ON THE DISTRIBUTION OF THE SQUARE-FULL AND k-FULL PARTS OF INTEGERS FOR SHORT INTERVALS

I. Kátai

Dept. of Computer Algebra, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
Dedicated to Professor Ferenc Schipp on his $7^{\text {th }}$ anniversary
Received: July 2008
MSC 2000: $11 \mathrm{~A} 25,11 \mathrm{~N} 25,11 \mathrm{~N} 37$
Keywords: Distribution of multiplicative functions, short intervals.

Abstract

Local distribution of values of some multiplicative functions over short intervals is investigated.

§ 1

Let \mathcal{P} be the set of all prime numbers, \mathcal{B}_{k} be the set of k-full numbers, and \mathcal{M}_{k} be the set of k-free numbers. As we know, $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ belongs to \mathcal{M}_{k}, if $\max \alpha_{j} \leq k-1$, and it belongs to \mathcal{B}_{k} if $\min \alpha_{j} \geq k$.
Theorem A (Filaseta). Given an integer $k \geq 2$, let $g(x)$ be a function satisfying $1 \leq g(x) \leq \log x$ for x sufficiently large, and set

$$
h(x)=x^{1 /(2 k+1)} g(x)^{3} .
$$

Then the number of k-free numbers belonging to the interval $(x, x+h(x)]$ is

$$
\frac{h(x)}{\zeta(k)}+\mathcal{O}\left(\frac{h(x) \log x}{g(x)^{3}}\right)+\mathcal{O}\left(\frac{h(x)}{g(x)}\right)
$$

where ζ stands for the Riemann zeta function.
Th. A is a result due to Professor Michael Filaseta, who kindly communicated it to Professor J. M. De Koninck. A complete proof (provided by Filaseta) is given in [2]. See also [4].

Let $\tau^{(e)}(n)$ be the number of exponential divisors of $n . \tau^{(e)}(n)$ is a multiplicative function, for prime powers $p^{\alpha}, \tau^{(e)}\left(p^{\alpha}\right)=\tau(\alpha), \tau(n)=$ $=$ number of divisors of n.

By using Th. A in [1] we proved:
Let $h(x)=x^{1 / 5}(\log x)^{3 / 2} u(x)$, where $u(x) \rightarrow \infty$ as $x \rightarrow \infty$, and $h(x) \leq x$. Then, for each fixed real number $\alpha>0$, there exists a constant $c=c(\alpha)>0$ such that

$$
\lim _{x \rightarrow \infty} \frac{1}{h(x)} \sum_{n \in[x, x+h(x)]} \tau^{(e)}(n)^{\alpha}=c
$$

As we noted, the method we used can be applied to show
Theorem B. Let f be a non-negative multiplicative function such that $f(p)=1$ for each prime $p, f(n)=\mathcal{O}\left(n^{\varepsilon}\right)$ for every $\varepsilon>0$. Let also $h(x)=x^{1 / 5}(\log x)^{3 / 2} u(x)$, where $u(x) \rightarrow \infty$ as $x \rightarrow \infty$, with $h(x) \leq x$. Then

$$
\frac{1}{h(x)} \sum_{n \in[x, x+h(x)]} f(n)=c+o(1)
$$

where $c=c(f)$ is a positive constant given by

$$
c(f)=\sum_{k \in \mathcal{B}_{2}} \frac{f(k)}{k} \prod_{p \mid k}\left(1+\frac{1}{p}\right)^{-1}
$$

Let $M(x)=\sum_{n \leq x}|\mu(n)|$, and $M(x \mid r)=\sum_{\substack{n \leq x \\(n, r)=1}}|\mu(n)|$. According to (8) in [1] we have

$$
\begin{align*}
& M\left(\left.\frac{x+h(x)}{k} \right\rvert\, k\right)-M\left(\left.\frac{x}{k} \right\rvert\, k\right)= \tag{1}\\
& \quad=\frac{6}{\pi^{2}} \frac{h(x)}{k} \prod_{p \mid k} \frac{1}{1+1 / p}+\mathcal{O}\left(\frac{h(x)}{k \sqrt{\log x}} \exp \left\{\sum_{p \mid k} \frac{2}{\sqrt{p}}\right\}\right)
\end{align*}
$$

if $k<\log x$.
For some integer n, let $E(n)$ be the square-full, and $F(n)$ be the square-free part of n. Then $n=E(n) F(n),(E(n), F(n))=1, E(n)$ is the largest divisor of n which belongs to \mathcal{B}_{2}. Let \mathcal{R}_{b} be the set of those integers n for which $E(n)=b$.

Let

$$
\nu(b):=\lim _{x \rightarrow \infty} \frac{1}{x} \#\{n \leq x, E(n)=b\}
$$

It is clear that

$$
\begin{equation*}
\nu(b)=\lim _{x \rightarrow \infty} \frac{1}{x} M(x \mid b)=\frac{1}{\zeta(2) b} \prod_{p \mid b} \frac{1}{1+1 / p} \tag{2}
\end{equation*}
$$

The following theorem is an immediate consequence of (1).
Theorem 1. Let $h(x)=x^{1 / 5}(\log x)^{3 / 2} u(x), u(x) \rightarrow \infty$ as $x \rightarrow \infty$, $h(x) \leq x$. Then

$$
\frac{1}{h(x)} \#\{n \in[x, x+h(x)], \quad E(n)=b\}=\nu(b)+\mathcal{O}\left(\frac{1}{b \sqrt{\log x}} \exp \left\{\sum_{p \mid b} \frac{2}{\sqrt{p}}\right\}\right)
$$

uniformly as $b<\log x, \quad b \in \mathcal{B}_{2}$.
Remark. This is an improvement of our Th. 3 in [4], according to:

$$
\begin{aligned}
\frac{1}{H} \#\left\{n \in[x, x+H] \mid n \in \mathcal{R}_{b}\right\}=\nu(b) & +\mathcal{O}\left(H^{-1} \cdot x^{\theta+\varepsilon} \cdot 2^{\omega(b)}\right)+ \\
& +\mathcal{O}\left(H^{-1 / 2} x^{\varepsilon} \prod_{p \mid b}\left(1+\frac{1}{\sqrt{p}}\right)\right)
\end{aligned}
$$

uniformly as $0<H<x$. Here $\theta=0,2204$ and ε is an arbitrary positive constant. The implied constants in the error terms may depend on ε.

We deduced this from a theorem of P. Varbanets [6]: Let $\phi(d)$ be a multiplicative function, such that $\phi(d)=\mathcal{O}\left(d^{\varepsilon}\right)$ for $\varepsilon>0$. Let

$$
f(n)=\sum_{d^{2} \mid n} \phi(d) .
$$

Then

$$
\sum_{x \leq n \leq x+h} f(n)=h \sum_{d=1}^{\infty} \frac{\phi(d)}{d^{2}}+\mathcal{O}\left(h^{1 / 2} x^{\varepsilon}\right)+\mathcal{O}\left(x^{\theta+\varepsilon}\right)
$$

uniformly in $h,(0<) h<x, 0<\varepsilon$ is an arbitrary constant, $\theta=0,2204$.

§ 2

Let $k \geq 2$ be a fixed integer. For some integer $n>0$ let $E_{k}(n)$ be the k-full part and $F_{k}(n)$ be the k-free part of n. Thus $n=E_{k}(n) F_{k}(n)$, $\left(E_{k}(n), F_{k}(n)\right)=1$. Let S_{b} be the set of those integers n, for which $E_{k}(n)=b$.

Let

$$
\begin{equation*}
\sigma(b):=\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x, E_{k}(n)=b\right\} \tag{3}
\end{equation*}
$$

Let

$$
\begin{gather*}
Q_{k}(x)=\#\left\{n \leq x, n \in \mathcal{M}_{k}\right\} \tag{4}\\
Q_{k}(x \mid r)=\#\left\{n \leq x, n \in \mathcal{M}_{k},(n, r)=1\right\} . \tag{5}
\end{gather*}
$$

A. Walfisz [7] proved that
$R_{k}(x):=Q_{k}(x)-\frac{x}{\zeta(k)}=\mathcal{O}\left(x^{1 / k} \exp \left(-A \cdot k^{-8 / 5}(\log x)^{3 / 5} \cdot(\log \log x)^{-1 / 5}\right)\right)$.
D. Suryanarayana [8] proved that

$$
\begin{equation*}
Q_{k}(x \mid r)=\frac{r^{k-1} \varphi(r) x}{J_{k}(r) \zeta(k)}+\mathcal{O}\left(\frac{\varphi(r) \cdot 2^{\omega(r)}}{r} x^{1 / k}\right) \tag{6}
\end{equation*}
$$

Here $J_{k}(r)$ is Jordan's totient. Observe that $\frac{r^{k-1} \varphi(r)}{K_{k}(r)}=\prod_{p \mid r} \frac{1-\frac{1}{p}}{1-\frac{1}{p^{k}}}$.
Let η be a strongly multiplicative function, $\eta(p)=\frac{1-\frac{1}{p}}{1-\frac{1}{p^{k}}}$ for $p \in \mathcal{P}$.
Then

$$
\sigma(b)=\frac{\eta(b) x}{b \zeta(k)} \quad\left(b \in \mathcal{M}_{k}\right)
$$

By using Th. A we can estimate

$$
\begin{equation*}
U_{b}(x):=\#\left\{n \in[x, x+h(x)], \quad E_{k}(n)=b\right\} \tag{7}
\end{equation*}
$$

if $h(x)=x^{\frac{1}{2 k+1}} g(x)^{3}(\log x)^{2-\frac{2}{2 k+1}}, \quad g(x)$ tends to infinity monotonically, $g(x) \leq \log x$, uniformly as $b<\log x, b \in \mathcal{B}_{k}$.

It is clear that

$$
U_{b}(x)=Q_{k}\left(\left.\frac{x+h(x)}{b} \right\rvert\, b\right)-Q_{k}\left(\left.\frac{x}{b} \right\rvert\, b\right) .
$$

Since

$$
\begin{aligned}
F_{b}(s)=\sum_{\substack{m \in \mathcal{M}_{k} \\
(m, b)=1}} \frac{1}{m^{s}} & =\prod_{p \nmid b}\left(1+\frac{1}{p^{s}}+\ldots+\frac{1}{p^{(k-1) s}}\right) \\
& =F_{1}(s) \prod_{p \mid b} \frac{1-\frac{1}{p^{s}}}{1-\frac{1}{p^{k s}}}, \quad F_{1}(s)=\frac{\zeta(s)}{\zeta(k s)},
\end{aligned}
$$

we can obtain that

$$
\begin{equation*}
U_{b}(x)=\sum_{v \in \mathcal{D}_{b}} f(v)\left\{Q_{k}\left(\frac{x+h(x)}{b v}\right)-Q_{k}\left(\frac{x}{b v}\right)\right\}, \tag{8}
\end{equation*}
$$

where \mathcal{D}_{b} is the multiplicative semigroup generated by the prime divisors of b, i.e.

$$
\mathcal{D}_{b}=\left\{p_{1}^{\varepsilon_{1}} \ldots p_{r}^{\varepsilon_{r}} \mid \varepsilon_{j}=0,1, \ldots, \quad j=1, \ldots, r\right\} \quad \text { if } \quad b=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}},
$$

furthermore f is a multiplicative function,

$$
f\left(p^{\alpha}\right)=\left\{\begin{aligned}
-1, & \text { if } \alpha \equiv 1 \quad(\bmod k), \\
1, & \text { if } \alpha \equiv 0 \quad(\bmod k), \\
0 & \text { otherwise }
\end{aligned}\right.
$$

From Th. A we have

$$
\begin{aligned}
U_{b}(x)= & \sum_{\substack{v \leq v(x) \\
v \in \mathcal{D}_{b}}} f(v)\left\{\frac{h(x)}{b v \zeta(k)}+\mathcal{O}\left(\frac{h(x) \log x}{b v \cdot g(x)^{3}}\right)+\mathcal{O}\left(\frac{h(x)}{b v \cdot g(x)}\right)\right\}+ \\
& +\mathcal{O}\left(\sum_{\substack{v \in \mathcal{D}_{b} \\
v b \leq h(x) \\
v>v(x)}}|f(v)| \frac{h(x)}{b v}\right)+\mathcal{O}\left(S_{b}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
S_{b}=\sum_{\substack{v \in \mathcal{D}_{b} \\ x=v i n \leq x+k(x) \\ v b>h(x)}}|f(v)| . \tag{9}
\end{equation*}
$$

Thus

$$
\begin{aligned}
U_{b}(x)=h(x) \sigma(b) & +\mathcal{O}\left(\frac{h(x) \log x}{g(x)^{3} b}\right)+\mathcal{O}\left(\frac{h(x)}{b \cdot g(x)}\right)+ \\
& +\mathcal{O}\left(\frac{h(x)}{b \sqrt{v(x)}} \sum_{v \in \mathcal{D}_{b}} \frac{1}{\sqrt{v}}\right)+\mathcal{O}\left(S_{b}\right) .
\end{aligned}
$$

Let $v(x)=\log x$. If $b=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}(\leq \log x)$ and $v \in \mathcal{D}_{b}$ is counted in (9), $v=p_{1}^{\gamma_{1}} \ldots p_{r}^{\gamma_{r}}$, then $p_{j}^{\gamma_{j}} \leq x+h(x)(<2 x)$, and so $\gamma_{j} \leq \frac{\log 2 x}{\log p_{j}}$.

Thus

$$
S_{b} \leq \prod_{j=1}^{r}\left(\frac{\log 2 x}{\log p_{j}}+1\right) \leq(2 \log 2 x)^{\omega(b)}
$$

Since $\omega(b) \leq \log b$, therefore $S_{b}=\mathcal{O}\left((2 \log 2 x)^{\log \log x}\right)=\mathcal{O}\left(x^{\varepsilon}\right)$, for every fixed $\varepsilon>0$.

Furthermore,

$$
\sum_{v \in \mathcal{D}_{b}} \frac{1}{\sqrt{v}} \leq \exp \left\{\sum_{p \mid b} \frac{2}{\sqrt{p}}\right\}
$$

We proved
Theorem 2. Let $k \geq 2$ be fixed. Then for $b \in \mathcal{B}_{k}, b<\log x$

$$
U_{b}(x)=h(x) \sigma(b)+\mathcal{O}\left(\frac{h(x) \log x}{g(x)^{3} b}\right)+\mathcal{O}\left(\frac{h(x)}{b \sqrt{\log x}} \exp \left(\sum_{p \mid b} \frac{2}{\sqrt{p}}\right)\right)
$$

where $h(x)=x^{\frac{1}{2 k+1}} \cdot g(x)^{3} \cdot(\log x)^{\frac{4 k}{2 k+1}}, \sqrt{\log x} \leq g(x) \leq \log x, g(x) \rightarrow \infty$ as $x \rightarrow \infty$.

§ 3

Theorem 3. Let $k \geq 2$, f be multiplicative, $f(p)=\ldots=f\left(p^{k-1}\right)=1$ for every prime $p, f(n)=\mathcal{O}\left(n^{\varepsilon}\right)$ for every $\varepsilon>0$.

Let

$$
D(f):=\sum_{b \in \mathcal{B}_{k}} \sigma(b) f(b) .
$$

Assume that $h(x)$ is the same as in Th. 2.
Then

$$
\frac{1}{h(x)} \sum_{x<n \leq x+h(x)} f(n)=D(f)+\mathcal{O}\left(\frac{\log x}{g(x)^{3}}+\frac{1}{\sqrt{\log x}}\right) .
$$

This assertion is a simple consequence of Th. 2.
A positive integer n is called unitary k-free, if $p^{\alpha} \| n, \alpha>0$, implies that $\alpha \not \equiv 0(\bmod k)$. Let $U_{k}(x)=\#\{n \leq x \mid n$ is unitary k-free $\}$.
D. Suryanarayana and R. S. R. C. Rao [9] proved that

$$
\begin{equation*}
U_{k}(x)=\alpha_{k} \cdot x+\mathcal{O}\left(x^{1 / k} \exp \left(-A(\log x)^{3 / 5} \cdot(\log \log x)^{-1 / 5}\right)\right) \tag{10}
\end{equation*}
$$

$\alpha_{k}>0$, constant.
Let f be multiplicative, $f\left(p^{\alpha}\right)=1$, if $\alpha \not \equiv 0(\bmod k)$, and $f\left(p^{k l}\right)=0$ $(l=1,2, \ldots)$. Then

$$
f(n)= \begin{cases}1, & \text { if } n \text { is unitary } k \text {-free } \\ 0, & \text { if } n \text { is not unitary } k \text {-free }\end{cases}
$$

Consequently we have a short interval version of (10). The conditions of Th. 3 are satisfied.

§ 4

Let Δ be the additive function, $\Delta\left(p^{\alpha}\right)=\alpha-1$. Thus $\Delta(n)=$ $=\Omega(n)-\omega(n)$. An easy consequence of Th. 1 is the following assertion: Let $k \geq 0$ be an integer,

$$
d_{k}:=\sum_{\substack{\Delta(b)=k \\ b \in \mathcal{B}_{2}}} \nu(b)
$$

Then

$$
\begin{equation*}
\frac{1}{h(x)} \sum_{\substack{n \in[x, x+h(x)] \\ \Delta(n)=k}} 1=\left(1+o_{x}(1)\right) d_{k}, \tag{11}
\end{equation*}
$$

$h(x)$ is the same as in Th. 1. This is a refinement of a theorem of J. M. De Koninck and A. Ivič [10].

$\S 5$

In our paper written with Subbarao [11] we have given the local distribution of $\tau(\tau(n))$ when we have taken the summation only over a short interval of type $\left[x, x+x^{7 / 12+\varepsilon}\right]$.

We can consider the local distribution of $\tau_{2}^{(e)}(n)=\tau^{(e)}\left(\tau^{(e)}(n)\right)$ when we sum on intervals of type $[x, x+h(x)], h(x)$ as in Th. 1. Observe that $\tau^{(e)}(n)=1$ if and only if n is square-free.

We can write every n as $u \cdot v^{2} \cdot m$, where u, v, m are mutually coprime integers, u, v are square-free, and m is cubefull.

Let v, m be fixed, $\mathcal{E}_{v, m}=\left\{n \mid n=u \cdot v^{2} \cdot m\right\}$. Let $\tau^{(e)}(m)=$ $=2^{\beta_{0}} \cdot Q_{1}^{\beta_{1}} \ldots Q_{t}^{\beta_{t}},(2<) Q_{1}<\ldots<Q_{t}$ be primes, $\beta_{j} \geq 1(j=1, \ldots, t)$, $\beta_{0} \geq 0 \quad\left(\beta_{0}=0\right.$ can occur. Then, for $n=u \cdot v^{2} \cdot m$ we have $\tau^{(e)}(n)=$ $\left.=2^{\omega(v)} \tau^{(e)}(m)=\tau\left[\omega(v)+\beta_{0}\right] \tau\left(\beta_{1}\right) \ldots \tau\left(\beta_{t}\right)\right)$.

From (1) we have

$$
\begin{align*}
& \#\left\{n \in \mathcal{E}_{v, m} \mid n \in[x, x+h(x)]\right\}= \tag{12}\\
& =\frac{6}{\pi^{2}} \frac{h(x)}{v^{2} m} \prod_{p \mid v m} \frac{1}{1+1 / p}+\mathcal{O}\left(\frac{h(x)}{v^{2} m \sqrt{\log x}} \exp \left(\sum_{p \mid v m} 2 / \sqrt{p}\right)\right)
\end{align*}
$$

if $v^{2} m<\log x$.
Let \mathcal{T} be the set of those k for which there exists $n \in \mathbb{N}$ such that $\tau_{2}^{(e)}(n)=k$. It is clear that $\mathcal{T}=\mathbb{N}$. Indeed, if p_{1}, \ldots, p_{l} are distinct primes, then $\tau^{(e)}\left(p_{1}^{2} \ldots p_{l}^{2}\right)=2^{l}$, and if $\tau(l)=k$, i.e. $l=2^{k-1}$, then $\tau_{2}^{(e)}\left(p_{1}^{2} \ldots p_{l}^{2}\right)=k$.

Let

$$
\eta_{k}=\frac{6}{\pi^{2}} \sum_{\tau_{2}^{(e)}\left(v^{2} m\right)=k} \frac{1}{v^{2} m} \prod_{p \mid v m} \frac{1}{1+1 / p}
$$

From Th. 1 we obtain
Theorem 4. Let $h(x)$ be as in Th. 1. Then for every $k \in \mathbb{N}$:

$$
\lim _{x \rightarrow \infty} \frac{1}{h(x)} \#\left\{n \in[x, x+h(x)] \mid \tau_{2}^{(e)}(n)=k\right\}=\eta_{k}
$$

Let $\Pi(y \mid b)$ be the number of those primes $p \leq y$, which can be written as $p=-1+m b,(m, b)=1, m$ square-free.

In [2] (Lemma 4) we proved the following
Lemma 1. Let $\varepsilon>0$ be a small number. Let ν and r be fixed positive integers and let $y^{7 / 12 \varepsilon} \leq H \leq y$. Then, as $y \rightarrow \infty$,

$$
\begin{aligned}
\Pi(y+H \mid b)-\Pi(y \mid b)= & \frac{\operatorname{li}(y+H)-l i(y)}{b} \prod_{q \nmid b}\left(1-\frac{1}{q(q-1)}\right)+ \\
& +\mathcal{O}\left(\frac{H}{b} \cdot \frac{1}{(\log y)^{r+2}}\right)
\end{aligned}
$$

uniformly for $b \leq(\log y)^{\nu}$.
Arguing as in the proof of Th. 4, we obtain
Theorem 5. Let

$$
\xi_{k}:=\sum_{\tau_{2}^{(e)}\left(v^{2} m\right)=k} \frac{1}{v^{2} m} \prod_{q \nmid v m}\left(1-\frac{1}{q(q-1)}\right)
$$

Here v, m run over those integers for which v, m are coprimes, m is cubefull, v is square-free.

Let $\varepsilon>0$ be an arbitrary small number, $H=H(x) \in\left[y^{7 / 12+\varepsilon}, y\right]$. Then

$$
\sum_{\substack{\tau_{2}^{(e)}(p+1)=k \\ p \in[x, x+H]}} 1=\left(1+o_{x}(1)\right) \xi_{k}(l i(x+H)-l i x)
$$

for every $k=0,1,2, \ldots$.

By using the argument applied in [5] (see the proof of Th. 6,7) we can prove that by $Y=Y(x)=x^{2 / 3+\varepsilon}, \varepsilon>0$ the limits
$\lim _{x \rightarrow \infty} \frac{1}{l i(x+Y)-l i(x)} \#\left\{p \in[x, x+Y] \mid \tau_{2}^{(e)}\left(p^{2}+1\right)=k\right\}=t_{k}$
exist, $\sum_{k=0}^{\infty} h_{k}=1, \quad \sum_{k=0}^{\infty} t_{k}=1$.

References

[1] DE KONINCK, J. M., KÁTAI, I. and SUBBARAO, M. V.: A consequence of a theorem of Filaseta, Annales des Sciences Mathematiques du Quebec 30 (2006), 55-62.
[2] DE KONINCK, J. M. and KÁTAI, I.: On the mean value of the index of composition of an integer, Monatshefte für Mathematik 145 (2005), 131-144.
[3] DE KONINCK, J. M., KÁTAI, I. and SUBBARAO, M. V.: On the index of composition of integers from various sets, Archiv der Mathematik 88 (2007), 524-536.
[4] FILASETA, M. and TRIFONOV, O.: The distribution of fractional parts with applications to gap results in number theory, Proc. London Math. Soc. (3) 73 (1996), 241-278.
[5] KÁTAI, I. and SUBBARAO, M. V.: On the distribution of exponential divisors, Annales Univ. Sci. Budapest, Sect. Comp. 22 (2003), 161-180.
[6] VARBANETS, P.: Multiplicative functions of special type in short intervals, New Trends in Probability and Statistics Vol. 2, Analytic and Probabilistic Methods in Number Theory, TEV, Vilnius, 1992, 181-188.
[7] WALFISZ, A.: Weylsche Exponentialsummen in der neueren Zahlentheorie, Berlin, 1963.
[8] SURYANARAYANA, D.: The number of k-free integers $\leq x$ which are prime to n, Indian J. Math. 11 (1969), 131-139.
[9] SURYANARAYANA, D. and RAO, R. S. R. C.: Distribution of unitary k-free integers, J. Austral Math. Soc. 20 (1975), 129-141.
[10] DE KONINCK, J. M. and IVIČ, A.: Topics in arithmetical functions, Notas de Matematica 72, North-Holland, 1980.
[11] KÁTAI, I. and SUBBARAO, M. V.: On the local distribution of the iterated divisor function, Mathematica Pannonica 15/1 (2004), 127-140.

