S, \mathbb{R}) \text { and all } t \in S
$$

The notions of left invariant mean and left amenability can be defined analogously. If both left and right invariant mean exist, then S is called amenable.
Remark 1. Any Abelian group is amenable.
Remark 2. Let $\mathcal{M}: \mathcal{B}(S, \mathbb{R}) \longrightarrow \mathbb{R}$ be a mean. Then

$$
|\mathcal{M}(f)| \leq\|\mathcal{M}\| \cdot\|f\|=\|f\| \text { for all } f \in \mathcal{B}(\mathcal{S}, \mathbb{R})
$$

R. Badora, Z. Páles and L. Székelyhidi have proved the theorem about monomial selections of multifunctions (see Th. 3 in [1]). In the case when S is an Abelian group, $X=\mathbb{R}$ and $n=1$, this theorem may be stated as follows
Theorem I. Let $(S,+)$ be an Abelian group. Let $\Psi: S \longrightarrow 2^{\mathbb{R}}$ be a map with values being compact intervals. Assume that there exists a function $f: S \longrightarrow \mathbb{R}$ such that

$$
\frac{1}{n!} \triangle_{t}^{n} f(x) \in \Psi(t) \quad \text { for all } x, t \in S
$$

Then there exists a monomial function $F: S \longrightarrow \mathbb{R}$ of order n such that $F(x) \in \Psi(x)$ for all $x \in S$.
Remark 3. The function F in Th. I is given by the formula

$$
F(t)=\mathcal{M}\left(\psi_{t}\right) \quad \text { for all } \quad t \in S,
$$

where $\psi_{t}: S \longrightarrow \mathbb{R}$ is defined by

$$
\psi_{t}(x):=\frac{1}{n!} \triangle_{t}^{n} f(x) \quad \text { for all } \quad x \in S
$$

and $\mathcal{M}: \mathcal{B}(S, \mathbb{R}) \longrightarrow \mathbb{R}$ is an invariant mean.

4. Results

In the proof of our first theorem we shall be using the following version of Taylor's formula (see e.g. J. Dieudonné [5]).
Theorem II. Let $(X,\|\cdot\|)$ and $(Y,\|\cdot\|)$ be real Banach spaces. Further let $F: X \longrightarrow Y$ be an n-times continuously differentiable function, and let $x_{0} \in X$. Then, for every $x \in X$, we have

$$
F(x)=\sum_{k=0}^{n-1} \frac{1}{k!} d^{k} F\left(x_{0}\right)\left(x-x_{0}\right)+R(x)
$$

where

$$
R(x)=\int_{0}^{1} \frac{(1-\xi)^{n-1}}{(n-1)!} d^{n} F\left(x_{0}+\xi\left(x-x_{0}\right)\right)\left(x-x_{0}\right) d \xi
$$

Moreover, if there exists a constant α such that

$$
\left\|d^{n} F(x)\right\| \leq \alpha \quad \text { for all } \quad x \in X
$$

then

$$
\|R(x)\| \leq \frac{\alpha}{n!}\left\|x-x_{0}\right\|^{n} \quad \text { for all } \quad x \in X
$$

In the above-mentioned theorem $D^{k} F(x)$ denotes the k-th Fréchet differential of the function F at a point x. Clearly, $D^{k} F(x)$ is a k additive and symmetric mapping. The monomial generated by $D^{k} F(x)$ is denoted by $d^{k} F(x)$. The integral occuring here is understood in the sense of Bochner.
Theorem 1. Let $(X,\|\cdot\|)$ and $(Y,\|\cdot\|)$ be real Banach spaces. Further, let $F: X \rightarrow Y$ be an n-times continuously differentiable function, and let $\Phi: X^{2} \longrightarrow \mathbb{R}$ be a function such that the inequality

$$
\begin{equation*}
\left\|n!F(y)-\triangle_{y}^{n} F(x)\right\| \leq \Phi(x, y) \tag{1}
\end{equation*}
$$

holds for all $x, y \in X$. If the function $X \ni x \longrightarrow\left\|d^{n} F(x)\right\|$ is bounded, then there exists a nonnegative constant c such that

$$
\|F(x)\| \leq c\|x\|^{n}+\frac{1}{n!} \Phi(x, x) \quad \text { for all } \quad x \in X
$$

Proof. By virtue of Th. II applied for $x_{0}=0$ we obtain

$$
F(x)=\sum_{k=0}^{n-1} \frac{1}{k!} d^{k} F(0)(x)+R(x) \quad \text { for all } \quad x \in X
$$

with

$$
R(x)=\int_{0}^{1} \frac{(1-\xi)^{n-1}}{(n-1)!} d^{n} F(\xi x)(x) d \xi
$$

Fix arbitrarily $x, y \in X$. By Lemma 2, we infer that

$$
\begin{equation*}
\triangle_{y}^{n} F(x)=\triangle_{y}^{n} R(x) \tag{2}
\end{equation*}
$$

Now Lemma 1 and the subadditivity of the norm imply the inequality

$$
\begin{equation*}
\left\|\triangle_{y}^{n} R(x)\right\| \leq \sum_{k=0}^{n}\binom{n}{k}\|R(x+k y)\| \tag{3}
\end{equation*}
$$

Then, by (1), (2) and (3), we deduce that

$$
\begin{aligned}
\|n!F(y)\| & \leq \Phi(x, y)+\left\|\triangle_{y}^{n} F(x)\right\|=\Phi(x, y)+\left\|\triangle_{y}^{n} R(x)\right\| \leq \\
& \leq \Phi(x, y)+\sum_{k=0}^{n}\binom{n}{k}\|R(x+k y)\| .
\end{aligned}
$$

In particular, for $x=y$, one obtains

$$
\begin{equation*}
\|n!F(x)\| \leq \Phi(x, x)+\sum_{k=0}^{n}\binom{n}{k}\|R((k+1) x)\| \tag{4}
\end{equation*}
$$

Since the function $X \ni x \longrightarrow\left\|d^{n} F(x)\right\|$ is bounded, there exists a constant α such that

$$
\begin{equation*}
\left\|d^{n} F(x)\right\| \leq \alpha \quad \text { for all } \quad x \in X \tag{5}
\end{equation*}
$$

Hence, by (4), (5) and Th. II we obtain

$$
\|n!F(x)\| \leq \Phi(x, x)+\sum_{k=0}^{n}\binom{n}{k} \frac{1}{n!} \alpha\|(k+1) x\|^{n} \quad \text { for all } \quad x \in X
$$

Put

$$
c:=\frac{\alpha}{n!} \sum_{k=0}^{n} \frac{(k+1)^{n}}{k!(n-k)!} .
$$

Then we have

$$
\|F(x)\| \leq \frac{1}{n!} \Phi(x, x)+c\|x\|^{n} \quad \text { for all } \quad x \in X
$$

which completes the proof. \diamond
Remark 4. Under the assumptions of Th. 1, we may show that also the following inequality is true:

$$
\|F(x)\| \leq \frac{1}{n!} \Phi(0, x)+C\|x\|^{n} \quad \text { for all } \quad x \in X
$$

where

$$
C=\frac{\alpha}{n!} \sum_{k=0}^{n} \frac{(k)^{n}}{k!(n-k)!}
$$

In fact, it suffices to take $x=0$ and $y=x$ in the inequality

$$
\|n!F(y)\| \leq \Phi(x, y)+\sum_{k=0}^{n}\binom{n}{k}\|R(x+k y)\|
$$

In the case when function Φ depends only upon the second variable, our assumption about the space Y as well as the assumption upon the function F may considerably be weakened. Namely, the following theorem holds true.
Theorem 2. Let $(X,\|\cdot\|)$ be a real Banach space, and let $(Y,\|\cdot\|)$ be a real normed linear space. Let $F: X \longrightarrow Y$ be a continuous function, and let $\varphi: X \longrightarrow \mathbb{R}$ be a function such that inequality

$$
\begin{equation*}
\left\|n!F(y)-\triangle_{y}^{n} F(x)\right\| \leq \varphi(y) \tag{6}
\end{equation*}
$$

holds for all $x, y \in X$. Then there exists a nonnegative constant c such that

$$
\|F(x)\| \leq \frac{1}{n!} \varphi(x)+c\|x\|^{n} \quad \text { for all } \quad x \in X
$$

Proof. For each $y^{*} \in Y^{*}$ with $\left\|y^{*}\right\|=1$ and for all $x, y \in X$ we have

$$
\begin{equation*}
-\varphi(y) \leq n!y^{*} \circ F(y)-\triangle_{y}^{n} y^{*} \circ F(x) \leq \varphi(y) \tag{7}
\end{equation*}
$$

Fix arbitrarily a $y^{*} \in Y^{*}$ with $\left\|y^{*}\right\|=1$ and define the functions $H_{y^{*}}: X \longrightarrow \mathbb{R}$ and $\Psi_{y^{*}}: X \longrightarrow 2^{\mathbb{R}}$ by the formulas

$$
H_{y^{*}}(x):=-y^{*} \circ F(x) \quad \text { for all } \quad x \in X
$$

and

$$
\Psi_{y^{*}}(x):=\left[-\frac{1}{n!} \varphi(x)-y^{*} \circ F(x), \frac{1}{n!} \varphi(x)-y^{*} \circ F(x)\right] \quad \text { for all } x \in X
$$

respectively. Clearly, the values of the function $\Psi_{y^{*}}$ are compact intervals.
By (7) and by the definition of the function $\Psi_{y^{*}}$ we obtain

$$
\frac{1}{n!} \triangle_{y}^{n} H_{y^{*}}(x) \in \Psi_{y^{*}}(y)
$$

for all $y^{*} \in Y^{*} \quad$ with $\quad\left\|y^{*}\right\|=1$ and for all $x, y \in X$.
By virtue of Th. I, for every $y^{*} \in Y^{*}$ with $\left\|y^{*}\right\|=1$ there exists a monomial function $M_{y^{*}}: X \longrightarrow \mathbb{R}$ of order n such that

$$
M_{y^{*}}(x) \in \Psi_{y^{*}}(x) \quad \text { for all } \quad x \in X
$$

Hence we obtain

$$
\begin{equation*}
\left|y^{*}(F(x))+M_{y^{*}}(x)\right| \leq \frac{1}{n!} \varphi(x) \quad \text { for all } \quad x \in X \tag{8}
\end{equation*}
$$

for all $y^{*} \in Y^{*}$ with $\left\|y^{*}\right\|=1$, and, consequently,

$$
\begin{equation*}
\left|M_{y^{*}}(x)\right| \leq\left|y^{*}(F(x))\right|+\frac{1}{n!} \varphi(x) \leq\|F(x)\|+\frac{1}{n!} \varphi(x) \text { for all } x \in X \tag{9}
\end{equation*}
$$

Moreover, in view of Rem. 3, $M_{y^{*}}(t)=\mathcal{M}\left(\psi_{t, y^{*}}\right)$ for all $t \in X$, where $\mathcal{M}: \mathcal{B}(X, \mathbb{R}) \longrightarrow \mathbb{R}$ is an invariant mean, and for every $t \in X$ we have

$$
\psi_{t, y^{*}}(x)=\frac{1}{n!} \triangle_{t}^{n} H_{y^{*}}(x), \quad x \in X
$$

and

$$
H_{y^{*}}(x)=-y^{*} \circ F(x) \text { whenever } x \in X .
$$

Let $y^{*} \in Y^{*}$ with $\left\|y^{*}\right\|=1$ be fixed. We will show that the function $M_{y^{*}}$ is continuous. Fix arbitrarily a $t_{0} \in X$. Then, for any $t \in X$, one obtains

$$
\begin{aligned}
\left|M_{y^{*}}(t)-M_{y^{*}}\left(t_{0}\right)\right| & =\left|\mathcal{M}\left(\psi_{t, y^{*}}\right)-\mathcal{M}\left(\psi_{t_{0}, y^{*}}\right)\right|=\left|\mathcal{M}\left(\psi_{t, y^{*}}-\psi_{t_{0}, y^{*}}\right)\right| \leq \\
& \leq\|\mathcal{M}\| \cdot\left\|\psi_{t, y^{*}}-\psi_{t_{0}, y^{*}}\right\| \leq\left\|\psi_{t, y^{*}}-\psi_{t_{0}, y^{*}}\right\|= \\
& =\sup _{x \in X}\left|\psi_{t, y^{*}}(x)-\psi_{t_{0}, y^{*}}(x)\right|
\end{aligned}
$$

For all $t \in X$ and all $x \in X$ we have

$$
\begin{aligned}
& \left|\psi_{t, y^{*}}(x)-\psi_{t_{0}, y^{*}}(x)\right|= \\
& =\left|\frac{1}{n!} \triangle_{t}^{n} H_{y^{*}}(x)-\frac{1}{n!} \triangle_{t_{0}}^{n} H_{y^{*}}(x)\right|= \\
& =\frac{1}{n!}\left|\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} H_{y^{*}}(x+i t)-\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} H_{y^{*}}\left(x+i t_{0}\right)\right| \leq \\
& \leq \frac{1}{n!} \sum_{i=1}^{n}\binom{n}{i}\left|H_{y^{*}}(x+i t)-H_{y^{*}}\left(x+i t_{0}\right)\right| .
\end{aligned}
$$

Fix arbitrarily an $\varepsilon>0$. By the continuity of function $H_{y^{*}}$, there exists for each $i \in\{1, \ldots, n\}$ a $\delta_{i}>0$ such that for all $x, t \in X$ one has

$$
\left\|(x+i t)-\left(x+i t_{0}\right)\right\|<\delta_{i} \Longrightarrow\left|H_{y^{*}}(x+i t)-H_{y^{*}}\left(x+i t_{0}\right)\right|<\frac{\varepsilon}{2^{n+1}}
$$

Let $\delta:=\min \left\{\frac{\delta_{i}}{i}: i \in\{1, \ldots, n\}\right\}$. Then

$$
\begin{aligned}
\left|\psi_{t, y^{*}}(x)-\psi_{t_{0}, y^{*}}(x)\right| & \leq \frac{1}{n!} \sum_{i=1}^{n}\binom{n}{i}\left|H_{y^{*}}(x+i t)-H_{y^{*}}\left(x+i t_{0}\right)\right| \leq \\
& \leq \frac{1}{n!} \sum_{i=0}^{n}\binom{n}{i} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2 n!}
\end{aligned}
$$

for all $x \in X$ and all $t \in X$ such that $\left\|t-t_{0}\right\|<\delta$.
Hence we deduce that

$$
\left|M_{y^{*}}(t)-M_{y^{*}}\left(t_{0}\right)\right| \leq \sup _{x \in X}\left|\psi_{t, y^{*}}(x)-\psi_{t_{0}, y^{*}}(x)\right| \leq \frac{\varepsilon}{2 n!}<\varepsilon
$$

for all $t \in X$ such that $\left\|t-t_{0}\right\|<\delta$. Therefore, the function $M_{y^{*}}$ is continuous, as claimed.

Since $M_{y^{*}}$ is a monomial function of order n, by Lemma 3, there exists an n-additive symmetric function $\bar{M}_{y^{*}}: X^{n} \longrightarrow \mathbb{R}$ such that

$$
M_{y^{*}}(x)=\bar{M}_{y^{*}}(x, \ldots, x) \quad \text { for all } \quad x \in X
$$

In view of the continuity of $M_{y^{*}}$, it follows by virtue of Lemma 4 that $\bar{M}_{y^{*}}$ is continuous. Therefore, $\bar{M}_{y^{*}}$ is n-linear.

Now we will show that the set

$$
\left\{\bar{M}_{y^{*}}\left(x_{1}, \ldots, x_{n}\right): y^{*} \in Y^{*},\left\|y^{*}\right\|=1\right\}
$$

is bounded for all $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$. Let $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ and $y^{*} \in Y^{*}$ with $\left\|y^{*}\right\|=1$ be fixed. Then, by Lemma 2 and (9), we have

$$
\begin{aligned}
& \left|\bar{M}_{y^{*}}\left(x_{1}, \ldots, x_{n}\right)\right|=\left|\frac{1}{n!} \triangle_{x_{1}, \ldots, x_{n}} M_{y^{*}}(0)\right|= \\
& =\left|\frac{1}{n!} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}=0}^{1}(-1)^{n-\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)} M_{y^{*}}\left(\varepsilon_{1} x_{1}+\ldots+\varepsilon_{n} x_{n}\right)\right| \leq \\
& \leq \frac{1}{n!} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}=0}^{1}\left|M_{y^{*}}\left(\varepsilon_{1} x_{1}+\ldots+\varepsilon_{n} x_{n}\right)\right| \leq \\
& \leq \frac{1}{n!} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}=0}^{1}\left(\left\|F\left(\varepsilon_{1} x_{1}+\ldots+\varepsilon_{n} x_{n}\right)\right\|+\frac{1}{n!} \varphi\left(\varepsilon_{1} x_{1}+\ldots+\varepsilon_{n} x_{n}\right)\right) .
\end{aligned}
$$

Since the family $\left\{\bar{M}_{y^{*}}: y^{*} \in Y^{*},\left\|y^{*}\right\|=1\right\}$ satisfies the assumptions of Lemma 5, there exists a nonnegative constant c such that

$$
\sup _{\left\|y^{*}\right\|=1}\left\|\bar{M}_{y^{*}}\right\| \leq c
$$

Hence, by (8), one obtains

$$
\begin{aligned}
\left|y^{*} \circ F(x)\right| & \leq\left|M_{y^{*}}(x)\right|+\frac{1}{n!} \varphi(x)=\left|\bar{M}_{y^{*}}(x, \ldots, x)\right|+\frac{1}{n!} \varphi(x) \leq \\
& \leq\left\|\bar{M}_{y^{*}}\right\| \cdot\|x\|^{n}+\frac{1}{n!} \varphi(x) \leq c\|x\|^{n}+\frac{1}{n!} \varphi(x)
\end{aligned}
$$

for all $x \in X$ and all $y^{*} \in Y^{*}$ with $\left\|y^{*}\right\|=1$. Consequently, for all $x \in X$, the inequality

$$
\|F(x)\| \leq c\|x\|^{n}+\frac{1}{n!} \varphi(x)
$$

is satisfied, which completes the proof. \diamond

References

[1] BADORA, R., PÁLES, Z. and SZÉKELYHIDI, L.: Monomial selections of setvalued maps, Aequationes Math. 58 (1999) 214-222.
[2] BRECKNER, W. W. and TRIF, T.: Equicontinuity and singularities of families of monomial mappings, Studia Univ. Babes-Bolyai, Ser. Math. 51 (2006), no. 3, 11-30.
[3] BUDZIK, D.: On some stability properties of monomial functions, Prace Naukowe Wyższej Szkoty Pedagogicznej w Czȩstochowie, Matematyka IX (2003), 17-23.
[4] BUDZIK, D.: Stability properties of monomial functions, Commentationes Mathematicae XLII (2) (2002), 183-198.
[5] DIEUDONNÉ, J.: Foundations of modern analysis, Academic Press, New York and London, 1969.
[6] GER, R.: On functional inequalities stemming from stability questions, International Series of Numerical Mathematics, vol. 103, 227-240, Birkhäuser Verlag, Basel, 1992.
[7] KUCZMA, M.: An introduction to the theory of functional equations and inequalities, Polish Scientific Publisher and Uniwersytet Śla̧ski, Warszawa-Kraków-Katowice, 1985.
[8] SANDBERG, I. W.: Multilinear maps and uniform boundedness, IEEE Trans. Circuits and Systems CAS-32 (1985), 332-336.
[9] SZÉKELYHIDI, L.: Convolution Type Functional Equations on Topological Abelian Groups, World Scientific, Singapore-New Jersey-London-Hong Kong, 1991.

