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Abstract: A function M defined on a semigroup (group, Banach space etc.)
and taking values in an Abelian group is called monomial of order (at most) n

whenever
△n

y
M(x) = n!M(y).

We consider the functional inequality

‖n!F (y) −△n

y
F (x)‖ ≤ Φ(x, y),

and we look for conditions ensuring the existence of a nonnegative constant c

such that

‖F (x)‖ ≤
1

n!
Φ(x, x) + c‖x‖n.

1. Introduction

Given functions F and f satisfying the inequality
‖F (x+ y) − F (x) − F (y)‖ ≤ f(x) + f(y) − f(x+ y)

(

resp.

‖F (x+y)+F (x−y)−2F (x)−2F (y)‖ ≤ 2f(x)+2f(y)−f(x+y)−f(x−y)
)

,

R. Ger was looking in [6] for conditions implying the existence of a con-
stant c such that

‖F (x)‖ ≤ f(x) + c‖x‖
(

resp. ‖F (x)‖ ≤ f(x) + c‖x‖2
)

.
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Under the assumption that the functions F and f fulfill the in-
equality

‖n!F (y) −△n
yF (x)‖ ≤ n!f(y) −△n

yf(x),

we were looking in [3] and [4] for conditions ensuring the existence of a
nonnegative constant c such that

‖F (x)‖ ≤ f(x) + c‖x‖n.

Now we deal with the following functional inequality
‖n!F (y) −△n

yF (x)‖ ≤ Φ(x, y).

We will look for conditions implying the existence of a constant c such
that

‖F (x)‖ ≤
1

n!
Φ(x, x) + c‖x‖n.

2. Difference operator and monomial functions

Definition 1. Let (S,+) be a semigroup, and let (G,+) stand for an
Abelian group. Let f : S −→ G and y ∈ S be fixed. Then a difference
operator △y is defined by the formula

△yf(x) = f(x+ y) − f(x) for all x ∈ S.

Let further y1, . . . , yn ∈ S be given. Then △y1,...,yn
is defined by

△y1,...,yn
f(x) = △y1

◦ . . . ◦ △yn
f(x)

for all x ∈ S.

In the case when y1 = . . . = yn = y, we will use the symbol △n
yf(x)

instead of △y,...,yf(x).

We will apply the following, well-known lemmas (see e.g. M. Kuczma
[7] or L. Székelyhidi [9].

Lemma 1. Let (S,+) and (G,+) be Abelian groups, and let f : S −→ G

be a function. For every n ∈ N and for every x, y1, . . . , yn ∈ S we have

△y1,...,yn
f(x) =

1
∑

ε1,...,εn=0

(−1)n−(ε1+...+εn)f(x+ ε1y1 + . . .+ εnyn).

In particular,

△n
yf(x) =

n
∑

j=0

(−1)n−j

(

n

j

)

f(x+ jy) for all x, y ∈ S.
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Lemma 2. Let (S,+) and (G,+) be Abelian groups. Let F : Sk −→ G be
a symmetric k-additive function, and let f : S −→ G be the diagonaliza-
tion of F, i.e. f(x) = F (x, . . . , x) for all x ∈ S. For every n ∈ N, n ≥ k,

and for every x, y1, . . . , yn ∈ S we have

△y1,...,yn
f(x) =

{

k!F (y1, . . . , yk), if n = k,

0, if n > k.

Lemma 3. Let (S,+) be an Abelian semigroup, and let (G,+) be an
Abelian group uniquely divisible by n!. Then, for any monomial function
f : S −→ G of order n, there exists exactly one n-additive and symmetric
function F : Sn −→ G such that f coincides with the diagonalization
of F .

Lemma 4. Let (X, ‖ · ‖) be a real normed linear space. Let F : Xn−→R

be a symmetric n-additive function, and let f : X −→ R be the diagonal-
ization of F. If the function f is continuous on X, then so is the function
F on Xn.

We will also need the following lemma (see e.g. I. W. Sandberg [8],
R. Ger [6] or W. W. Breckner, T. Trif [2]):

Lemma 5. Let (X, ‖ · ‖) be a Banach space, and let (Y, ‖ · ‖) be a
normed linear space. Let further {Φα : α ∈ T} be a nonempty family
of n-linear symmetric and continuous operators from Xn into Y. If, for
every (x1, . . . , xn) ∈ Xn, the set {Φα(x1, . . . , xn) : α ∈ T} is bounded in
Y, then

sup
α∈T

‖Φα‖ <∞.

3. Monomial selections of set-valued maps

If S is a nonempty set, then by B(S,R) we denote the real linear
space of all bounded real-valued functions defined on S, equipped with
the uniform norm.

Definition 2. A mapping M : B(S,R) −→ R is called a mean provided
that it has the following properties:

(i) M is linear ;
(ii) inf f(S) ≤ M(f) ≤ sup f(S) for all f ∈ B(S,R).

Definition 3. Let (S,+) be a semigroup. Consider a map f : S −→ R

and fix arbitrarily a t ∈ S. The function ft : S −→ R, given by the
formula
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ft(x) := f(x+ t) for all x ∈ S,

is called the right translate of f.

Definition 4. The semigroup (S,+) is called right amenable if there
exists a mean M on B(S,R) which is invariant with respect to the right
translations, i.e., if

M(ft) = M(f) for all f ∈ B(S,R) and all t ∈ S.

The notions of left invariant mean and left amenability can be de-
fined analogously. If both left and right invariant mean exist, then S is
called amenable.

Remark 1. Any Abelian group is amenable.

Remark 2. Let M : B(S,R) −→ R be a mean. Then
|M(f)| ≤ ‖M‖ · ‖f‖ = ‖f‖ for all f ∈ B(S,R).

R. Badora, Z. Páles and L. Székelyhidi have proved the theorem
about monomial selections of multifunctions (see Th. 3 in [1]). In the
case when S is an Abelian group, X = R and n = 1, this theorem may
be stated as follows

Theorem I. Let (S,+) be an Abelian group. Let Ψ : S −→ 2R be a map
with values being compact intervals. Assume that there exists a function
f : S −→ R such that

1

n!
△n

t f(x) ∈ Ψ(t) for all x, t ∈ S.

Then there exists a monomial function F : S −→ R of order n such that
F (x) ∈ Ψ(x) for all x ∈ S.

Remark 3. The function F in Th. I is given by the formula
F (t) = M(ψt) for all t ∈ S,

where ψt : S −→ R is defined by

ψt(x) :=
1

n!
△n

t f(x) for all x ∈ S,

and M : B(S,R) −→ R is an invariant mean.

4. Results

In the proof of our first theorem we shall be using the following
version of Taylor’s formula (see e.g. J. Dieudonné [5]).

Theorem II. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be real Banach spaces. Further
let F : X −→ Y be an n-times continuously differentiable function, and
let x0 ∈ X. Then, for every x ∈ X, we have
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F (x) =
n−1
∑

k=0

1

k!
dkF (x0)(x− x0) +R(x),

where

R(x) =

∫ 1

0

(1 − ξ)n−1

(n− 1)!
dnF (x0 + ξ(x− x0))(x− x0)dξ.

Moreover, if there exists a constant α such that
‖dnF (x)‖ ≤ α for all x ∈ X,

then

‖R(x)‖ ≤
α

n!
‖x− x0‖

n for all x ∈ X.

In the above-mentioned theorem DkF (x) denotes the k-th Fréchet
differential of the function F at a point x. Clearly, DkF (x) is a k-
additive and symmetric mapping. The monomial generated by DkF (x)
is denoted by dkF (x). The integral occuring here is understood in the
sense of Bochner.

Theorem 1. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be real Banach spaces. Further,
let F : X → Y be an n-times continuously differentiable function, and
let Φ : X2 −→ R be a function such that the inequality

(1) ‖n!F (y) −△n
yF (x)‖ ≤ Φ(x, y)

holds for all x, y ∈ X. If the function X ∋ x −→ ‖dnF (x)‖ is bounded,
then there exists a nonnegative constant c such that

‖F (x)‖ ≤ c‖x‖n +
1

n!
Φ(x, x) for all x ∈ X.

Proof. By virtue of Th. II applied for x0 = 0 we obtain

F (x) =
n−1
∑

k=0

1

k!
dkF (0)(x) +R(x) for all x ∈ X,

with

R(x) =

∫ 1

0

(1 − ξ)n−1

(n− 1)!
dnF (ξx)(x)dξ.

Fix arbitrarily x, y ∈ X. By Lemma 2, we infer that

(2) △n
yF (x) = △n

yR(x).

Now Lemma 1 and the subadditivity of the norm imply the inequal-
ity
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(3) ‖ △n
y R(x)‖ ≤

n
∑

k=0

(

n

k

)

‖R(x+ ky)‖.

Then, by (1), (2) and (3), we deduce that

‖n!F (y)‖ ≤ Φ(x, y) + ‖ △n
y F (x)‖ = Φ(x, y) + ‖ △n

y R(x)‖ ≤

≤ Φ(x, y) +

n
∑

k=0

(

n

k

)

‖R(x+ ky)‖.

In particular, for x = y, one obtains

(4) ‖n!F (x)‖ ≤ Φ(x, x) +
n

∑

k=0

(

n

k

)

‖R((k + 1)x)‖.

Since the function X ∋ x −→ ‖dnF (x)‖ is bounded, there exists a
constant α such that

(5) ‖dnF (x)‖ ≤ α for all x ∈ X.

Hence, by (4), (5) and Th. II we obtain

‖n!F (x)‖ ≤ Φ(x, x) +

n
∑

k=0

(

n

k

)

1

n!
α‖(k + 1)x‖n for all x ∈ X.

Put

c :=
α

n!

n
∑

k=0

(k + 1)n

k!(n− k)!
.

Then we have

‖F (x)‖ ≤
1

n!
Φ(x, x) + c‖x‖n for all x ∈ X,

which completes the proof. ♦

Remark 4. Under the assumptions of Th. 1, we may show that also the
following inequality is true:

‖F (x)‖ ≤
1

n!
Φ(0, x) + C‖x‖n for all x ∈ X,

where

C =
α

n!

n
∑

k=0

(k)n

k!(n− k)!
.

In fact, it suffices to take x = 0 and y = x in the inequality

‖n!F (y)‖ ≤ Φ(x, y) +

n
∑

k=0

(

n

k

)

‖R(x+ ky)‖.
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In the case when function Φ depends only upon the second vari-
able, our assumption about the space Y as well as the assumption upon
the function F may considerably be weakened. Namely, the following
theorem holds true.

Theorem 2. Let (X, ‖ · ‖) be a real Banach space, and let (Y, ‖ · ‖) be
a real normed linear space. Let F : X −→ Y be a continuous function,
and let ϕ : X −→ R be a function such that inequality

(6) ‖n!F (y) −△n
yF (x)‖ ≤ ϕ(y)

holds for all x, y ∈ X. Then there exists a nonnegative constant c such
that

‖F (x)‖ ≤
1

n!
ϕ(x) + c‖x‖n for all x ∈ X.

Proof. For each y∗ ∈ Y ∗ with ‖y∗‖ = 1 and for all x, y ∈ X we have

(7) −ϕ(y) ≤ n!y∗ ◦ F (y) −△n
yy

∗ ◦ F (x) ≤ ϕ(y).

Fix arbitrarily a y∗ ∈ Y ∗ with ‖y∗‖ = 1 and define the functions
Hy∗ : X −→ R and Ψy∗ : X −→ 2R by the formulas

Hy∗(x) := −y∗ ◦ F (x) for all x ∈ X

and

Ψy∗(x) :=

[

−
1

n!
ϕ(x) − y∗ ◦ F (x),

1

n!
ϕ(x) − y∗ ◦ F (x)

]

for all x ∈ X,

respectively. Clearly, the values of the function Ψy∗ are compact intervals.
By (7) and by the definition of the function Ψy∗ we obtain

1

n!
△n

y Hy∗(x) ∈ Ψy∗(y)

for all y∗ ∈ Y ∗ with ‖y∗‖ = 1 and for all x, y ∈ X.

By virtue of Th. I, for every y∗ ∈ Y ∗ with ‖y∗‖ = 1 there exists a
monomial function My∗ : X −→ R of order n such that

My∗(x) ∈ Ψy∗(x) for all x ∈ X.

Hence we obtain

(8) |y∗(F (x)) +My∗(x)| ≤
1

n!
ϕ(x) for all x ∈ X,

for all y∗ ∈ Y ∗ with ‖y∗‖ = 1, and, consequently,

(9) |My∗(x)| ≤ |y∗(F (x))| +
1

n!
ϕ(x) ≤ ‖F (x)‖ +

1

n!
ϕ(x) for all x ∈ X.
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Moreover, in view of Rem. 3, My∗(t) = M(ψt,y∗) for all t ∈ X,
where M : B(X,R) −→ R is an invariant mean, and for every t ∈ X we
have

ψt,y∗(x) =
1

n!
△n

t Hy∗(x), x ∈ X,

and
Hy∗(x) = −y∗ ◦ F (x) whenever x ∈ X.

Let y∗ ∈ Y ∗ with ‖y∗‖ = 1 be fixed. We will show that the function
My∗ is continuous. Fix arbitrarily a t0 ∈ X. Then, for any t ∈ X, one
obtains

∣

∣My∗(t) −My∗(t0)
∣

∣ =
∣

∣M(ψt,y∗) −M(ψt0,y∗)
∣

∣ =
∣

∣M(ψt,y∗ − ψt0,y∗)
∣

∣ ≤

≤ ‖M‖ ·
∥

∥ψt,y∗ − ψt0,y∗

∥

∥ ≤
∥

∥ψt,y∗ − ψt0,y∗

∥

∥ =

= sup
x∈X

∣

∣ψt,y∗(x) − ψt0,y∗(x)
∣

∣.

For all t ∈ X and all x ∈ X we have
∣

∣ψt,y∗(x) − ψt0,y∗(x)
∣

∣ =

=

∣

∣

∣

∣

1

n!
△n

t Hy∗(x) −
1

n!
△n

t0
Hy∗(x)

∣

∣

∣

∣

=

=
1

n!

∣

∣

∣

∣

n
∑

i=0

(−1)n−i

(

n

i

)

Hy∗(x+ it) −

n
∑

i=0

(−1)n−i

(

n

i

)

Hy∗(x+ it0)

∣

∣

∣

∣

≤

≤
1

n!

n
∑

i=1

(

n

i

)

∣

∣Hy∗(x+ it) −Hy∗(x+ it0)
∣

∣.

Fix arbitrarily an ε > 0. By the continuity of function Hy∗ , there exists
for each i ∈ {1, . . . , n} a δi > 0 such that for all x, t ∈ X one has

∥

∥(x+ it) − (x+ it0)
∥

∥ < δi =⇒
∣

∣Hy∗(x+ it) −Hy∗(x+ it0)
∣

∣ <
ε

2n+1
.

Let δ := min
{

δi

i
: i ∈ {1, . . . , n}

}

. Then

∣

∣ψt,y∗(x) − ψt0,y∗(x)
∣

∣ ≤
1

n!

n
∑

i=1

(

n

i

)

∣

∣Hy∗(x+ it) −Hy∗(x+ it0)
∣

∣ ≤

≤
1

n!

n
∑

i=0

(

n

i

)

ε

2n+1
=

ε

2n!

for all x ∈ X and all t ∈ X such that ‖t− t0‖ < δ.

Hence we deduce that
∣

∣My∗(t) −My∗(t0)
∣

∣ ≤ sup
x∈X

∣

∣ψt,y∗(x) − ψt0,y∗(x)
∣

∣ ≤
ε

2n!
< ε
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for all t ∈ X such that ‖t − t0‖ < δ. Therefore, the function My∗ is
continuous, as claimed.

Since My∗ is a monomial function of order n, by Lemma 3, there
exists an n-additive symmetric function M y∗ : Xn −→ R such that

My∗(x) = My∗(x, . . . , x) for all x ∈ X.

In view of the continuity of My∗ , it follows by virtue of Lemma 4 that
M y∗ is continuous. Therefore, M y∗ is n-linear.

Now we will show that the set
{

M y∗(x1, . . . , xn) : y∗ ∈ Y ∗, ‖y∗‖ = 1
}

is bounded for all (x1, . . . , xn) ∈ Xn. Let (x1, . . . , xn) ∈ Xn and y∗ ∈ Y ∗

with ‖y∗‖ = 1 be fixed. Then, by Lemma 2 and (9), we have
∣

∣M y∗(x1, . . . , xn)
∣

∣ =

∣

∣

∣

∣

1

n!
△x1,...,xn

My∗(0)

∣

∣

∣

∣

=

=

∣

∣

∣

∣

1

n!

1
∑

ε1,...,εn=0

(−1)n−(ε1+...+εn)My∗(ε1x1 + . . .+ εnxn)

∣

∣

∣

∣

≤

≤
1

n!

1
∑

ε1,...,εn=0

∣

∣My∗(ε1x1 + . . .+ εnxn)
∣

∣ ≤

≤
1

n!

1
∑

ε1,...,εn=0

(

‖F (ε1x1 + . . .+ εnxn)‖ +
1

n!
ϕ(ε1x1 + . . .+ εnxn)

)

.

Since the family
{

My∗ : y∗ ∈ Y ∗, ‖y∗‖ = 1
}

satisfies the assumptions of
Lemma 5, there exists a nonnegative constant c such that

sup
‖y∗‖=1

‖M y∗‖ ≤ c.

Hence, by (8), one obtains

|y∗ ◦ F (x)| ≤
∣

∣My∗(x)
∣

∣ +
1

n!
ϕ(x) =

∣

∣M y∗(x, . . . , x)
∣

∣ +
1

n!
ϕ(x) ≤

≤
∥

∥M y∗

∥

∥ · ‖x‖n +
1

n!
ϕ(x) ≤ c‖x‖n +

1

n!
ϕ(x)

for all x ∈ X and all y∗ ∈ Y ∗ with ‖y∗‖ = 1. Consequently, for all x ∈ X,
the inequality

‖F (x)‖ ≤ c‖x‖n +
1

n!
ϕ(x)

is satisfied, which completes the proof. ♦
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