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Abstract: A finite group (G, +) is an A-group if the near-ring A = 〈Aut(G)〉-
generated by the automorphisms of G is a ring. If in a group G the centralizer
of every element is characteristic in G, then G is an A-group. We investigate
situations where the converse is true.

I-, E- and A-groups

Let G be a finite, additive group, and Inn(G), Aut(G), End(G)
be the semigroups of inner automorphisms, automorphisms and endo-
morphisms, respectively. Let M0(G) = {f : G → G | f(0) = 0} be
the near-ring of all functions on G that preserve zero with operations
of point-wise addition and function composition (substitution). A right
(left) near-ring (N, +, ·) is an algebraic structure such that (N, +) is a
group (not necessarily abelian), (N, ·) is a semigroup, and the multi-
plication distributes over addition on the right (left), but not necessar-
ily on both sides. For any group G, M0(G) is a right near-ring, with
(g + h) ◦ f = g ◦ f + h ◦ g for any f , g, and h in M0(G). From now on,
for simplicity, we will write fg for f ◦g. Let I = 〈Inn(G)〉, A = 〈Aut(G)〉,
and E = 〈End(G)〉, be the subnear-rings of M0(G) generated by Inn(G),
Aut(G), End(G), respectively. Consider End(G). It may not be a group
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with respect to addition, since only if G is abelian is the sum of any
two endomorphisms an endomorphism. In particular, for a nonabelian
group, id+ id is not an endomorphism. Yet, for any two endomorphisms
α and β in End(G), α + β is an element of the near-ring E = 〈End(G)〉.
The question was posed to determine when I, A or E is a ring. For the
near-ring E to be a ring, addition has to be abelian; hence for any α and
β in End(G), we must have that α + β = β + α, or equivalently, for any
x ∈ G, α(x) + β(x) = β(x) + α(x), and we have to have the distributiv-
ity on the right and left as well, but these properties, in our case, follow
from the definition of composition of functions (right distributivity) and
from the fact that endomorphisms are left distributive and finite sums of
endomorphisms are left distributive as well. A group G for which I, A,
or E is a ring is called an I-, A-, or E-group respectively. An endomor-
phism α is called a commuting endomorphism if α(x) + x = x + α(x),
or equivalently, if the commutator [α(x), x] = −α(x) − x + α(x) + x =
= 0 for every x ∈ G. The definition of an A-group is equivalent with
every automorphism α being a commuting automorphism (Lemma 4).
Throughout the paper, we use both of these definitions interchangeably.
If all automorphisms (endomorphisms) are commuting, then the group
G has to be nilpotent of class ≤ 3 [3]. Since a nilpotent group is a direct
product of its Sylow subgroups, which are fully invariant, a number of
results can be reduced to the p-group case. Even though the root of
this problem lies in the near-ring theory, due to the characterization of
I-, A-, and E-groups in terms of the commuting inner-automorphisms,
automorphisms and endomorphisms, respectively, for odd order groups,
it became a group theory problem. The question when is I or E a ring
has been answered by Chandy in [1] for I and by Maxson and Pettet in
[7] for E.

In the next theorem and for the rest of the paper CG(x) =
= {g ∈ G | [g, x] = 0} is the centralizer of the element x in G.

Theorem 1 (Chandy [1]). I is a ring if and only if all conjugate elements
commute, i.e., for every x ∈ G, CG(x) E G.

Even more is known about I:

Theorem 2 (Chandy [1]). I is a commutative ring if and only if G is
nilpotent of class 2.

Here is a characterization for E-groups.

Theorem 3 (Maxson–Pettet [7]). Let G be a finite p-group, p > 2. Then
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G is an E-group if and only if for each x ∈ G, CG(x) is a fully invariant
subgroup.

In view of the above theorems, one naturally wonders if a similar
characterization exists for A-groups, namely “If G is a finite p-group,
p > 2, then G is an A-group if and only if for each x ∈ G, CG(x) is a
characteristic subgroup of G” [7].

However, as Pettet showed in [9] there is an infinite family of coun-
terexamples to this conjecture. In this paper we investigate some types
of groups for which this conjecture is true. As is often the case in the
theory of p-groups, even though the result analogous to the E-groups
characterization is not true in general, we find situations and classes of
groups where the above characterization still holds.

First, we establish some properties of A-groups. The first result is
analogous to the corresponding result in E-groups. The proof is similar
to that of Lemma III.1 in [7].

Lemma 4. Let G be a finite group. Then the following properties hold:
(1) G is an A-group if and only if [α(x), x] = 0, for all x ∈ G, and

all α ∈ Aut(G).
(2) G is an A-group if and only if [α(x), y] = [x, α(y)], for all x,

y ∈ G, and all α ∈ Aut(G).
(3) If G is an A-group then [α(x), β(y)] = [β(y), α(x)], for all x,

y ∈ G, and all α, β ∈ Aut(G). If G is a group of odd order then the
converse also holds.

Proof. (1) G is an A-group ⇔ for all α, β ∈ Aut(G), α + β = β + α
⇔ for all α, β ∈ Aut(G), id + α−1β = α−1β + id ⇔ for all γ ∈ Aut(G),
id + γ = γ + id ⇔ for all γ ∈ Aut(G), x ∈ G, x + γ(x) = γ(x) + x ⇔ for
all γ ∈ Aut(G), x ∈ G, [x, γ(x)] = 0.

(2) Let G be an A-group. Using (1), since α ∈ Aut(G), α(x − y)
commutes with x − y, it follows that

α(x) − α(y) + x − y = x − y + α(x) − α(y).

Applying (1) again: α(x) commutes with x and α(y) commutes with y
we obtain

−α(x) − y + α(x) + y = −x − α(y) + x + α(y),

which is exactly [α(x), y] = [x, α(y)].
The converse follows by letting y = x and applying (1).
(3) Let G be an A-group. Replacing y with β(y) in (2) we obtain

[α(x), β(y)] = [x, αβ(y)] = [αβ(x), y] = [β(x), α(y)].
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The converse follows by letting x = y and β = id in (2). Then [α(x), x] =
= [x, α(x)] = [α(x), x]−1 and since G is of odd order, [α(x), x] cannot be
an element of order 2. Hence [α(x), x] = 0 and applying (1) the result
follows. ♦

Remark 5. It is easy to see that if G is a group such that the centralizer
of every element in G is characteristic, then G is an A-group.

Hence the question reduces to the following: Characterize A-groups
G for which the centralizer, CG(x), of every x ∈ G is characteristic.

Maxson and Pettet in [7] give an example of an A-group that is not
an E-group for any p with Aut(G) = Autc(G) (Autc(G) = {α ∈ Aut(G) |
| −x + α(x) ∈ Z(G)} – the normal subgroup of central automorphisms),
hence the centralizers are characteristic (below Th. 8(1)).

Similarly to the situation of E-groups we have the next property.

Theorem 6. If G is an A-group then Aut(G)/Autc G is abelian.

Proof. Let α, β be in Aut(G). Let x, y ∈ G. Then since G is an A-group
by Th. 4(2)

[βα(x), y] = [α(x), β(y)] = [x, αβ(y)] = [x, βα(y)].

Hence
[x, αβ(y)] = [x, βα(y)],

and
−x − αβ(y) + x + αβ(y) = −x − βα(y) + x + βα(y)

−αβ(y) + x + αβ(y) = −βα(y) + x + βα(y)

x = (αβ − βα)(y) + x + (βα − αβ)(y)

x = (αβ − βα)(y) + x − (αβ − βα)(y).

Since x is arbitrary, for every α, β ∈ Aut(G), and for every y ∈
∈ G, (αβ − βα)(y) ∈ Z(G). This is equivalent to αβ(y) = βα(y) + z,
where z ∈ Z(G). Since Z(G) is always characteristic, application of
α−1β−1 to the previous equation results in −y + [α, β](y) ∈ Z(G). Thus
[Aut(G), Aut(G)] ≤ Autc G and the result follows. ♦

Here are some further properties of commutators related to central-
izers. We use the notation [x, α] = −x + α(x) and xy = −y + x + y.

Lemma 7. Let G be an arbitrary group. Let x, y ∈ G, y ∈ CG(x), and
α ∈ Aut(G). The following are equivalent:

(1) [x, α(y)] = 0; (2) [x, [y, α]] = 0;

(3) [[x, α], y] = 0; (4) [[x, α], [y, α]] = 0.
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Proof. The equivalency of (1), (2) and (3) follows from the commutator
properties, see [4, p. 18] and assumption that y ∈ CG(x). Namely, we
have that

0 = [x, α(y)] = [x, y + [y, α]] = [x, [y, α]] + [x, y][y,α] = [x, [y, α]].

Now we show that these properties imply (4):

0 = α[x, y] = [α(x), α(y)] = [x + [x, α], y + [y, α]]

= [x + [x, α], [y, α]] + [x + [x, α], y][y,α].

Since y commutes with x by assumption, and by (3) y commutes with
[x, α], the above is equivalent to

0 = [x + [x, α], [y, α]] = [x, [y, α]][x,α] + [[x, α], [y, α]].

Applying (2), (4) follows. The converse is proved by similar steps in the
other direction. ♦

If Aut(G) is of even order, then there is an automorphism α ∈
∈ Aut(G) of order 2. For x ∈ G, α(x) = x + a for some a ∈ G. Since α
has order 2, α(α(x)) = x. This implies that

x = α(α(x)) = α(x + a) = α(x) + α(a) = x + a + α(a).

Hence x = x+a+α(a), which in turn implies that α(a) = −a. It follows
that if there is an automorphism α of G that has order 2, then there is
an element a of G such that α(a) = −a. A group G for which there is
an automorphism mapping an element of G to its inverse is called an s.i.
(some inversion) group, as opposed to n.i. (no inversion) group.

The main result of the paper is the following:

Theorem 8. Let G be an A-group. Then each of the following conditions
is sufficient for the centralizer of every element of G to be characteristic
in G:

(1) Aut(G)/Autc(G) is of odd order.
(2) CG(G′) = Z(G). (This implies that Aut(G) = Autc(G).)
(3) Φ(G) ∩ Z(G′) = 1. (This implies that Aut(G) = Autc(G).)
(4) If G is a p-group for a prime p > 2 and Aut(G) is nilpotent.

(This implies that |Aut(G)| is odd.)
(5) For every x ∈ G, CG(x) is abelian.
(6) If G is n.i. group. (This implies that |Aut(G)| is odd.)
(7) If p is odd and G is a 2-generator p-group of class 2 with no

normal subgroup having a complement in G. (This implies G is n.i.)

Proof. (1) Let |Aut(G)/Autc(G)| = 2k + 1. Let y ∈ CG(x) and α ∈
∈ Aut(G). Then using (2) in Lemma 4, one gets
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αk([x, α(y)]) = [αk(x), αk+1(y)] = [x, α2k+1(y)] = [x, y + yZ ],

where yZ ∈ Z(G). Hence [x, y + yZ ] = [x, y] + [x, yZ ] = [x, y] = 0. Thus
[x, α(y)] = 0 which implies that α(y) ∈ CG(x) and we get that CG(x) is
characteristic.

(2) CG(G′) = Z(G) implies by Lemma 2.2 [2] that in an A-group
G, for any x and any α ∈ Aut(G), [x, α] = −x + α(x) ∈ CG(G′) = Z(G)
thus α ∈ Autc(G)and we have that Aut(G) = Autc(G), which is a special
case of (1).

(3) Φ(G) ∩ Z(G′) = 1 implies by Remark 4.1 in [2] that Aut(G) =
= Autc(G), which is a special case of (1).

(4) From [6] we know that if Aut(G) is nilpotent then it is a p-group.
Thus Aut(G) is odd, which is a special case of (1).

(5) Let y ∈ CG(x). Since G is an A-group, α(x) ∈ CG(x). Since
CG(x) is abelian then [x, α(y)] = [α(x), y] = 0. Thus CG(x) is character-
istic.

(6) By the remark before Th. 8, if G is n.i. then |Aut(G)| is odd,
which is a special case of (1).

(7) Heneken and Liebeck in [5, p. 467, Cor. 1] proved that if p is
odd then a 2-generator p-group of class 2 is an n.i. group if and only if it
does not have a normal subgroup having a complement in G. Hence by
(6) we are done. ♦

Situation (5) occurs, for example, when CG(x)/Z(G) is cyclic, in
particular in A-groups where [G : Z(G)] = p2.

Remark 9. If α is an element of Aut(G) of order 2 then for any y ∈ G,
α([x, α(y)]) = [α(x), α2(y)] = [α(x), y] = [x, α(y)] or [x, α(y)] is a fixed
point of α. So automorphisms of even order can not be f.p.f.

The s.i. and n.i. groups have been investigated and G.A. Miller
gave examples of p-groups, for every p, class 2, orders p9 and exponent
p4 that are n.i. groups [8]. Miller also showed that the automorphism
group is itself a p-group. These groups are examples where the above
theorem can be applied.

Generalization

The previous section and the results in Chandy, Malone, Pettet–
Maxson and Pettet investigate when a group G is an F -group for F gen-
erated by a specific subset S of (End(G), ◦); for example F = 〈Inn(G)〉,
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〈End(G)〉 and 〈Aut(G)〉, meaning that the near-ring F = 〈S〉 is a ring.
Th. 4 above, and similar results for I-groups and E-groups can be gen-
eralized if Inn(G), End(G) and Aut(G) is replaced with any subset S
containing id of End(G) and F = 〈S〉. This generalization was suggested
by Gary L. Walls, for which the author is very grateful.

Proposition 10. Let G be a group with no elements of order 2 and S a
subset of End(G), with id ∈ S. Let F = 〈S〉. Then G is an F -group if
and only if for every x ∈ G and for every α ∈ F , [x, α(x)] = 0.

Proof. Since 〈S〉 is a ring then every element of S commutes with id,
thus [α(x), x] = [x, α(x)], for every α ∈ S. The converse follows from the
proof of Lemma 4. ♦

Remark 11. Let G be a group with no elements of order 2 and let S
be any subset of End(G), id ∈ S. Let F = 〈S〉. Then the following are
equivalent:

(1) G is an F -group.
(2) For every x ∈ G and every α ∈ S, α(Z(CG(x))) ⊆ CG(x).
(3) For every x ∈ G ∪α∈S(α(Z(CG(x))) ⊆ CG(x).
(4) For every x ∈ G, ∪α∈Sα(〈x〉) ⊆ CG(x).

Proof. It is enough to prove (1) ⇔ (2).
:⇒ : Let α ∈ S, x ∈ G and y ∈ Z(CG(x)). Then α(x) = x + a for

some a ∈ CG(x) since G is an F -group. Consider

[x, α(y)] = [α(x), y] = [x + a, y] = 0

since y commutes with both x and a.
:⇐ : Follows immediately, since x is in Z(CG(x)) and α(x) ∈ CG(x)

imply that x commutes with its image, which is equivalent to the defini-
tion of an F -group. ♦

This leads to a slightly different characterization, but one that uni-
fies the three cases: I-, E- and A-groups.

Corollary 12. Let G be a finite p-group with p > 2. Let F = 〈S〉 where
S ⊆ End(G) with id ∈ S. Then G is an F -group if and only if for every
α ∈ F , and for every x ∈ G, α(Z(CG(x))) ⊆ CG(x).

The author would like to thank C. J. Maxson, for introduction to
this problem, Gary Walls, for very helpful comments, and the referees for
a thorough evaluation and helpful suggestions that resulted in a better
presentation.
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