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§ 1

Let P be the set of all prime numbers, Bk be the set of k-full num-
bers, and Mk be the set of k-free numbers. As we know, n = pα1

1 . . . pαr
r

belongs to Mk, if max αj ≤ k − 1, and it belongs to Bk if min αj ≥ k.

Theorem A (Filaseta). Given an integer k ≥ 2, let g(x) be a function
satisfying 1 ≤ g(x) ≤ log x for x sufficiently large, and set

h(x) = x1/(2k+1)g(x)3.
Then the number of k-free numbers belonging to the interval (x, x+h(x)]
is

h(x)

ζ(k)
+ O

(

h(x) log x

g(x)3

)

+ O
(

h(x)

g(x)

)

,

where ζ stands for the Riemann zeta function.

Th. A is a result due to Professor Michael Filaseta, who kindly com-
municated it to Professor J. M. De Koninck. A complete proof (provided
by Filaseta) is given in [2]. See also [4].
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Let τ (e)(n) be the number of exponential divisors of n. τ (e)(n) is
a multiplicative function, for prime powers pα, τ (e)(pα) = τ(α), τ(n) =
= number of divisors of n.

By using Th. A in [1] we proved:
Let h(x) = x1/5(log x)3/2u(x), where u(x) → ∞ as x → ∞, and

h(x) ≤ x. Then, for each fixed real number α > 0, there exists a constant
c = c(α) > 0 such that

lim
x→∞

1

h(x)

∑

n∈[x,x+h(x)]

τ (e)(n)α = c.

As we noted, the method we used can be applied to show

Theorem B. Let f be a non-negative multiplicative function such that
f(p) = 1 for each prime p, f(n) = O(nε) for every ε > 0. Let also
h(x) = x1/5(log x)3/2u(x), where u(x) → ∞ as x → ∞, with h(x) ≤ x.
Then

1

h(x)

∑

n∈[x,x+h(x)]

f(n) = c + o(1),

where c = c(f) is a positive constant given by

c(f) =
∑

k∈B2

f(k)

k

∏

p|k

(

1 +
1

p

)−1

.

Let M(x) =
∑

n≤x

|µ(n)|, and M(x|r) =
∑

n≤x

(n,r)=1

|µ(n)|. According to

(8) in [1] we have

M

(

x + h(x)

k
|k
)

− M
(x

k
|k
)

=(1)

=
6

π2

h(x)

k

∏

p|k

1

1 + 1/p
+ O





h(x)

k
√

log x
exp







∑

p|k

2√
p











if k < log x.
For some integer n, let E(n) be the square-full, and F (n) be the

square-free part of n. Then n = E(n)F (n), (E(n), F (n)) = 1, E(n) is
the largest divisor of n which belongs to B2. Let Rb be the set of those
integers n for which E(n) = b.

Let

ν(b) := lim
x→∞

1

x
#{n ≤ x, E(n) = b}.
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It is clear that

(2) ν(b) = lim
x→∞

1

x
M(x | b) =

1

ζ(2)b

∏

p|b

1

1 + 1/p
.

The following theorem is an immediate consequence of (1).

Theorem 1. Let h(x) = x1/5(log x)3/2u(x), u(x) → ∞ as x → ∞,
h(x) ≤ x. Then

1

h(x)
#{n∈ [x, x + h(x)], E(n)=b}=ν(b) + O

(

1

b
√

log x
exp

{

∑

p|b

2√
p

}

)

uniformly as b < log x, b ∈ B2.

Remark. This is an improvement of our Th. 3 in [4], according to:
1

H
#{n ∈ [x, x + H ] | n ∈ Rb} = ν(b) + O

(

H−1 · xθ+ε · 2ω(b)
)

+

+ O
(

H−1/2xε
∏

p|b

(

1 +
1√
p

)

)

uniformly as 0 < H < x. Here θ = 0, 2204 and ε is an arbitrary positive
constant. The implied constants in the error terms may depend on ε.

We deduced this from a theorem of P. Varbanets [6]: Let φ(d) be a
multiplicative function, such that φ(d) = O(dε) for ε > 0. Let

f(n) =
∑

d2|n

φ(d).

Then
∑

x≤n≤x+h

f(n) = h
∞
∑

d=1

φ(d)

d2
+ O(h1/2xε) + O(xθ+ε),

uniformly in h, (0 <)h < x, 0 < ε is an arbitrary constant, θ = 0, 2204.

§ 2

Let k ≥ 2 be a fixed integer. For some integer n > 0 let Ek(n) be
the k-full part and Fk(n) be the k-free part of n. Thus n = Ek(n)Fk(n),
(Ek(n), Fk(n)) = 1. Let Sb be the set of those integers n, for which
Ek(n) = b.

Let

(3) σ(b) := lim
x→∞

1

x
#{n ≤ x, Ek(n) = b}.
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Let

(4) Qk(x) = #{n ≤ x, n ∈ Mk},

(5) Qk(x|r) = #{n ≤ x, n ∈ Mk, (n, r) = 1}.

A. Walfisz [7] proved that

Rk(x) := Qk(x)− x

ζ(k)
= O

(

x1/k exp
(

−A·k−8/5(log x)3/5 ·(log log x)−1/5
))

.

D. Suryanarayana [8] proved that

(6) Qk(x | r) =
rk−1ϕ(r)x

Jk(r)ζ(k)
+ O

(

ϕ(r) · 2ω(r)

r
x1/k

)

.

Here Jk(r) is Jordan’s totient. Observe that rk−1ϕ(r)
Kk(r)

=
∏

p|r

1− 1
p

1− 1

pk

.

Let η be a strongly multiplicative function, η(p) =
1− 1

p

1− 1

pk

for p ∈ P.

Then

σ(b) =
η(b)x

bζ(k)
(b ∈ Mk).

By using Th. A we can estimate

(7) Ub(x) := #{n ∈ [x, x + h(x)], Ek(n) = b}

if h(x) = x
1

2k+1 g(x)3(log x)2− 2
2k+1 , g(x) tends to infinity monotonically,

g(x) ≤ log x, uniformly as b < log x, b ∈ Bk.
It is clear that

Ub(x) = Qk

(

x + h(x)

b
| b

)

− Qk

(x

b
| b
)

.

Since

Fb(s) =
∑

m∈Mk
(m,b)=1

1

ms
=
∏

p∤b

(

1 +
1

ps
+ . . . +

1

p(k−1)s

)

=F1(s)
∏

p|b

1 − 1
ps

1 − 1
pks

, F1(s) =
ζ(s)

ζ(ks)
,
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we can obtain that

(8) Ub(x) =
∑

v∈Db

f(v)

{

Qk

(

x + h(x)

bv

)

− Qk

( x

bv

)

}

,

where Db is the multiplicative semigroup generated by the prime divisors
of b, i.e.

Db = {pε1
1 . . . pεr

r | εj = 0, 1, . . . , j = 1, . . . , r} if b = pa1
1 . . . par

r ,

furthermore f is a multiplicative function,

f(pα) =











−1, if α ≡ 1 (mod k),

1, if α ≡ 0 (mod k),

0 otherwise.

From Th. A we have

Ub(x) =
∑

v≤v(x)
v∈Db

f(v)

{

h(x)

bvζ(k)
+ O

(

h(x) log x

bv · g(x)3

)

+ O
(

h(x)

bv · g(x)

)}

+

+ O











∑

v∈Db
vb≤h(x)
v>v(x)

|f(v)|h(x)

bv











+ O(Sb),

where

(9) Sb =
∑

v∈Db
x=vbm≤x+h(x)

vb>h(x)

|f(v)|.

Thus

Ub(x) = h(x)σ(b) + O
(

h(x) log x

g(x)3b

)

+ O
(

h(x)

b · g(x)

)

+

+ O
(

h(x)

b
√

v(x)

∑

v∈Db

1√
v

)

+ O(Sb).

Let v(x) = log x. If b = pa1
1 . . . par

r (≤ log x) and v ∈ Db is counted in
(9), v = pγ1

1 . . . pγr
r , then p

γj

j ≤ x + h(x)(< 2x), and so γj ≤ log 2x
log pj

.

Thus

Sb ≤
r
∏

j=1

(

log 2x

log pj
+ 1

)

≤ (2 log 2x)ω(b).
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Since ω(b) ≤ log b, therefore Sb = O((2 log 2x)log log x) = O(xε), for every
fixed ε > 0.

Furthermore,

∑

v∈Db

1√
v
≤ exp







∑

p|b

2√
p







.

We proved

Theorem 2. Let k ≥ 2 be fixed. Then for b ∈ Bk, b < log x

Ub(x) = h(x)σ(b) + O
(

h(x) log x

g(x)3b

)

+ O





h(x)

b
√

log x
exp





∑

p|b

2√
p







 ,

where h(x) = x
1

2k+1 ·g(x)3·(log x)
4k

2k+1 ,
√

log x ≤ g(x) ≤ log x, g(x) → ∞
as x → ∞.

§ 3

Theorem 3. Let k ≥ 2, f be multiplicative, f(p) = . . . = f(pk−1) = 1
for every prime p, f(n) = O(nε) for every ε > 0.

Let

D(f) :=
∑

b∈Bk

σ(b)f(b).

Assume that h(x) is the same as in Th. 2.
Then

1

h(x)

∑

x<n≤x+h(x)

f(n) = D(f) + O
(

log x

g(x)3
+

1√
log x

)

.

This assertion is a simple consequence of Th. 2.
A positive integer n is called unitary k-free, if pα ‖ n, α > 0, implies

that α 6≡ 0 (mod k). Let Uk(x) = #{n ≤ x | n is unitary k-free}.
D. Suryanarayana and R. S. R. C. Rao [9] proved that

(10) Uk(x) = αk · x + O(x1/k exp(−A(log x)3/5 · (log log x)−1/5)),

αk > 0, constant.
Let f be multiplicative, f(pα)=1, if α 6≡0 (mod k), and f(pkl)=0

(l = 1, 2, . . .). Then

f(n) =

{

1, if n is unitary k-free,

0, if n is not unitary k-free.
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Consequently we have a short interval version of (10). The conditions of
Th. 3 are satisfied.

§ 4

Let ∆ be the additive function, ∆(pα) = α − 1. Thus ∆(n) =
= Ω(n) − ω(n). An easy consequence of Th. 1 is the following assertion:

Let k ≥ 0 be an integer,

dk :=
∑

∆(b)=k

b∈B2

ν(b).

Then

(11)
1

h(x)

∑

n∈[x,x+h(x)]
∆(n)=k

1 = (1 + ox(1))dk,

h(x) is the same as in Th. 1. This is a refinement of a theorem of J. M.
De Koninck and A. Ivič [10].

§ 5

In our paper written with Subbarao [11] we have given the local
distribution of τ(τ(n)) when we have taken the summation only over a
short interval of type [x, x + x7/12+ε].

We can consider the local distribution of τ
(e)
2 (n) = τ (e)(τ (e)(n))

when we sum on intervals of type [x, x+h(x)], h(x) as in Th. 1. Observe
that τ (e)(n) = 1 if and only if n is square-free.

We can write every n as u·v2·m, where u, v, m are mutually coprime
integers, u, v are square-free, and m is cubefull.

Let v, m be fixed, Ev,m = {n | n = u · v2 · m}. Let τ (e)(m) =

= 2β0 · Qβ1
1 . . . Qβt

t , (2 <)Q1 < . . . < Qt be primes, βj ≥ 1 (j = 1, . . . , t),
β0 ≥ 0 (β0 = 0 can occur. Then, for n = u · v2 · m we have τ (e)(n) =
= 2ω(v)τ (e)(m) = τ [ω(v) + β0]τ(β1) . . . τ(βt)).

From (1) we have

#
{

n ∈ Ev,m | n ∈ [x, x + h(x)]
}

=(12)

=
6

π2

h(x)

v2m

∏

p|vm

1

1 + 1/p
+ O





h(x)

v2m
√

log x
exp





∑

p|vm

2/
√

p








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if v2m < log x.
Let T be the set of those k for which there exists n ∈ N such that

τ
(e)
2 (n) = k. It is clear that T = N. Indeed, if p1, . . . , pl are distinct

primes, then τ (e)(p2
1 . . . p2

l ) = 2l, and if τ(l) = k, i.e. l = 2k−1, then

τ
(e)
2 (p2

1 . . . p2
l ) = k.

Let

ηk =
6

π2

∑

τ
(e)
2 (v2m)=k

1

v2m

∏

p|vm

1

1 + 1/p
.

From Th. 1 we obtain

Theorem 4. Let h(x) be as in Th. 1. Then for every k ∈ N:

lim
x→∞

1

h(x)
#{n ∈ [x, x + h(x)] | τ

(e)
2 (n) = k} = ηk.

Let Π(y | b) be the number of those primes p ≤ y, which can be
written as p = −1 + mb, (m, b) = 1, m square-free.

In [2] (Lemma 4) we proved the following

Lemma 1. Let ε > 0 be a small number. Let ν and r be fixed positive
integers and let y7/12ε ≤ H ≤ y. Then, as y → ∞,

Π(y + H | b) − Π(y | b) =
li(y + H) − li(y)

b

∏

q∤b

(

1 − 1

q(q − 1)

)

+

+ O
(

H

b
· 1

(log y)r+2

)

uniformly for b ≤ (log y)ν.

Arguing as in the proof of Th. 4, we obtain

Theorem 5. Let

ξk :=
∑

τ
(e)
2 (v2m)=k

1

v2m

∏

q∤vm

(

1 − 1

q(q − 1)

)

.

Here v, m run over those integers for which v, m are coprimes, m is
cubefull, v is square-free.

Let ε > 0 be an arbitrary small number, H = H(x) ∈ [y7/12+ε, y].
Then

∑

τ
(e)
2

(p+1)=k

p∈[x,x+H]

1 = (1 + ox(1))ξk(li(x + H) − lix)

for every k = 0, 1, 2, . . ..
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By using the argument applied in [5] (see the proof of Th. 6,7) we
can prove that by Y = Y (x) = x2/3+ε, ε > 0 the limits

lim
x→∞

1

li(x + Y ) − li(x)
#{p ∈ [x, x + Y ] | τ

(e)
2 (p2 + 1) = k} = tk

exist,
∞
∑

k=0

hk = 1,
∞
∑

k=0

tk = 1.
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