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The primes are stars.

Abstract: Infinite polygon transformations by iteratively taking the apices of
similar isosceles triangles erected on the sides of a polygon are analyzed. In
contrast to other approaches, this is done with respect to the base angle of
the isosceles triangles. A finite set of characteristic angles is derived, which
only depend on the number of vertices of the polygon. This results in a sys-
tematic and complete classification of consecutive base angle intervals and the
associated limit polygons. The latter in turn are linear combinations of eigen-
polygons obtained by diagonalizing the circulant matrix representation of the
transformation. Analyzing the principles of the symmetry of eigenpolygons and
thereby of the limit polygons reveals a connection to prime numbers. Based on
these results, a geometric sieve as well as a factorization algorithm for prime
numbers is presented.
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1. Introduction

The construction of similar figures on the sides of a polygon and
the resulting concentric polygons has fascinated mathematicians for over
a century [6]. The most popular theorem in this area is Napoleon’s
Theorem [19] where a regular triangle is constructed within one trans-
formation step by connecting the centers of equilateral triangles erected
on each side of the initial triangle. Since then, this approach has been
generalized with respect to the number of vertices of the initial poly-
gon, the geometric construction schemes, the resulting symmetries, or
the number of transformation steps [3, 10, 14, 20]. One example is the
Petr–Douglas–Neumann theorem [5], which transforms an n-gon within
n − 2 steps into an equilateral polygon. Another class of transformation
schemes uses an infinite number of iteration steps [11, 12, 20].

This paper adopts the conjectures concerning the relation between
polygon transformations and prime numbers given by [13] and provides a
mathematical foundation. In the following, this modified polygon trans-
formation will be analyzed. On each side of the polygon, similar isosceles
triangles are erected. After that, the apices of these similar triangles are
connected, which results in a new polygon. In contrast to existing ap-
proaches, the sequence resulting from iteratively applying the same trans-
formation will be analyzed with respect to the base angle θ ∈ (0, π/2)
of the isosceles triangles. This is illustrated in Fig. 1 for random initial
polygons with n = 10 vertices (upper) and n = 11 vertices (lower).

It will be shown that there is a change in the geometry of limit
figures of the sequences of scaled polygons at each characteristic angle
θk = π(2k+1)/(2n), k ∈ {0, . . . , ⌊n/2⌋−1}, leading to a full classification
of limit polygons as depicted in Fig. 1. Whereas the polygons for θ
within an interval bounded by characteristic angles are regular polygons
or equilateral stars with possibly multiple vertices (positioned above the
center of the according interval), the polygons for θ = θk, k > 0, are
linear combinations of the neighboring limit polygons. Furthermore, the
unscaled polygons degenerate to their common centroid, become bounded
regular n-gons or grow infinitely in the case of θ being smaller, equal or
larger than θ0 = π/(2n).

A proof is given that n is a prime number if, and only if, all except
the first two resulting polygons for angles within the intervals bounded
by characteristic angles are star shaped n-gons. Otherwise, reduced poly-
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Figure 1: Initial random polygons (plotted above θ = 0) and resulting
limit polygons for n = 10 (upper) and n = 11 (lower) depending on the
base angle θ ∈ (0, π/2).

gons with vertex multiplicities greater than one occur. This results in a
geometric factorization algorithm and sieve for prime numbers.

In this paper, a representation of the transformation using complex
numbers and circulant matrices is given. By analyzing the transforma-
tion using the discrete Fourier transform, the characteristic angles are
derived and it will be shown that the obtained shapes are linear com-
binations of specific eigenpolygons also known as fundamental polygons
[1, 7]. Furthermore, analyzing the symmetries of eigenpolygons reveals
their connection to prime numbers.

2. Transformation of a polygon

First, a definition of the transformation of a polygon using complex
numbers will be given. Let z(0) ∈ Cn denote a plane counterclockwise
oriented polygon with n ≥ 3 vertices z

(0)
k :=(z(0))k, k∈{0, . . . , n − 1}, and

sides of length > 0, which may possibly intersect each other. Over each
side z

(0)
k z

(0)
(k+1) mod n of the polygon an outward directed isosceles triangle

z
(0)
k z

(1)
k z

(0)
(k+1) mod n with base angle θ ∈ (0, π/2) is constructed, as depicted

in Fig. 2.
The apices are given by

z
(1)
k := wz

(0)
k + wz

(0)
(k+1)mod n with w :=

1

2
(1 + i tan θ)
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Figure 2: Transformation of a polygon in the case of n = 4 using θ = π/6.

and w denoting the complex conjugate of w. The vertices z
(1)
k in term

define a new polygon z(1), which can be obtained by using the following
matrix formulation.

Definition 2.1. The linear transformation of a polygon z(ℓ) ∈ Cn into a
new polygon z(ℓ+1) ∈ Cn is given by

(1) z(ℓ+1) =











z
(ℓ+1)
0

z
(ℓ+1)
1
...

z
(ℓ+1)
n−2

z
(ℓ+1)
n−1











:=










w w
w w

. . .
. . .

w w
w w










︸ ︷︷ ︸

=:M











z
(ℓ)
0

z
(ℓ)
1
...

z
(ℓ)
n−2

z
(ℓ)
n−1











= Mz(ℓ) ,

where w = (1 + i tan θ)/2.

Due to w + w = 1, the sum of each row and column of M is one,
thus leading to the familiar result that the transformation preserves the
centroid of the polygon. That is, 1

n

∑n−1
k=0 z

(ℓ+1)
k = 1

n

∑n−1
k=0 z

(ℓ)
k , which can

easily be shown by rearranging the sum and collecting the coefficients
of z

(ℓ)
k .

Iteratively applying the transformation given by Def. 2.1 to an ini-
tial polygon z(0) leads to a sequence of concentric polygons z(ℓ), ℓ ∈ N,
with z(ℓ) = M ℓz(0). This is depicted in Fig. 3 for different transformation
angles θ and iteration numbers ℓ. In this, the same initial 10-gon z(0)
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Figure 3: Sequences of polygons z(ℓ) = M ℓz(0) obtained by iteratively
applying the transformation using different transformation angles θ.

as depicted on the upper left of Fig. 1 has been used. Additionally, the
polygon size has been normalized after each iteration step, to avoid the
rapid increase of size in the case of larger θ values. In order to deter-
mine the convergence behavior of such sequences, the matrix M will be
analyzed in the following.

3. Eigenvalues and eigenpolygons

Since each row of M is a cyclic shift of its preceeding row, the
theory of circulant matrices can be applied. For the convenience of the
reader, the relevant results will be given briefly (cf. for example [2, 4]).

The square matrix A ∈ C
n×n is called circulant, if it is of the form

A :=








a0 a1 . . . an−1

an−1 a0 . . . an−2
...

...
. . .

...
a1 a2 . . . a0








.

It is fully defined by its first row vector a := (a0, . . . , an−1) with zero-
based element indices. With r := exp(2πi/n) denoting the n-th root
of unity it holds that A is diagonalized by the unitary discrete Fourier-
Matrix
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F :=
1√
n






r0·0 . . . r0·(n−1)

...
. . .

...
r(n−1)·0 . . . r(n−1)·(n−1)






with entries fµ,ν = rµ·ν/
√

n and likewise zero-based indices µ, ν ∈
∈ {0, . . . , n − 1}. That is, the diagonal matrix D of the eigenvalues ηk,
k ∈ {0, . . . , n − 1}, is given by

(2) D = diag(η0, . . . , ηn−1) := F ∗AF ,

with F ∗ denoting the conjugate transpose of F . Furthermore, the vector
η := (η0, . . . , ηn−1)

t of all eigenvalues can be easily computed by multi-
plying the non-normalized Fourier-Matrix with the transposed first row
of A, i.e. η =

√
nFat.

In the case of the geometric transformation M given in the previous
section it holds that a = (w, w, 0, . . . , 0). And like w the eigenvalues ηk

depend on the base angle θ. But in order to simplify the notation, ηk

will be used instead of ηk(θ).

Lemma 3.1. The eigenvalues of the iteration matrix M according to (1)
are given by

(3) ηk = w + rkw = sec θ cos

(

θ − πk

n

)

eiπk/n ,

where k ∈ {0, . . . , n − 1}. In particular it holds that η0 = 1.

Proof. Since the representation ηk = w + rkw follows readily from
η =

√
nF (w, w, 0, . . . , 0)t and the definition of F , only the second repre-

sentation has to be shown.
Due to θ ∈ (0, π/2), it holds that |w| = 1

2

√
1 + tan2 θ = 1

2
sec θ.

Furthermore, the argument of w is given by θ and that of rk by 2πk/n.
Collecting the real and imaginary parts of the two summands in ηk =
= w + rkw and applying trigonometric identities to the following expres-
sions in squared brackets results in

ηk =
1

2
sec θ

([

cos θ + cos

(
2πk

n
− θ

)]

+ i

[

sin θ + sin

(
2πk

n
− θ

)])

=

= sec θ cos

(

θ − πk

n

) (

cos
πk

n
+ i sin

πk

n

)

,

which implies (3). The special case η0 = 1 follows likewise from (3) or
η0 = w + w = 2 Rew = 1. ♦
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The fact that all circulant matrices are diagonalizable by the same
Fourier matrix F is remarkable and has far reaching consequences with
respect to resulting symmetries. Hence, the orthonormal vectors given
by the columns

fk := (f0,k, . . . , fn−1,k)
t =

1√
n

(
r0·k, r1·k, . . . , r(n−1)·k)t

,

k ∈ {0, . . . , n − 1}, of F build a natural basis for the analysis of circu-
lant polygon transformations. The vectors fk can also be interpreted as
polygons, which will be called Fourier polygons.

The coefficients ck in the representation of z(0) =
∑n−1

k=0 ckfk in
terms of the Fourier polygons are given by the entries of the vector
c := F ∗z(0). Furthermore, due to (2) the transformation matrix M can
be written as M = FDF ∗ with D denoting the diagonal matrix of the
eigenvalues ηk. Hence, the polygon obtained by successively applying ℓ
transformation steps can be written as

(4) z(ℓ) = M ℓz(0) = (FDF ∗)ℓz(0) = FDℓF ∗z(0) = FDℓc =

n−1∑

k=0

ηℓ
kckfk .

That is, z(ℓ) is a linear combination of the n polygons ckfk scaled by the
ℓ-th power of the associated eigenvalues. Therefore, this special polygons
will be defined and analyzed below.

Definition 3.1. For k ∈ {0, . . . , n−1} the n-dimensional complex vector

(5) vk := ckfk =

(
F ∗z(0)

)

k√
n

(
r0·k, . . . , r(n−1)·k)t

will be called the k-th eigenpolygon of the initial polygon z(0).

Due to f0 = 1√
n
(1, . . . , 1)t and

(
F ∗z(0)

)

0
= 1√

n

∑n−1
k=0 z

(0)
k , each ver-

tex of the associated degenerated eigenpolygon v0 is 1
n

∑n−1
k=0 z

(0)
k repre-

senting the centroid of z(0). Furthermore, due to η0 = 1 and the decom-
position (4) it holds that

(6) z(ℓ) =
n−1∑

k=0

ηℓ
kvk = v0 +

n−1∑

k=1

ηℓ
kvk .

It should be noted that the eigenpolygons vk do not necessarily form a
basis of Cn, since some of the coefficients ck might be zero causing the
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associated vk to become zero vectors. However, since η0 = 1 in contrast to
all other eigenvalues does not depend on the base angle θ, vo representing
the centroid is always preserved as can be seen by equation (6).

Since all circulant (n×n)-matrices can be diagonalized by the same
Fourier matrix F , all geometric transformations represented by such ma-
trices lead to the same eigenpolygons. Therefore, the eigenpolygons do
not depend on the base angle θ, but only on the initial polygon z(0).
Hence, different transformation schemes result in different eigenvalues
thus placing emphasis on different symmetric configurations.

Since the eigenpolygon vk is the Fourier polygon fk times the coef-
ficient ck ∈ C, vk preserves the symmetry of the fk. This will be stated
more precisely in the following lemma, since this symmetry is also re-
flected by the limit polygons of the iterated transformation.

Lemma 3.2. For k, µ ∈ {0, . . . , n − 1} it holds that

(7) (vk)µ = rµk(vk)0 ,

that is, the µ-th vertex of the eigenpolygon vk can be derived by rotating

the first vertex by angle 2πµk/n. In particular it follows that (vk)µ mod n =
= rk(vk)µ−1 where µ ∈ {1, . . . , n}.
Proof. This follows readily from equation (5) since

(vk)µ = ck(fk)µ = ck

(
1√
n

rµk

)

= rµk

(
ck√
n
· 1

)

= rµk(vk)0 .

The rotation angle can be derived from rµk = exp(2πiµk/n) and the
representation (vk)µ mod n = rk(vk)µ−1 is implied by equation (7). ♦

If ℓ tends to infinity, z(ℓ) tends to the scaled eigenpolygon belonging
to the eigenvalue with the largest absolute value. Using (3) in order to
determine the dominating eigenvalue implies

|ηk| = sec θ

∣
∣
∣
∣
cos

(

θ − πk

n

)∣
∣
∣
∣
.

Fig. 4 depicts the values of |ηk| depending on θ ∈ (0, π/2) for
k ∈ {0, . . . , n − 1} in the case of n ∈ {5, 6}. One can observe that
intersections of the functions |ηk| occur only at angles θ which are mul-
tiples of π/(2n). This is stated by the following lemma.

Lemma 3.3. For k, m ∈ {0, . . . , n − 1}, k 6= m, the functions |ηk|
and |ηm| of θ ∈ (0, π/2) may only intersect for θ = µπ/(2n) where

µ ∈ {1, . . . , n − 1}.
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Figure 4: Absolute values of eigenvalues for θ ∈ (0, π/2) in the case of
n = 5 (left) and n = 6 (right). Dominating eigenvalues are named.

Proof. Since |ηk| and |ηm| are positive, this will be shown by analyzing
the roots of the difference function of the squared values

(8) dk,m(θ) := |ηk|2−|ηm|2 =sec2 θ

(

cos2

(

θ− πk

n

)

−cos2
(

θ− πm

n

))

=

= sec2 θ sin

(

2θ − π
k + m

n

)

sin

(

π
k − m

n

)

.

Since |k − m|/n ∈ {1/n, . . . , (n − 1)/n}, roots can only occur, if the
argument of the first sine factor in (8) is a multiple of π, that is

2θ − π
k + m

n
= νπ ⇔ θ =

π

2

(

ν +
k + m

n

)

, ν ∈ Z .

Due to θ ∈ (0, π/2), the factor ν + (k + m)/n has to be in (0, 1) thus
implying k +m 6= n and ν = −⌊(k +m)/n⌋, where ⌊ · ⌋ denotes rounding
towards zero. Since k 6= m, this results in (k+m) ∈ {1, . . . , 2n−3}\{n}.

In the case of (k+m)∈{1, ..., n−1} and (k+m)∈{n + 1, ..., 2n−3}
it follows that ν = 0 and ν = −1 respectively, thus providing the roots

θ =
π

2n
(k + m) and θ =

π

2n
(k + m − n)

respectively, as stated in the lemma. ♦

The behavior of z(ℓ) depends on the dominating eigenvalue, which
itself depends on the base angle θ. As can be seen in Fig. 4, the dominat-
ing eigenvalue changes at each odd multiple of π/(2n) marked by square
markers. This is stated by the following lemma, which also gives the
index of the dominating eigenvalue for each interval.
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Lemma 3.4. For k ∈ {0, . . . , ⌊n/2⌋ − 1}, where ⌊ · ⌋ denotes rounding

towards zero, let

(9) θk :=
π

2n
(2k + 1) , furthermore θ−1 := 0, θ⌊n/2⌋ :=

π

2
.

On each interval (θk−1, θk), k ∈ {0, . . . , ⌊n/2⌋}, the index of the domi-

nating eigenvalue is given by k, that is

(10) θ ∈ (θk−1, θk) ⇒ |ηk| > |ηm| ∀m ∈ {0, . . . , n − 1} \ {k} .

In addition, for k ∈ {0, . . . , ⌊n/2⌋ − 1}
(11)
θ = θk ⇒ |ηk| = |ηk+1| > |ηm| ∀m ∈ {0, . . . , n − 1} \ {k, k + 1} ,

that is, for θ = θk the function |ηk| is only intersected by |ηk+1|.
Proof. Induction over the intervals (θk−1, θk) for k ∈ {0, . . . , ⌊n/2⌋}
will be used. In the case of k = 0 implying θ ∈ (θ−1, θ0) =

(
0, π/(2n)

)

equation (10) holds, if the associated difference function d0,m(θ) according
to (8) is positive for all m ∈ {1, . . . , n − 1}. This is the case, since

d0,m(θ) = sec2 θ
︸ ︷︷ ︸

>0

sin
(

2θ − π
m

n

)

︸ ︷︷ ︸

<0

sin

(

π
−m

n

)

︸ ︷︷ ︸

<0

> 0 ,

due to sec2 θ > 0 in the case of the first factor, −π < 2 · 0 − π n−1
n

<
< 2θ − πm

n
< 2 π

2n
− π 1

n
= 0 in the case of the second factor, and

−πm
n
∈ (−π, 0) in the case of the third factor.
In order to show (11) the equation

d0,m

( π

2n

)

= sec2 π

2n
︸ ︷︷ ︸

6=0

sin
(π

n
− π

m

n

)

sin

(

π
−m

n

)

︸ ︷︷ ︸

6=0

!
= 0

implies π
n
− πm

n
= π 1−m

n

!
= νπ with ν ∈ Z, hence m = 1, since

m ∈ {1, . . . , n − 1}. That is, for θ = θ0 the function |η0| is only in-
tersected by |η1|. Furthermore, since all |ηk| are continuous as well as
differentiable on (0, π/2) except the points where |ηk| = 0, and dom-
inated by |η0| on

(
0, π/(2n)

)
, it holds that 1 = η0 = |η1| > |ηm| for

m ∈ {2, . . . , n − 1} in θ0.
For a given k ∈ {1, . . . , ⌊n/2⌋ − 1} it will now be assumed that

for θk−1 the dominating eigenvalue changes from ηk−1 to ηk. In order to
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prove (10) for the interval (θk−1, θk) it suffices to show that |ηk| is not
intersected by any other |ηm| with m ∈ {0, . . . , n − 1} \ {k}.

According to Lemma 3.3 intersections may only occur for θ = πk/n,
which is the midpoint of the interval (θk−1, θk). Since

dk,m

(
πk

n

)

!
= 0 ⇒ sin

(

2
πk

n
− π

k + m

n

)

!
= 0

implies 2πk
n
− π k+m

n
= π

n
(k − m)

!
= νπ, ν ∈ Z and therefore m = k, the

dominating function |ηk| is not intersected by any other |ηm| inside of
(θk−1, θk).

Finally, (11) is shown by analyzing

dk,m (θk) = sec2 θk sin

(

π
k + 1 − m

n

)

sin

(

π
k − m

n

)

!
= 0 .

The first sine becomes zero in the case of m = k + 1. The second
sine, which does not depend on θ, is nonzero due to m 6= n − k. Since
the difference function changes its sign in θk, the dominating eigenvalue
changes from ηk on the left of θk to ηk+1 on the right as stated. ♦

4. Limit polygons and primes

In the case of θ > π/(2n), the absolute value of the dominating
eigenvalue is greater than one causing the vertices of z(ℓ) to tend to
infinity if ℓ increases. Therefore, the polygons are scaled according to
the following definition.

Definition 4.1. For θ ∈ (θk−1, θk], k ∈ {0, . . . , ⌊n/2⌋}, with θ 6= π/2 let

(12) z
(ℓ)
s,θ := v0 +

1

|ηk|ℓ
(
z(ℓ) − v0

)
= v0 +

n−1∑

µ=1

(
ηµ

|ηk|

)ℓ

vµ

be the sequence of polygons scaled according to the centroid of z(0) and
the dominating eigenvalue with index k.

The rightmost representation of z
(ℓ)
s,θ follows readily from (6). It also

holds that z(ℓ) = z
(ℓ)
s,θ in the case of θ ∈

(
0, π/(2n)

]
. That is, scaling has

no effect in this case since the dominating eigenvalue is given by η0 = 1.
Based on the results obtained so far, a full classification of the behavior
of the sequence z

(ℓ)
s,θ for ℓ → ∞ can now be given.
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Theorem 4.1. For the base angle θ ∈
(
0, π/2

)
and ℓ ∈ N, the scaled

polygons z
(ℓ)
s,θ tend to the limit polygons

(13)

p
(ℓ)
s,θ :=







v0, if θ ∈ (0, θ0),

v0 + eiπℓ/nv1, if θ = θ0,

v0 + eiπkℓ/nvk, if θ∈(θk−1, θk), k∈{1, ..., ⌊n/2⌋},
v0+eiπkℓ/nvk+eiπ(k+1)ℓ/nvk+1, if θ = θk, k∈{1, ..., ⌊n/2⌋ − 1},

with θk given by (9). That is lim
ℓ→∞

∥
∥
∥z

(ℓ)
s,θ − p

(ℓ)
s,θ

∥
∥
∥ = 0, with ‖ · ‖ denoting

the norm defined by ‖x‖ =
√

x∗x.

Proof. All four cases will be shown in the following manner. Based
on the results of Lemma 3.4 the dominating terms, which lead to the
definition of p

(ℓ)
s,θ, will be separated in the scaled decomposition (12) from

a remaining finite distortion sum. The latter will tend to the zero vector
if ℓ tends to infinity.

In the case of θ ∈ (0, θ0) the dominating eigenvalue is given by η0

with the associated eigenpolygon v0 = p
(ℓ)
s,θ. It follows readily from (6)

that

lim
ℓ→∞

∥
∥
∥z

(ℓ)
s,θ − p

(ℓ)
s,θ

∥
∥
∥ = lim

ℓ→∞

∥
∥
∥
∥
∥

n−1∑

µ=1

ηℓ
µvµ

∥
∥
∥
∥
∥
≤

n−1∑

µ=1

‖vµ‖ lim
ℓ→∞

|ηµ|ℓ
︸ ︷︷ ︸

=0

= 0 ,

since |ηµ| < 1 for µ ∈ {1, . . . , n − 1} according to Lemma 3.4.
In the case of θ = θ0 = π/(2n) the dominating eigenvalues are η0

and η1 with η0 = 1 = |η1|, where

η1 = sec
π

2n
cos

( π

2n
− π

n

)

eiπ/n = eiπ/n .

Thus it can be stated that

z
(ℓ)
s,θ0

= v0 + ηℓ
1v1 +

n−1∑

µ=2

ηℓ
µvµ = p

(ℓ)
s,θ0

+

n−1∑

µ=2

ηℓ
µvµ .

Again, the distortion sum tends to the zero vector if ℓ tends to infinity
since |ηµ| < 1.

In the case of θ ∈ (θk−1, θk), k ∈ {1, . . . , ⌊n/2⌋}, it holds that

(14) z
(ℓ)
s,θ = v0 +

(
ηk

|ηk|

)ℓ

vk +

n−1∑

µ=1
µ6=k

(
ηµ

|ηk|

)ℓ

︸ ︷︷ ︸

→0

vµ .
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At this, the eigenvalue representation (3) implies
ηk

|ηk|
= sign

(

sec θ cos

(

θ − πk

n

))

︸ ︷︷ ︸

=1

eiπk/n = eiπk/n ,

with θ ∈ (θk−1, θk), since the argument of the cosine factor varies within
the interval (−π/(2n), π/(2n)). Replacing the obtained exponential rep-
resentation of ηk/|ηk| in (14) yields the limit polygon as stated in the
third case of (13).

Finally, in the case of θ = θk, k ∈ {1, . . . , ⌊n/2⌋ − 1} with the
dominating eigenvalues ηk and ηk+1 it holds that

z
(ℓ)
s,θk

= v0 +

(
ηk

|ηk|

)ℓ

vk

︸ ︷︷ ︸

=eiπkℓ/nvk

+

(
ηk+1

|ηk|

)ℓ

vk+1 +
n−1∑

µ=1
µ6=k,k+1

(
ηµ

|ηk|

)ℓ

︸ ︷︷ ︸

→0

vµ ,

due to the results of the previous case for the second summand. In the
case of the third summand it holds that

ηk+1

|ηk|
= sign

(

sec θk cos

(

θk −
π(k + 1)

n

))

︸ ︷︷ ︸

=1

eiπ(k+1)/n = eiπ(k+1)/n,

since the argument of the cosine function is −π/(2n). ♦

It should be noted that the limit polygons p
(ℓ)
s,θ depend on the iter-

ation number ℓ due to the exponential coefficients of the eigenpolygons,
which reflect the rotational effect of the transformation. Furthermore,
only the counterclockwise oriented eigenpolygons vk, with k∈{0,...,⌊n/2⌋},
are involved.

The following will now focus on the shapes of the limit polygons
given by Th. 4.1 and therefore on the shapes of the eigenpolygons vk,
which are scaled Fourier polygons. The latter are depicted in Fig. 5 for
n ∈ {3, . . . , 6} and k ∈ {1, . . . , ⌊n/2⌋}. In this, circle markers indicate
the scaled roots of unity lying on a circle with radius 1/

√
n, whereas solid

black markers indicate the vertices of the Fourier polygons. Also given is
the vertex index or, in the case of multiple vertices, a comma separated
list of indices. The case k = 0, where f0 degenerates to one vertex with
multiplicity n, is omitted.

The connections between eigenpolygons, prime numbers, and Eu-
ler’s ϕ-function, where ϕ(n) denotes how many of the numbers from 1 to
n are relatively prime to n [8], are stated in the following theorem.
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Figure 5: Fourier polygons fk for n ∈ {3, . . . , 6} and k ∈ {1, . . . , ⌊n/2⌋}.

Theorem 4.2. Let gcd(n, k) denote the greatest common divisor of the

two natural numbers n and k. Then the following holds for the eigen-

polygons vk and therefore for the limit polygons of z
(ℓ)
s,θ in the case of

θ ∈ (θk−1, θk), k ∈ {1, . . . , ⌊n/2⌋}, and ck 6= 0:
1. The eigenpolygon vk is similar to the polygon obtained by suc-

cessively connecting counterclockwise each k-th root of unity.

2. The eigenpolygon vk is a
(
n/ gcd(n, k)

)
-gon with vertex multi-

plicity gcd(n, k).
3. The eigenpolygon vk is a convex regular (n/k)-gon, if and only

if k = gcd(n, k).
4. If n is a prime number, all eigenpolygons vk, with k∈{1,...,⌊n/2⌋},

are n-gons. Using Euler’s ϕ-function and q(n) denoting the number of

nonconvex n-stars in the sequence vk, k ∈ {2, . . . , ⌊n/2⌋}, this yields

2q(n) + 2 = ϕ(n) = n − 1.
5. If n is odd, the first non n-star or regular n-gon eigenpolygon vk

counting backwards from ⌊n/2⌋ to zero occurs for k = ⌊n/2⌋ − ⌊p1/2⌋,
where p1 denotes the smallest prime factor in the factorization of n.

Proof. The shape of the eigenpolygon vk as described in item 1 follows
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readily from Lemma 3.2.
To show item 2 let m := gcd(n, k), which results in the represen-

tations n = m · n̂ and k = m · k̂ with n̂, k̂ ∈ N. According to item 1,
numbering n/m roots of unity by connecting each k root beginning with
r0 ends again in r0, since

(15)
( n

m
· k

)

modn = (n̂ · m · k̂) modn = (n · k̂) modn = 0 ,

which implies rnk/m = r0. The following steps reproduce this polygon
until each vertex has multiplicity m. Since m is the greatest common
divisor, there is no larger divisor than m resulting in a polygon with less
vertices.

To prove item 3, one can observe in the case of k 6= gcd(n, k) that
according to (15) it takes k̂ loops of roots of unity to return to r0 leading
to intersecting sides and therefore star shaped polygons, whereas in the
case of k = gcd(n, k) one returns after n/k steps within one loop to r0

thus leading to a convex polygon due to the geometry of the roots of
unity.

Item 4 follows from the fact that n ≥ 3 is prime and therefore
gcd(n, k) = 1 thus resulting in nonconvex n-stars according to the pre-
ceding results. Since v0 represents the centroid and v1 the regular n-gon,
only the eigenpolygons vk with k ∈ {2, . . . , ⌊n/2⌋} are relevant. This is
also the reason for the summand 2 in the representation 2q(n) + 2 =
= ϕ(n) = n − 1. The factor 2 of q(n) comes due to the fact that
k ≤ ⌊n/2⌋.

Finally item 5 holds in the case of n = p1 that is n is a prime number
itself, since k = 0 and v0 is the only non n-star or regular n-gon due to
the first two items. Otherwise let n = p1 · · · pm be the factorization of n
with odd prime factors pµ ≤ pµ+1. It follows that

k = ⌊n/2⌋ − ⌊p1/2⌋ =
1

2
(p1 · · · pm − 1) − 1

2
(p1 − 1) = p1 ·

p2 · · · pm − 1

2
,

which implies gcd(n, k) = p1 if n and the second factor on the right
side have no common divisor greater than one. To prove the latter, it
is assumed that there is a natural number q > 1 with n = q · n̂ and
p := (p2 · · · pm − 1)/2 = q · p̂ where n̂, p̂ ∈ N. Due to the representation
of n, q has to be a product of some of the prime factors p2, . . . , pm and
therefore is an odd number. Thus one can write
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p̂ =
p

q
=

1

2

p2 · · · pm

q
︸ ︷︷ ︸

∈N, odd

− 1

2q
︸︷︷︸

∈(0,1/2)

⇒ p̂ 6∈ N

which contradicts the assumption p̂ ∈ N. ♦

According to item 2 of Th. 4.2 the number n is a prime if, and
only if, all vk = ckfk, ck 6= 0, hence all Fourier polygons fk for k ∈
∈ {2, . . . , ⌊n/2⌋} are star shaped n-gons, thus leading to a geometric
primality check as depicted in Fig. 6. Columns containing only n-gons
indicate that n is a prime number, whereas otherwise reduced polygons
with vertex multiplicity greater one occur.

4 5 6 7 8 9 10 11 12 13

2

3

4

5

6

k/n

Figure 6: Fourier polygons fk for n ∈ {4, . . . , 13} and k ∈ {2, . . . , ⌊n/2⌋}.

Since ν ∈ N is a factor in the factorization of each ν-th number, the
according ν-gon appears in the associated column. That is, each second
column contains a 2-gon, each third a 3-gon and so on. Hence, the
associated numbers n are no prime numbers, thus leading to a geometric
interpretation of the arithmetic sieve of Eratosthenes.

In addition, the items 2 and 5 of Th. 4.2 lead to the following ge-
ometric prime factorization algorithm joining the family of factorization
techniques [9]. If n is even, it is iteratively divided by two until the
remaining number ñ is odd. For this number the Fourier polygons fk

starting from k = ⌊ñ/2⌋ backwards are examined. In the case of k > 0,
the first non ñ-star or regular ñ-gon reveals the smallest prime factor as
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p1 = 2 (⌊ñ/2⌋ − k)+ 1. Furthermore, according to item 2, fk is a (ñ/p1)-
gon. Therefore, one can set ñ to this new value and start again to collect
the prime factors of the remainder. The algorithm stops, if ñ is a prime
number, which results in k = 0.

The angles given by the exponential factors in the definition (13)
of the scaled limit polygons reveal the rotational effect of the transfor-
mation. They depend not only on the number n of vertices and ℓ of
iterations, but also on the index k of the associated eigenpolygon thus
leading to more symmetries as stated in the following theorem.

Theorem 4.3 The limit polygons p
(ℓ)
s,θ differ for odd and likewise for

even iteration numbers ℓ only in a counterclockwise cyclic shift of vertex

indices, but not in geometry. More precisely, it holds that

(16)
(

p
(ℓ)
s,θ

)

(µ+1) mod n
=

(

p
(ℓ+2)
s,θ

)

µ
,

where ℓ ∈ N, µ ∈ {0, . . . , n − 1}. Furthermore, for θ ∈ (π/(2n), π/2) the

sequence of scaled polygons z
(ℓ)
s,θ contains 2n converging subsequences with

(17) lim
ℓ→∞

z
(2nℓ+ν)
s,θ = p

(ν)
s,θ ,

where ν ∈ {0, . . . , 2n − 1}.
Proof. Since p

(ℓ)
s,θ is a linear combination of rotated eigenpolygons, it

suffices to show that (16) holds for each summand, that is
(
eiπkℓ/nvk

)

(µ+1) mod n
=

(
eiπk(ℓ+2)/nvk

)

µ
,

where k ∈ {1, . . . , n − 1}. Using Lemma 3.2 and the definition of the
root of unity r = exp(2πi/n) this follows from

eiπkℓ/n (vk)(µ+1) mod n = eiπkℓ/nrk (vk)µ = eiπk(ℓ+2)/n (vk)µ .

Since in the case of k = 0 all entries of v0 are the same this implies (16).
Equation (17) follows from the 2n-periodicity of the exponential fac-

tors given by the definition of p
(ℓ)
s,θ according to (13), that is eiπk(2nℓ+ν)/n =

= eiπkν/n for ν ∈ {0, . . . , 2n − 1}. ♦

In the case θ ∈ (θk−1, θk), k ∈ {1, . . . , ⌊n/2⌋}, the limit polygon is
a rotated and scaled Fourier polygon with preserved centroid similar to
those depicted in Fig. 5. In contrast, for θ = θk, k ∈ {0, . . . , ⌊n/2⌋ − 1}
there are two possible limit polygons each a linear combination of up to
two eigenpolygons shifted by the centroid.
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Figure 7: Limit polygons for n ∈ {3, ..., 6}, θ = θk, k ∈ {0, ..., ⌊n/2⌋−1}.
Drawn through lines and dashed lines indicate limits for subsequences
with odd and even ℓ respectively.

For (z(0))µ :=(µ+1) exp(iπµ/(5n)), n∈{3, . . . , 6}, µ∈{0, . . . , n−1},
and k ∈ {0, . . . , ⌊n/2⌋ − 1} the resulting two limit polygons are de-
picted in Fig. 7. Drawn through lines and dashed lines indicate limits
for subsequences with odd and even ℓ respectively. In particular the first
row contains two regular n-gons rotated by angle π/n, which is half the
angle of the according root of unity.

The first case in Fig. 7, that is n = 3, k = 0 and therefore θ=π/6,
represents Napoleon’s theorem. In particular, since η0 = |η1| = 1 and

η2 = 0 the distortion sum z
(ℓ)
s,θ −p

(ℓ)
s,θ is the zero vector for all ℓ. Therefore

one step suffices to generate a regular triangle. From that point on, ac-
cording to Th. 4.3, further iterations lead to a sequence of two alternating
dual triangles which are depicted in the table.

In the case of n > 3, k = 0 the distortion sum is nonzero, hence
there is only one Napoleon. But since the error decreases by powers of
the eigenvalue quotients this leads to a fast convergence and therefore
asymptotically also to alternating dual regular n-gons.

In the following, an overview of properties of the unscaled iterative
polygon transformation is given, which can now be readily derived from
the results obtained so far.
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Corollary 4.1. The following holds:

1. For θ ∈
(
0, π/(2n)

)
the concentric polygons z(ℓ) degenerate to

their common centroid if ℓ tends to infinity.

2. In the case of θ = π/(2n) the sequence z(ℓ) consists of bounded

polygons which become regular if ℓ tends to infinity.

3. For θ ∈
(
π/(2n), π/2

)
the vertices of z(ℓ) tend to infinity as ℓ

grows. In this, the limit polygons given by Th. 4.1, scaled with respect to

the centroid by the ℓ-th power of the eigenvalue with the largest absolute

value, represent the dominating terms thus the asymptotical behavior.

Proof. The items 1 and 2 follow due to z(ℓ) = z
(ℓ)
s,θ since θ ∈ (0, π/(2n)]

and the results given by Th. 4.1. Likewise item 3, where z
(ℓ)
s,θ differs

from z(ℓ) just in the scaling by |ηk|, which is greater than one because of
θ > π/(2n) and the results given by Lemma 3.4. It should be noted that
in this case the distortion sum may also grow to infinity, since the absolute
values of other eigenvalues might be greater than one. Nevertheless, due
to the scaling by powers of eigenvalues, the dominating eigenvalue(s)
define the behavior of the sequence z(ℓ) if ℓ tends to infinity. ♦

5. Conclusion

A full classification of the limit figures obtained by successively it-
erating the process of generating a new polygon by taking the apices of
similar isosceles triangles erected on the sides of the preceding polygon
has been presented. All characteristic base angles leading to a change in
the geometry of the limit polygon have been determined. Additionally,
it has been shown that these limit polygons are linear combinations of
eigenpolygons of the initial polygon. Since all transformation schemes
which can be represented by circulant matrices lead to the same eigen-
polygons, the results obtained in this paper are not only applicable to
the analyzed transformation, but to a broad variety of geometric polygon
transformations. In particular, the symmetric properties of the eigen-
polygons imply a connection to prime numbers and therefore lead to a
geometric sieve as well as factorization method for prime numbers.

Beyond the beauty of geometry and its connection to number the-
ory lies the applicability of such transformations, which, at first sight,
might not be obvious. For example, the regularizing effect of similar
transformations can be used in mesh smoothing as proposed by the au-
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thors in [15, 16, 18]. Finally, the transformation process can be gener-
alized in many ways, like the use of different base angles θ for different
sides leading to different symmetries, the use of non isosceles triangles
or the use of iteration step dependent base angles θ(ℓ). Additionally, it
would be interesting to consider such iterated polygon transformations in
non-Euclidean geometries and to analyze the deeper link between group
theory and such transformations.
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