
Mathematica Pannonica

20/2 (2009), 189–208

GENERALIZED POLYNOMIALS IN
ONE AND IN SEVERAL VARIABLES

Wolfgang Prager

Institut für Mathematik, Karl-Franzens Universität Graz, Heinrich-
straße 36, A-8010 Graz, Austria

Jens Schwaiger

Institut für Mathematik, Karl-Franzens Universität Graz, Heinrich-
straße 36, A-8010 Graz, Austria

Received : May 2008

MSC 2000 : 39 B 52, 39 A 70

Keywords : Generalized polynomials, several variables, functional equations,
multi-Jensen functions.

Abstract: In earlier papers the authors considered relations between general-
ized polynomials p of degree ≤ n and functions P in n variables being Jensen
in each variable such that p is the diagonalization of P . Jensen in each variable
means that P is a generalized polynomial of degree ≤ 1 in each variable. Here
we derive analogous results connecting functions of several variables which are
generalized polynomials of degree ≤ βi in the i-th variable and generalized
polynomials (in one variable) of degree ≤

∑
βi.

We also discuss the question whether a function being a polynomial
separately in each variable has to be a polynomial jointly in all variables.

1. Motivating results and questions

Let V, W be vector spaces over Q and denote by ∆h : W V → W V

the difference operator with increment h, which for f : V → W is defined
by (∆hf) (x) := f(x + h) − f(x).
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Definition 1. Let be n ∈ N0. A function p : V → W is called a
generalized polynomial of degree ≤ n if ∆n+1

h p = 0 for all h ∈ V .

We denote the vector space of all generalized polynomials of degree
≤ n defined on V and taking values in W by
Pn(V, W ) := {p : V → W | p is a generalized polynomial of degree ≤ n}.

There is a large literature on generalized polynomials, see for exam-
ple [D] for a description of Pn(V, W ) in an even more general situation.
In [PS] the generalized polynomials p ∈ Pn(V, W ) have been described by
means of n-Jensen functions. The motivation was the blossoming method
which is used for calculating values of spline functions (see [R]).

Definition 2. 1. A function q : V → W is Jensen if

q

(
x + y

2

)
=

1

2
(q(x) + q(y))

for all x, y ∈ V .
2. A function P : V → W is called n-Jensen if the partial mappings

xi 7→ P (x1, . . . , xi−1, xi, xi+1, . . . , xn) are Jensen functions for all i.

As usual, we denote by Sn the symmetric group of all permutations
of the set

n := {1, 2, . . . , n},

and call a function Q : V n → W symmetric if Q(xπ(1), xπ(2), . . . , xπ(n)) =
= Q(x1, x2, . . . , xn) for all (x1, x2, . . . , xn) ∈ V n and all π ∈ Sn. The
vector space of all n-Jensen functions defined on V n with values in W is
denoted by

J n(V, W ) := {P : V → W |P n-Jensen},

and the subspace of all symmetric n-Jensen functions is denoted by
J n,sym(V, W ) := {P ∈ J n(V, W ) |P symmetric}.

Definition 3. 1. For n ∈ N the diagonalization mapping δn : V → V n

is defined by
δn(x) := (x, . . . , x),

with x in each of the n components on the right-hand side.
2. For P ∈ Pn(V, W ) the diagonalization D of P is defined by

D(P ) := P ◦ δn.

It has been shown in [PS] that given P ∈ J n(V, W ) the diago-
nalization D(P ) is contained in Pn(V, W ). So D maps J n(V, W ) into
Pn(V, W ). It has also been proved that the restriction D′ := D

∣∣
J n,sym(V,W )
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gives a bijection between J n,sym(V, W ) and Pn(V, W ). For n ≥ 1 and
p ∈ Pn(V, W ) the inverse P := D′−1(p) is given by

(1) P (x1, x2, . . . , xn) =
1

n!

∑

S⊆n

(−1)n−|S|(r + |S|)np

(
y +

∑
i∈S xi

r + |S|

)
,

where |S| denotes the cardinality of S and (y, r) ∈ V × Q either equals
(0, 0) (with 0np(0/0) := 0) or y is arbitrary and r ∈ Q \ {0,−1, . . . ,−n}.

Note that P ∈ J n(V, W ) if and only if all partial functions map-
pings

xi 7→ P (x1, . . . , xi−1, xi, xi+1, . . . , xn)

are generalized polynomials of degree at most 1, i. e., are contained in
P1(V, W ). Generalizing one may ask the following questions:

1) Let m ∈ N, β = (β1, β2, . . . , βm) ∈ Nm
0 with |β| =

∑m

i=1 βi = n
and P : V m → W be given such that

(2) (xi 7→ P (x1, . . . , xi−1, xi, xi+1, . . . , xm)) ∈ Pβi(V, W )

for all 1 ≤ i ≤ m and all x1, x2, . . . , xm ∈ V . Is it then true that P ◦
◦ δm ∈ Pn(V, W )?

2) Is it true that, given p ∈ Pn(V, W ) and n, β as above, there is
some P satisfying (2) such that p = P ◦ δm?

3) If 2) is true, is there some “canonical” P with p = P ◦ δm? (In
the case m=n, β =(1, 1, ..., 1), formula (1) gives a kind of canonical P .)

Before answering these questions we need some results on general-
ized polynomials in several variables.

2. Generalized polynomials in several vector vari-

ables, basic definitions and results

We will use some notions and results from [B, App., pp. 88–89],
adopt these notions for our situation of rational vector spaces and put
aside all topological aspects.

Throughout this paper let m ∈ N and let V1, V2, . . . , Vm, W be vec-
tor spaces over Q. For α=(α1, α2, . . . , αm) ∈ Nm

0 with |α| :=
∑m

j=1 αj >0

the sequence s(α) ∈ N|α| is defined by

(3) s(α) := (1α1 , 2α2 , . . . , mαm) := (1, . . . , 1︸ ︷︷ ︸
α1-times

, 2, . . . , 2︸ ︷︷ ︸
α2-times

, . . . , m, . . . , m︸ ︷︷ ︸
αm-times

).
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Let Vα := ×|α|
i=1Vs(α)i

and let δα : V1 × V2 × . . . × Vm → Vα be defined by

δα(x1, x2, . . . , xm) := (xs(α)i
)1≤i≤|α| =: (xα1

1 , xα2

2 , . . . , xαm

m ).
The rational vector space of all mappings from Vα to W which are

Q-linear in each variable is denoted by
Homα(V1, V2, . . . , Vm, W ) := {f : Vα → W | f additive in each variable}.

We also define
Pα(V1, V2, . . . , Vm, W ) := {f ◦ δα

∣∣ f ∈ Homα(V1, V2, . . . , Vm, W )}

and the elements p ∈ Pα(V1, V2, . . . , Vm, W ) are called α-homogeneous
polynomials because of p(r1x1, r2x2, . . . , rmxm) = rαp(x1, x2, . . . , xm) if
(x1, x2, . . . , xm) ∈ V := V1 ×V2 × . . .×Vm and r = (r1, r2, . . . , rm) ∈ Qm,
where rα :=

∏m

i=1 rαi

i .
There is a subspace of Homα(V1, V2, . . . , Vm, W ) which may be iden-

tified with the space Pα(V1, V2, . . . , Vm, W ). Let Sα be that subgroup of
the symmetric group S|α| which contains those permutations π ∈ S|α|

which satisfy
π ({α1 + . . . + αi−1 + 1, . . . , α1 + . . . + αi}) =

= {α1 + . . . + αi−1 + 1, . . . , α1 + . . . + αi}

for all 1 ≤ i ≤ m. Here the number α1 + . . . + αi−1 is equal to 0 if i = 1
and the set {α1 + . . . + αi−1 + 1, . . . , α1 + . . . + αi} is empty if αi = 0.
Given π ∈ Sα and g : Vα → W , we define gπ : Vα → W by

gπ(x1, x2, . . . , x|α|) := g(xπ(1), xπ(2), . . . , xπ(|α|)).

Then gπ ∈ Homα(V1, V2, . . . , Vm, W ) if g ∈ Homα(V1, V2, . . . , Vm, W ). Let

Homsym
α (V1, V2, . . . , Vm, W ) :=

:=
{
g ∈ Homα(V1, V2, . . . , Vm, W )

∣∣ gπ = g for all π ∈ Sα

}
,

let p ∈ Pα(V1, V2, . . . , Vm, W ) and let P ∈ Homα(V1, V2, . . . , Vm, W )
be such that p = P ◦ δα. Put α! :=

∏m

i=1 αi! ( = |Sα|) and define

P̂ := 1
α!

∑
π∈Sα

P π.

Then P̂ ∈ Homsym
α (V1, V2, . . . , Vm, W ) and P ◦ δα = P̂ ◦ δα. Thus

Pα(V1, V2, . . . , Vm, W ) =
{
P ◦ δα

∣∣P ∈ Homsym
α (V1, V2, . . . , Vm, W )

}
.

We want to show that even more is true, namely that the mapping
given by Homsym

α (V1, V2, . . . , Vm, W )∋P 7→P ◦ δα∈Pα(V1, V2, . . . , Vm, W )
is a (linear) isomorphism.

Definition 4. Let V = V1 × · · · × Vm, let 1 ≤ i ≤ m and h ∈
∈ Vi. Denote by σi : Vi → V the embedding of Vi into V , σi(h) :=
:= (0, 0, . . . , 0, h, 0, . . . , 0), where h is in the i-th component. The partial
difference operator ∆i,h : W V → W V is then defined by

(∆i,hf)(x) := f(x + σi(h)) − f(x).
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Theorem 1. The rational vector spaces Homsym
α (V1, . . . , Vm, W ) and

Pα(V1, . . . , Vm, W ) are isomorphic. An isomorphism is given by P 7→
7→ P ◦ δα. The inverse is given by p 7→ p̂,

p̂(x11, . . . , x1α1
, x21, . . . , x2α2

, . . . , xm1, . . . , xmαm
) :=(4)

:=
1

α!

(
m

©
i=1

αi

©
ji=1

∆i,xiji

)
p(y1, y2, . . . , ym),

where (y1, y2, . . . , ym) ∈ V may be chosen arbitrarily.

Proof. Clearly the mapping P 7→ P ◦ δα is surjective and linear. If
m = 1 and p ∈ Pα(V1, W ) the formula for p̂ is the classical polarization
formula (see for example [K, Lemma 2, p. 394], [D]) which states that a
given symmetric k-additive function F : V k → W may be reconstructed
from its diagonalization f := F ◦ δk:

(5)
k

©
j=1

∆xj
f(y) = k!F (x1, x2, . . . , xk).

Now let m ≥ 2 and let Pα(V1, . . . , Vm, W ) ∋ p = P ◦ δα with P ∈
∈ Homsym

α (V1, . . . , Vm, W ). Then, using the case m = 1 and the prop-
erties of the difference operators ∆i,xiji

, it is easy to show by induction
that for any k, 1 ≤ k ≤ m, for any (y1, y2, . . . , ym) ∈ V , and for any
(x11, . . . , x1α1

, . . . , xm1, . . . , xmαm
) ∈ Vα

P (x11, . . . , x1α1
, . . . , xk1, . . . , xkαk

, y
αk+1

k+1 , . . . , yαm

m ) =(6)

=
1

∏k

i=1 αi!

(
k

©
i=1

αi

©
ji=1

∆i,xiji

)
p(y1, y2, . . . , ym).

The case k = m gives the desired result. ♦

We identify W with the space of constant functions defined on V =
= V1 × V2 × . . . × Vm and taking values in W and write

P0(V, W ) := P(0,0,...,0)(V1, V2, . . . , Vm, W ) := W.

Then homogeneous polynomials in one and in several variables are con-
nected to each other in the following way.

Theorem 2. For any k ∈ N0 we have

Pk(V, W ) =
⊕

α∈Nm
0 ,|α|=k

Pα(V1, V2, . . . , Vm, W ).

Proof. We may suppose that k ≥ 1. Let α ∈ Nm
0 with |α| = k. Then

Pα(V1, . . . , Vm, W ) ⊆ Pk(V, W ). In fact, let p ∈ Pα(V1, . . . , Vm, W ) and
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p = P ◦ δα with P ∈ Homsym
α (V1, . . . , Vm, W ) and let πi : V → Vi be the

projection to the i-th coordinate. Define

P̃ := P ◦ (π1, . . . , π1︸ ︷︷ ︸
α1-times

, π2, . . . , π2︸ ︷︷ ︸
α2-times

, . . . , πm, . . . , πm︸ ︷︷ ︸
αm-times

).

Then P̃ ∈ Homk(V, W ) and P̃ ◦ δk = P ◦ δα = p. Thus
Pα(V1, V2, . . . , Vm, W ) ⊆ Pk(V, W ).

If p = P ◦ δk ∈ Pk(V, W ) with P ∈ Homk(V, W ) we put, for given i
and xi ∈ Vi, as before σi(xi) := (0, 0, . . . , 0, xi, 0, . . . , 0) ∈ V . Then V ∋
∋ x = (x1, x2, . . . , xm) =

∑m

i=1 σi(xi) and (by the multinomial theorem)

p(x) = P (xk) =
∑

α∈Nm
0

,|α|=k

k!

α!
P
(
σ1(x1)

α1 , σ2(x2)
α2 , . . . , σm(xm)αm

)
.

Put pα(x1, x2, . . . , xm) = k!
α!

P (σ1(x1)
α1 , σ2(x2)

α2 , . . . , σm(xm)αm). Then
pα is contained in Psym

α (V1, V2, . . . , Vm, W ) since pα = Pα ◦ δα where Pα ∈
∈ Homsym

α (V1, V2, . . . , Vm, W ) is defined by

Pα(x11, . . . , x1α1
, x21, . . . , x2α2

, . . . , xm1, . . . , xmαm
) :=

:=
k!

α!
P (σ1(x11), . . . , σ1(x1α1

), . . . , σm(xm1), . . . , σm(xmαm
)).

So p =
∑

|α|=k pα with pα ∈ Pα(V1, V2, . . . , Vm, W ).

The sum is also direct since
∑

|α|=k pα = 0 implies

0 =
∑

|α|=k

pα(r1x1, . . . , rmxm) =
∑

|α|=k

rαpα(x1, . . . , xm)

for all r = (r1, . . . , rm) ∈ Qm. This implies that pα(x1, . . . , xm) = 0 for
all x = (x1, . . . , xm) ∈ V and all α ∈ Nm

0 with |α| = k. ♦

Remark 1. In the last part of the proof above we used the following
(see [L, chap. V, p. 121]): Let β ∈ Nm

0 and let

Nβ := ×m

i=1Nβi
, Nk := {0, 1, . . . , k}.

Then, given a family (uα)α∈Nβ
of elements uα ∈ W , the relation∑

α∈Nβ
rαuα = 0 for all r = (r1, r2, . . . , rm) ∈ Qm implies that all uα

vanish. In fact this is true even if
∑

α∈Nβ
rαuα = 0 holds true (only) for

all r ∈×m

i=1Qi, where each Qi ⊂ Q contains at least βi + 1 elements.

Definition 5. For β = (β1, β2, . . . , βm) ∈ Nm
0 with |β| ≥ 1 let

Pβ(V1, V2, . . . , Vm, W ) :=(7)

:=

{
p : V →W

∣∣ p=
∑

α∈Nβ

pα for some (pα)α∈Nβ
∈ ×

α∈Nβ

Pα(V1, V2, ..., Vm, W )

}
.
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The functions p ∈ Pβ(V1, V2, . . . , Vm, W ) are called generalized polynomi-
als of multidegree ≤ β.

Pβ(V1, V2, . . . , Vm, W ) is isomorphic to×α∈Nβ
Pα(V1, V2, . . . , Vm, W )

by Rem. 1 since for p as above and r = (r1, . . . , rm) ∈ Qm we may write
p(r1x1, . . . , rmxm) =

∑
α∈Nβ

rαpα(x1, . . . , xm). We want to characterize

the functions in Pβ(V1, V2, . . . , Vm, W ) and the following is a first step in
this direction.

Theorem 3. Let m ∈ N, m ≥ 2, let V1, V2, . . . , Vm, V = V1 ×. . .× Vm,
W as above. Assume that p : V →W has the property that for fixed β ′ =
= (β1, β2, . . . , βm−1)∈Nm−1

0 and βm∈N0 all partial functions Vm∋xm 7→
7→ p(x1, ..., xm−1, xm) are contained in Pβm

(Vm, W ). Assume furthermore
that all partial functions V1 × . . .× Vm−1 =: V ′ ∋ (x1, x2, ..., xm−1) 7→
7→ p(x1, ..., xm−1, xm) are contained in Pβ′(V1, V2, . . . , Vm−1, W ). Then
p ∈ P(β1,...,βm−1,βm)(V1, . . . , Vm−1, Vm, W ).

Proof. Fixing xm ∈ Vm we find by assumption some Pxm
∈ Homsym

β′ such
that

p(x1, x2, . . . , xm−1, xm) = Pxm

(
xβ1

1 , xβ2

2 , . . . , x
βm−1

m−1

)

for all (x1, x2, . . . , xm−1) ∈ V ′. By (4) we get

Pxm
(x11, . . . , x1β1

, . . . , xm−1,1, . . . , xm−1,βm−1
) =(8)

=
1

β ′!

(
m−1

©
i=1

βi

©
ji=1

∆i,xiji

)
p(y1, y2, . . . , ym−1, xm)

with arbitrary (y1, . . . , ym−1) ∈ V ′. By assumption the mappings xm 7→
7→ p(z1, . . . , zm−1, xm) belong to Pβm

(Vm, W ) for all (z1, z2, . . . , zm−1) ∈
∈ V ′. The right-hand side of (8) considered as a function of xm is a

linear combination of functions of that type. So P̂ : Vm → W , defined

by P̂ (xm) := Pxm

(
xβ1

1 , xβ2

2 , . . . , x
βm−1

m−1

)
, is contained in Pβm

(Vm, W ), too.

Now let
P
(
x11, . . . , x1β1

, . . . , xm−1,1, . . . , xm−1,βm−1
, xm1, . . . , xmβm

)
:=

:=
1

βm!

βm

©
jm=1

∆m,xmjm
P̂ (ym)

with arbitrary ym ∈ Vm. Then
P ∈ Hom(β1,...,βm−1,βm)(V1, V2, . . . , Vm−1, Vm, W ).

Moreover
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P
(
x11, . . . , x1β1

, . . . , xm−1,1, . . . , xm−1,βm−1
, xm1, . . . , xmβm−1

, xβm

m

)
=

= Pxm
(x11, . . . , x1β1

, . . . , xm−1,1, . . . , xm−1,βm−1
).

Therefore
P
(
xβ1

1 , xβ2

2 , . . . , x
βm−1

m−1 , xβm

m

)
= Pxm

(
xβ1

1 , xβ2

2 , . . . , x
βm−1

m−1

)
=

= p(x1, x2, . . . , xm−1, xm).

This means that p = P ◦ δ(β1,β2,...,βm−1,βm) with

P ∈ Hom(β1,...,βm−1,βm)(V1, . . . , Vm−1, Vm, W )

and thus that p ∈ P(β1,...,βm−1,βm)(V1, . . . , Vm−1, Vm, W ). ♦

The following theorem gives a characterization of generalized poly-
nomials of multi-degree ≤ β. The one-dimensional case of this theorem
may be found in [D] and [K, chap. XV, p. 378, pp. 393–397].

Theorem 4. Let m ∈ N and β = (β1, β2, . . . , βm) ∈ Nm
0 . Then the

following conditions on p : V1 × . . . × Vm → W are equivalent to each
other.

1) p ∈ Pβ(V1, V2, . . . , Vm, W );
2) ©βi+1

ji=1 ∆i,hi,ij
p=0 for all 1≤ i≤m and all hi1, hi2, ..., hi,βi+1∈Vi;

3) ∆βi+1
i,hi

p = 0 for all 1 ≤ i ≤ m and all hi ∈ Vi.

Proof. Let p ∈ Pβ(V1, . . . , Vm, W ). Then p =
∑

α∈Nβ
pα with pα ∈

∈ Pα(V1, . . . , Vm, W ). For fixed i, α the mapping
xi 7→ pα(x1, . . . , xi−1, xi, xi+1, . . . , xm), xj ∈ Vj

fixed when j 6= i, is contained in Pαi
(Vi, W ). Thus (using the one-

dimensional case) ©αi+1
ji=1 ∆i,hi,ji

pα = 0. Since αi ≤ βi this implies

©βi+1
ji=1 ∆i,hi,ji

pα = 0. And this holds true for all α ∈ Nβ . So condition 1)
implies condition 2). Condition 2) obviously implies condition 3). Fi-
nally we prove that condition 3) implies condition 1) by induction on m.
The case m = 1 is the “classical” one-dimensional case. Suppose now
that the implication 3) ⇒ 1) holds true for m − 1 where m ≥ 2.

For fixed xm ∈ Vm we define pxm
: V1 × . . . × Vm−1 → W by

pxm
(x1, x2, ..., xm−1, xm) :=p(x1, x2, ..., xm). By assumption ∆βi+1

i,hi
pxm

=0
for 1 ≤ i ≤ m − 1 and hi ∈ Vi. Thus by the induction hypothesis pxm

∈
∈ Pβ′

(V1, V2, . . . , Vm−1, W ) where β ′ := (β1, β2, . . . , βm−1). This means
that there are qα′ = qα′,xm

∈ Pα′(V1, V2, . . . , Vm−1, W ) such that pxm
=

=
∑

α′∈Nβ′
qα′ .

We also know that ∆βm+1
xm,hm

p = 0. Writing q̂α′(x1, . . . , xm−1, xm):=
:= qα′,xm

(x1, . . . , xm−1) and observing q̂α′(s1x1, s2x2, . . . , sm−1xm−1, xm)=
= sα′

q̂α′(x1, x2, . . . , xm−1, xm) for all s = (s1, s2, . . . , sm−1) ∈ Qm−1 we get
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0 = ∆βm+1
m,hm

p(s1x1, s2x2, . . . , sm−1xm−1, xm) =

=
∑

α′∈Nβ′

sα′

∆βm+1
m,hm

q̂α′(x1, x2, . . . , xm−1, xm)

for all s ∈ Qm−1 and all (x1, x2, . . . , xm−1, xm) ∈ V1 × . . . × Vm−1 × Vm.
Therefore ∆βm+1

m,hm
q̂α′ = 0 for all α′ ∈ Nβ′ (and all hm ∈ Vm).

This implies that there exist mappings q̂j,α′ : V1 × V2 × . . .× Vm →

→ W such that q̂α′ =
∑βm

j=0 q̂j,α′ and (xm 7→ q̂j,α′ (x1, x2, . . . , xm−1, xm)) ∈
∈ Pj(Vm, W ), 0 ≤ j ≤ βm.

So q̂j,α′(x1, x2, . . . , xm−1, smxm) = sj
mq̂j,α′(x1, x2, . . . , xm−1, xm) with

sm ∈ Q and also

q̂α′(x1, x2, . . . , xm−1, ℓxm) =

βm∑

j=0

ℓj q̂j,α′(x1, x2, . . . , xm−1, xm).

Using the inverse of the Vandermonde matrix (ℓj)0≤ℓ,j≤βm
we may find

rational numbers bjℓ such that

q̂j,α′(x1, x2, . . . , xm−1, xm) =

βm∑

ℓ=0

bjℓq̂α′(x1, x2, . . . , xm−1, ℓxm).

Thus q̂j,α′ as a function of the first m− 1 variables is a generalized poly-
nomial of multidegree ≤ β ′. By the previous theorem this implies that

q̂j,α′ ∈ P(α′
1,α′

2,...,α′
m−1,j)(V1, V2, . . . , Vm−1, Vm, W ).

Thus p ∈ Pβ(V1, V2, . . . , Vm, W ), as desired. ♦

This theorem immediately implies the following result.

Corollary 1. Let m ∈ N and β = (β1, β2, . . . , βm) ∈ Nm
0 . Then

p : ×m

i=1Vi → W is a generalized polynomial of multidegree ≤ β if and
only if all partial functions xi 7→ p(x1, . . . , xi−1, xi, xi+1, . . . , xm) are gen-
eralized polynomials of (simple) degree ≤ βi.

3. Polynomials in several variables and multi-Jensen

functions

The characterization of polynomials in Pβ(V1, V2, . . . , Vm, W ) by
Th. 4 is done by a system of functional equations. In [PS, Thm. 6] the
connection between polynomials in one variable of degree ≤ n and n-
Jensen functions has been used to show that given rational vector spaces
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U, W, a function q : U → W is in Pn(U, W ) if and only if the functional
equation

(9) q(x) =
1

n!

n∑

j=0

(−1)n−j

(
n

j

)
(1 + j)nq

(
y + jx

1 + j

)
, x, y ∈ U

is satisfied. This may be generalized and as a result we get a characteri-
zation of the polynomials of multi-degree ≤ β.

Theorem 5. Let V1, V2, . . . , V, W be rational vector spaces and let β ∈
∈ Nm

0 . Then a function p : V1 × V2 × . . . × Vm → W is a polynomial of
multi-degree ≤ β if and only if the functional equation

p(x1, x2, . . . , xm) =
1

β!

∑

α∈Nβ

(
m∏

j=1

(−1)βj−αj

(
βj

αj

)
(1+αj)

βj

)
×(10)

× p

(
y1+α1x1

1 + α1
,
y2+α2x2

1 + α2
, . . . ,

ym+αmxm

1 + αm

)

is satisfied for all xj , yj ∈ Vj and all 1 ≤ j ≤ m.

Proof. Let p ∈ Pβ(V1, V2, . . . , Vm, W ). By Cor. 1 this implies that p as
a function of the j-th variable is a polynomial of degree ≤ βj . Thus by
(9) we get

p(x1, . . . , xj−1, xj , xj+1, . . . , xm) =(11)

=
1

βj !

βj∑

αj=0

(−1)βj−αj

(
βj

αj

)
(1+αj)

βjp

(
x1, ..., xj−1,

yj+αjxj

1 + αj

, xj+1, ..., xm

)

for all 1 ≤ j ≤ m and all xj , yj ∈ Vj. This implies (10).
Conversely, let (10) be satisfied. (9) for the polynomial q = 1 ∈

∈ Q = W implies that

1

βl!

βl∑

αl=0

(−1)βl−αl

(
βl

αl

)
(1 + αl)

βl = 1.

Fixing j, putting yl = xl for l 6= j and using the above identity we
derive equation (11) from (10). Thus p is a polynomial of degree ≤ βj

in the j-th variable for all j. By Cor. 1 this implies the desired result
p ∈ Pβ(V1, V2, . . . , Vm, W ). ♦

For β = (1m) the space Pβ(V1, V2, . . . , Vm, W ) is the space of all
functions q : V1 × V2 × . . . × Vm → W which are Jensen in each variable.
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Now let β ∈ Nm
0 be arbitrary. For convenience and generalizing the case

of a single variable we denote the space of all functions q : Vβ → W which
are Jensen in each variable by

J β(V1, V2, . . . , Vm, W ) := P(1|β|)(V1, . . . , V1︸ ︷︷ ︸
β1-times

, V2, . . . , V2︸ ︷︷ ︸
β2-times

, . . . , Vm, . . . , Vm︸ ︷︷ ︸
βm-times

),

and by

J β,sym(V1, V2, . . . , Vm, W ) :=

:= {q ∈ J β(V1, V2, . . . , Vm, W ) | qπ = q for all π ∈ Sβ}

the subspace of all symmetric q from J β(V1, V2, . . . , Vm, W ).

Theorem 6. Let β ∈ Nm
0 be given. Then

1) q ◦ δβ ∈ Pβ(V1, V2, . . . , Vm, W ) for all q ∈ J β(V1, V2, . . . , Vm, W ).
2) For any p ∈ Pβ(V1, V2, . . . , Vm, W ) there is some

q ∈ J β,sym(V1, V2, . . . , Vm, W ) such that p = q ◦ δβ.

Such a q may be written as
q(x11, . . . , x1β1

, x21, . . . , x2β2
, . . . , xm1, . . . , xmβm

) =(12)

=
1

β!

∑

S1⊆β1

...
Sm⊆βm

m∏

j=1

(
(−1)βj−αj (1 + |Sj |)

βj
)
×

× p

(
y1 +

∑
i1∈S1

x1i1

1 + |S1|
, . . . ,

ym +
∑

im∈Sm
xmim

1 + |Sm|

)
,

where the choice of the yj ∈ Vj does not affect the values of q.

Proof. Let q ∈ J β(V1, V2, . . . , Vm, W ). Then(
(xj1, . . . , xjβj

) 7→ q(. . . , xj1, . . . , xjβj
, . . .)

)
∈ J βj(Vj , W ).

By [PS, Cor. 1] (xj 7→ q(. . . , xj, . . . , xj︸ ︷︷ ︸
βj-times

, . . .)) ∈ Pβj (Vj, W ). Therefore

q ◦ δβ ∈ Pβ(V1, V2, . . . , Vm, W ) by Cor. 1.
Now let p ∈ Pβ(V1, V2, . . . , Vm, W ) be given. Take some yl ∈ Vl,

l = 1, 2, . . . , m, and define q by (12). For fixed j the right-hand side of
(12) may be written as

∑

Sl⊆βl ,l 6=j

∏

l 6=j

(
(−1)βl−|Sl|(1 + |Sl|)

βl

βl!

)
×

×
1

βj!

∑

Sj⊆βj

(−1)βj−|Sj |(1 + |Sj |)
βjp

(
. . . ,

yj +
∑

ij∈Sj
xjij

1 + |Sj|
, . . .

)
.
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Using (1) with r = 1 we may conclude that the inner sum does not
depend on yj and that it is Jensen in each of the variables xjij , 1 ≤ ij ≤
≤ βj . Since this holds true for all j the definition of q does not depend
on the yj, 1 ≤ j ≤ m. Moreover q is Jensen in each variable. Obviously
qπ = q for all π ∈ Sβ. Finally, putting xj1 = xj2 = . . . = xjβj

= xj for all
j results in

(q ◦ δβ)(x1, x2, . . . , xm) =

=
1

β!

∑

S1⊆β1

...
Sm⊆βm

m∏

j=1

(
(−1)βj−αj (1+|Sj|)

βj
)
p

(
y1+|S1|x1

1 + |S1|
, ...,

ym+|Sm|xm

1 + |Sm|

)
=

=
1

β!

∑

α∈Nβ

m∏

j=1

(
(−1)βj−αj

(
βj

αj

)
(1+αj)

βj

)
p

(
y1+α1x1

1 + α1

, ...,
y1+αmxm

1 + αm

)
.

This and Th. 5 implies q ◦ δβ = p. ♦

Now we may generalize the result from the first section concerning
the relation between Pn(V, W ) and J n,sym(V, W ).

Theorem 7. For given β ∈ Nm
0 the mapping q 7→ q ◦ δβ from

J β(V1, V2, . . . , Vm, W ) to Pβ(V1, V2, . . . , Vm, W ) is a linear isomorphism.
The inverse is given by (12).

Proof. By the considerations above we only must show that the mapping
q 7→ q ◦ δβ is injective. This is done by induction on m. For convenience
we also give the argument for m = 1. So let p = q ◦ δβ with q ∈
∈ J β,sym(V1, W ) and assume p = 0. We have to show that q = 0.
By [PS, Th. 3] we know that there are Mi ∈ Homsym

i (V1, W ) such that
q(x1, x2, . . . , xβ) =

∑β

i=0

∑
1≤j1<j2<...<ji≤β Mi(xj1, xj2 , . . . , xji

). Thus 0 =

= p(x) =
∑β

i=0

(
β

i

)
Mi(x

i). Therefore Mi ◦ δi = 0 for all i. Thus by Th. 1
Mi = 0 for all i. This means that q = 0.

Now let m≥2 and assume that the assertion holds true for m−1.
Since 0 = p(x1, x2, . . . , xm) = q(xβ1

1 , xβ2

2 , . . . , xβm
m ) and since q as a func-

tion of the last βm variables is multi-Jensen and symmetric by using the
case m = 1 we get that

q(xβ1

1 , xβ2

2 , . . . , xm1, . . . , xmβm
) = 0

for all xi ∈ Vi, 1 ≤ i ≤ m−1, and all xmj ∈ Vm. Using then the induction
hypothesis we may conclude that q = 0. ♦
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4. Diagonalizations of multivariate polynomials

In this section we give answers to the questions posed in the intro-
duction. Let V1 = V2 = . . . = Vm =: U

Theorem 8. Let n ∈ N, let β ∈ Nm
0 , assume |β| = n. Then for any

P ∈ Pβ(U, . . . , U︸ ︷︷ ︸
m-times

, W ) the diagonalization p = P ◦ δm is contained in

Pn(U, W )

Proof. Choose q ∈ J β(U, U, . . . , U︸ ︷︷ ︸
m-times

, W ) = J |β|(U, W ) such that P =

= q ◦ δβ. Then p = q ◦ δn ∈ Pn(U, W ). ♦

Theorem 9. Let p ∈ Pn(U, W ), let β ∈ Nm
0 , and assume |β| = n. Then

there is some P ∈ Pβ(U, U, . . . , U︸ ︷︷ ︸
m-times

, W ) such that P ◦ δm = p.

Proof. Let q ∈ J n(U, W ) with p = q ◦ δn. Define P : Um → W by
P := q ◦ δβ, i. e., P (x1, x2, . . . , xm) = q(xβ1

1 , xβ2

2 , . . . , xβm
m ). Then the

partial functions
xi 7→ P (x1, x2, . . . , xi−1, xi, xi+1, . . . , xm)

are generalized polynomials of degree ≤ βi. Thus P is a generalized
polynomial in m variables of multi-degree ≤ β. Obviously P ◦ δm =
= q ◦ δn = p. ♦

Theorem 10. Let us denote the P constructed in Th. 9 by pβ. Then
pn = p and pβ may be constructed from p by

pβ(x1, x2, . . . , xm) =(13)

=
1

n!

∑

α∈Nβ

(−1)n−|α|

(
m∏

j=1

(
βj

αj

))
(r + |α|)np

(
y +

∑m

j=1 αjxj

r +
∑m

j=1 αj

)
,

where (y, r) ∈ U × Q either equals (0, 0) (with 0np(0/0) := 0) or y is
arbitrary and r ∈ Q \ {0,−1, . . . ,−n}.

Proof. Note that pβ = q ◦ δβ with q = p(1n). (1) thus reads as

q(w1, w2, . . . , wn) =
1

n!

∑

S⊆n

(−1)n−|S|(r + |S|)np

(
y +

∑
i∈S wi

r + |S|

)
.

Let Mj = {β1 + . . . + βj−1 + 1, . . . , β1 + . . . + βj}. Then n is the disjoint
union of the Mj . Moreover pβ(x1, x2, . . . , xm) = q(w1, w2, . . . , wn) where
wi = xj for all i ∈ Mj . The sum over S ⊆ n may be written as a sum
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over S1 ⊆ M1, S2 ⊆ M2, . . . , Sm ⊆ Mm. Doing so we get y +
∑

i∈S wi =
= y +

∑m

j=1 |Sj| xj which only depends on the cardinality of the Sj. This
finally gives (13). ♦

Definition 6. For given p ∈ Pn(U, W ) and β ∈ Nm
0 with |β| = n the

mapping pβ : Um → V defined by (13) is called the β-blossom of p.

Thus additionally to the original blossom p(1,1,...,1) we have a whole
bunch of such blossoms.

Theorem 11. Let β ∈ Nm
0 , γ ∈ Nl

0 satisfy |β| = |γ| = n. Then given
p ∈ Pn(U, W ) the blossoms pβ and pγ are related by

pβ(x1, x2, . . . , xm) =(14)

=
1

n!

∑

α∈Nβ

(−1)n−|α|

(
m∏

j=1

(
βj

αj

))
(r + |α|)n(pγ ◦ δl)

(
y +

∑m

j=1 αjxj

r +
∑m

j=1 αj

)
,

where r and y are as in Th. 10.

Proof. This is obvious since p = pγ ◦ δl. ♦

Of course (13) is the special case of (14) with l = 1 and γ1 =
= n. In the case m = l and βi = γi, i = 1, 2, . . . , m, (14) renders a
functional equation for the β-blossom pβ of p ∈ Pn(U, W ). In particular,
the functional equation (23) of [PS] may be read as the special case m =
= l = 1 of (14).

Remark 2. Given p, β as above one cannot expect uniqueness of P ∈
∈ Pβ(U, U, . . . , U︸ ︷︷ ︸

m-times

, W ) with p = P ◦ δm. Let, for example, U = W =

= Q, n = 4, β = (2, 2), and m = 2. Then p ∈ P4(U, W ) iff p(x) =
=
∑4

i=0 aix
i and P ∈ P(2,2)(U, U, W ) iff P (x, y) =

∑2
i=0

∑2
j=0 aijx

iyj

with some ai, aij ∈ Q. But p = P ◦ δβ is equivalent to
a00 = a0, a10 + a01 = a1, a20 + a11 + a02 = a2, a21 + a12 = a3, a22 = a4

showing that there are four coefficients aij which may be chosen arbitrar-
ily.

Even the consideration of symmetric functions P , which makes
sense here since β1 = β2, still leaves room for one free parameter. As-
suming p(x) = P (x, x) and P (x, y) = P (y, x) for all x, y is equivalent
to

a00 = a0, a01 = a10 =
a1

2
, a11 arbitrary,

a20 = a02 =
a2 − a11

2
, a12 = a21 =

a3

2
, a22 = a4.
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The following theorem will give some final answer to all three ques-
tions from the introduction.

Theorem 12. Let n ∈ N, let β ∈ Nm
0 and assume |β| = n. Then

for any P ∈ Pβ(U, U, . . . , U︸ ︷︷ ︸
m-times

, W ) the diagonalization p = P ◦ δm is con-

tained in Pn(U, W ). If p ∈ Pn(U, W ) is given, there is exactly one
P ∈ Pβ(U, U, . . . , U︸ ︷︷ ︸

m-times

, W ) such that P ◦ δβ = p and such that

P (x1, x2, . . . , xm) =(15)

=
1

n!

∑

α∈Nβ

(−1)n−|α|

(
m∏

j=1

(
βj

αj

))
(r + |α|)n(P ◦ δm)

(
y +

∑m

j=1 αjxj

r +
∑m

j=1 αj

)
,

for all x1, x2, . . . , xm ∈ U with y and r as in the previous theorems.

Proof. This follows from the previous results by taking into considera-
tion that (15) is the same as (13) but formulated in terms of P only. ♦

The question if functional equation (15) also has other solutions
than that of the previous theorem can be answered negatively:

Theorem 13. Let β ∈ Nm
0 , let P : Um → W be an arbitrary function

which satisfies (15) with some r ∈ Q \ {0,−1, . . . ,−n} for all y ∈ U .
Then P ∈ Pβ(U, U, . . . , U︸ ︷︷ ︸

m-times

, W ).

Proof. The function p = P ◦ δm satisfies

p(x) =
1

n!

∑

α∈Nβ

(−1)n−|α|

(
m∏

j=1

(
βj

αj

))
(r + |α|)np

(
y + |α|x

r + |α|

)
.

Note that |α| ≤ |β| = n for α∈Nβ . Thus we have p(x)=
∑n

k=0 akp
(

y+kx

r+k

)

with ak = (−1)n−k(r+k)n

n!

∑
α∈Nβ ,|α|=k

∏m

j=1

(
βj

αj

)
. So by [S, Th. 9.5, p. 73],

which has also been used in to prove Th. 6 of [PS] we conclude that
p ∈ Pn(U, W ). So (15) becomes (13) with P instead of pβ. Therefore
P = pβ with p ∈ Pn(U, W ). This implies the desired result since pβ ∈
∈ Pβ(U, U, . . . , U︸ ︷︷ ︸

m-times

, W ). ♦

Remark 3. It is obvious that any P satisfying (15) is symmetric pro-
vided that all βi are equal to each other. Continuing the example from
the previous remark we see that in fact this condition is stronger than
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symmetry: P ∈ P(2,2)(U, U, W ) satisfies P (x, x) = p(x) for all x and (15)
if and only if

a00 = a0, a01 = a10 =
a1

2
, a11 =

2a2

3
,

a20 = a02 =
a2

6
, a12 = a21 =

a3

2
, a22 = a4,

which also demonstrates that P is determined uniquely by p if (15) is
satisfied.

5. Functions being polynomials separately in each

variable

In this section we consider arbitrary fields K and (classical) poly-
nomial functions f : Kn → K which for K = Q are just generalized
polynomials of some multi-degree β.

In [K, Lemma 4, p. 397] one finds the following assertion:

If a function f : Rn → R, f(x) = f(ξ1, . . . , ξn) is a polynomial
separately in each variable ξi, i = 1, . . . , n, then f is a poly-
nomial jointly in all variables.

In the proof it is (implicitly) assumed that the partial degrees of f are
bounded by p independently of the concrete variable and independently
of the values of the other variables. This makes the proof rather easy;
in fact what is used in the theorem following this Lemma 4 is this result
under the mentioned stronger assumption.

In [C] the author proves what the title of the paper states in the
case of functions from R2 to R. Problem E 2940 of the Amer. Math.
Monthly asks the question whether, given a function f : R × R → R

which is a polynomial separately in each variable is a polynomial jointly
in both variables. The solution to this problem (Amer. Math. Monthly
91 (1984), p. 142) was a reference to [C].

But it turns out that the situation is quite interesting if the ques-
tion is asked for an arbitrary field K instead of R. The answer to this
generalized Problem E 2940 depends on the cardinality of the field K.

Theorem 14. Let K be a field and n ∈ N. Suppose that f : Kn → K is
a polynomial function separately in each variable. Then

1. f is a polynomial function in n variables provided that K is finite
or uncountable.
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2. For every countable infinite field K there exists a function
f : K2 → K which is not a polynomial in both variables jointly.

Proof. If K is finite any function f : Kn → K is a polynomial function.
(For completeness we give the arguments: Given a = (a1, a2, . . . , an) ∈
∈ Kn we consider the Lagrange polynomial fa(x) = fa(x1, x2, . . . , xn):=
:=
∏n

i=1

∏
bi∈K,bi 6=ai

xi−bi

ai−bi
. Then f =

∑
a∈Kn f(a)fa.)

For uncountable K we use induction on n and the ideas from [C].
The case n = 1 is trivial. So suppose n ≥ 2. Fixing xn we get by the
induction hypothesis that f is a polynomial in x1, x2, . . . , xn−1. Thus
there are functions Aα : K → K, α ∈ Nn−1

0 such that I(ξ) := {α ∈
∈ Nn−1

0

∣∣Aα(ξ) 6= 0} is finite for all ξ ∈ K and such that

f(x1, . . . , xn−1, xn) =
∑

α∈N
n−1
0

Aα(xn)xα1

1 xα2

2 . . . x
αn−1

n−1

for all (x1, . . . , xn−1, xn) ∈ Kn. Given p ∈ N we define Fp := {ξ ∈
∈ K

∣∣ I(ξ) ⊆ {0, 1, . . . , p}n−1}. Since K is the union of the countably
many sets Fp and since K is uncountable there is some m such that Fm

is uncountable and thus infinite. Therefore

(16) f(x1, . . . , xn−1, xn) =
∑

α∈{0,1,...,m}n−1

Aα(xn)xα1

1 xα2

2 . . . x
αn−1

n−1

for all (x1, x2, . . . , xn−1) ∈ Kn−1 and all xn ∈ Fm. Let us choose subsets
Qi of K with |Qi| = m + 1. By Rem. 1 for K instead of Q the linear
system

0 =
∑

α∈{0,1,...,m}n−1

uαyα1

1 yα2

2 . . . y
αn−1

n−1 , (y1, y2, . . . , yn−1) ∈ Q :=
n−1

×
i=1

Qi

with (m + 1)n−1 equations for the (m + 1)n−1 variables uα has only the
trivial solution uα = 0, α ∈ {0, 1, . . . , m}n−1. Thus (16) may be solved
for the Aα(xn), xn ∈ Fm:

Aα(xn) =
∑

(y1,y2,...,yn−1)∈Q

cα(y1, y2, . . . , yn−1)f(y1, y2, . . . , yn−1, xn).

The mapping xn 7→ (y1, y2, . . . , yn−1, xn) is a polynomial in xn. Thus aα

defined by

aα(x) :=
∑

(y1,y2,...,yn−1)∈Q

cα(y1, y2, . . . , yn−1)f(y1, y2, . . . , yn−1, x)

is a polynomial in x such that aα(x) = Aα(x) for all x ∈ Fm and all
α ∈ {0, 1, . . . , m}n−1. So g : Kn → K,
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g(x1, . . . , xn−1, xn) :=
∑

α∈{0,1,...,m}n−1

aα(xn)xα1

1 xα2

2 . . . x
αn−1

n−1

is a polynomial in n variables and thus of the form g(x1, . . . , xn−1, xn) =
=
∑k

l=0 gl(x1, . . . , xn−1)x
l
n for some positive integer k and certain poly-

nomials gl in n − 1 variables. But

f(x1, . . . , xn−1, xn) =
∑

l∈N0

fl(x1, . . . , xn−1)x
l
n

where for each fixed (x1, . . . , xn−1) only finitely many fl(x1, . . . , xn−1) are
different from 0. Since f(x1, . . . , xn−1, xn) = g(x1, . . . , xn−1, xn) for xn ∈
∈ Fm and Fm is infinite we may conclude that fl = gl for l ≤ k and that
fl = 0 for l > k. This means that f = g. So f is a polynomial in n
variables since this is the case for g.

Finally suppose that K is countably infinite, K = {x0, x1, . . .} with
mutually distinct xi. We define f : K2 → K by f(xi, xj) :=

∑i

k=0 aikx
k
j

such that with certain aik, bjk ∈ K we also have f(xi, xj) =
∑j

k=0 bjkx
k
i

and aii = 1 for all i.
These coefficients may be constructed by induction: a00 := b00 := 1.

If, for n ≥ 0 we have already found aij , bij , 0 ≤ i, j ≤ n such that
i∑

k=0

aikx
k
j =

j∑

k=0

bjkx
k
i , 0 ≤ i, j ≤ n,

we put an+1,n+1 := 1 and determine the an+1,k as the unique solution of
the interpolation problem

n∑

k=0

an+1,kx
k
j =

j∑

k=0

bjkx
k
n+1 − an+1,n+1x

n+1
j , 0 ≤ j ≤ n.

Similarly the bn+1,k, 0 ≤ k ≤ n+1 are constructed as the unique solution
of

n+1∑

k=0

bn+1,kx
k
i =

i∑

k=0

aikx
k
n+1, 0 ≤ i ≤ n + 1.

Then by construction f is a polynomial in the first or second variable
if the value of the other variable is kept fixed. If f were a polynomial
in both variables jointly we would have f(x, y) =

∑m

i=0

∑m

j=0 cijx
iyj for

all x, y ∈ K where m is some positive integer and where cij are certain
elements of K. But this would imply

m+1∑

k=0

am+1,ky
k = f(xm+1, y) =

m∑

k=0

(
m∑

i=0

cikx
i
m+1

)
yk, y ∈ K,
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a contradiction since am+1,m+1 = 1. ♦

Remark 4. It is a kind of mathematical folklore that the finite fields are
exactly those finite commutative rings R with unit for which all functions
f : R → R are polynomial functions. Even something more is true:

1. For any finite field F and any positive integer all functions from
F n to F are polynomial functions.

2. Let R be a commutative ring with unit, not necessarily finite.
Assume that for some n ∈ N all functions from Rn to R are polynomial
functions. Then R is a finite field.

The proof of the first part is contained in the proof of the previous
theorem. If R satisfies the hypotheses we get immediately that we may
assume n = 1. Consider any R ∋ a 6= 0 and take f : R → R with
f(0) = 0 and f(a) = 1. Since f is a polynomial function there are
c0, c1, . . . , cm ∈ R such that f(x) =

∑m

j=0 cjx
j for all x ∈ R. Accordingly

c0 = f(0) = 0 and 1 = f(a) = a(c1 + c2a + . . . + cmam−1). Thus a is
a unit and therefore R is a field. Assume that R is infinite. Then we
consider f : R → R with f(1) = 1 and f(a) = 0 for all a 6= 1. Thus
there is a polynomial F ∈ R[X] with f(x) = F (x) for all x ∈ R. Since
F (a) = 0 for a 6= 1, F is divisible by

∏m

j=1(X − aj) where m ∈ N is
arbitrary and a1, a2, . . . , am are m mutually distinct elements of R \ {1}.
So F is divisible by polynomials of arbitrary high degree which means
that F = 0. But this contradicts F (1) = 1 6= 0.

Acknowledgement. The authors are indebted to Wolfgang Desch, who
contributed substantially to the formulation and proof of Th. 5.

Note added in proof. Recently the authors became aware of the fact
that Th. 1 from the paper [FH] is closely related to Th. 4 presented here.
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