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Abstract: We establish some intimate connections between the intersection
convolution and the inversion, composition and box product of relations on one
groupoid to another.

The intersection convolution F ∗ G of two relations F and G on one
groupoid X to another Y is a relation X to Y such that

(

F ∗ G
)

(x) =
⋂

{

F (u) + G(v) : x = u + v, F (u) 6= ∅, G(v) 6= ∅
}

for all x ∈ X . The intersection convolution allows of a natural generalization
of the Hahn–Banach type extension theorems.

1. A few basic facts on relations and groupoids

A subset F of a product set X×Y is called a relation on X to Y .
If in particular, F ⊂ X2, then we may simply say that F is a relation
on X. Thus, a relation F on X to Y is also a relation on X ∪ Y .
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2 Á. Száz

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the
sets F (x) = {y ∈ X : (x, y) ∈ F} and F [A] =

⋃

a∈A F (a) are called the
images of x and A under F , respectively.

Moreover, the sets D
F

= {x ∈ X : F (x) 6= ∅} and R
F

= F [D
F
] are

called the domain and range of F , respectively. If in particular D
F

= X

(R
F

= Y ), then we say that F is a relation of X to Y (on X onto Y ).
As usual, a relation F on X is called (1) reflexive if x ∈ F (x) for all

x ∈ D
F
; (2) symmetric if y ∈ F (x) implies x ∈ F (y); and (3) transitive

if y ∈ F (x) and z ∈ F (y) imply z ∈ F (x).
In particular, a relation f on X to Y is called a function if for

each x ∈ D
f

there exists y ∈ Y such that f(x) = {y}. In this case, by
identifying singletons with their elements, we may simply write f(x) = y.

If X is a set and + is a function of X2 to X, then the function +
is called an operation in X and the ordered pair X(+) = (X, +) is called
a groupoid even if X is void.

In this case, we may simply write x + y in place of +(x, y) for
any x, y ∈ X. Moreover, we may also simply write X in place of X(+)
whenever the operation + is clearly understood.

In the practical applications, instead of groupoids, it is usually
sufficient to consider only semigroups. However, several definitions and
theorems on semigroups can be naturally extended to groupoids.

For instance, if X is a groupoid, then for any A, B ⊂ X, we may
naturally write A + B = {a + b : a ∈ A, b ∈ B}. Moreover, we may also
write x + A = {x} + A and A + x = A + {x} for any x ∈ X.

Note that if in particular X is a group, then we may also naturally
write −A = {−a : a ∈ A} and A − B = A + (−B) for any A, B ⊂ X.
Though, the family P(X) of all subsets of X is only a semigroup with
zero.

2. Some important operations on relations

If F is a relation on X to Y , then the values F (x), where x∈X ,
uniquely determine F . Therefore, the inverse relation F−1 can be natu-
rally defined such that F−1(y) = {x ∈ Y : y ∈ F (x)} for all y ∈ Y .

Moreover, if F is a relation on X to Y and G is a relation on Y

to Z, then the composition relation G ◦ F can be naturally defined such
that (G ◦ F )(x) = G[F (x)] for all x ∈ X.
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On the other hand, if F is a relation on X to Y and G is a relation
on Z to W , then we may also naturally define the box product relation
F ⊠ G such that (F ⊠ G)(x, z) = F (x) × G(z) for all x ∈ X and z ∈ Z.

Concerning inversion and composition, we only quote here the fol-
lowing two theorems.

Theorem 2.1. If F is a relation on X, then

(1) F is symmetric if and only if F−1 ⊂ F ;

(2) F is transitive if and only if F ◦ F ⊂ F .

Remark 2.2. Note that if F is symmetric, then we actually have
F−1 = F . Moreover, if F is reflexive and transitive, then under the
notation F 2 = F ◦ F we also have F 2 = F .

Theorem 2.3. If F is a relation on X to Y and G is a relation on Y

to Z, then

(1) (G ◦ F )−1 = F−1 ◦ G−1;

(2) (G ◦ F )[A] = G
[

F [A]
]

for all A ⊂ X.

Now, as a counterpart of the latter theorem, we can also easily
establish the following

Theorem 2.4. If F is a relation on X to Y and G is a relation on Z

to W , then

(1) (F ⊠ G)−1 = F−1 ⊠ G−1;

(2) (F ⊠ G)[A] = G ◦ A ◦ F−1 for all A ⊂ X × Z.

Hint. To prove the inclusion (F ⊠ G)[A] ⊂ G ◦ A ◦ F−1, we can note
that if (y, w) ∈ (F ⊠ G)[A], then there exists (x, z) ∈ A such that

(y, w) ∈ (F ⊠ G)(x, z) = F (x) × G(z),

and thus y ∈ F (x) and w ∈ G(z). Hence, by noticing that x ∈ F−1(y),
we can already see that

z ∈ A(x) ⊂ A
[

F−1(y)
]

=
(

A ◦ F−1
)

(y),

and thus w ∈ G(z) ⊂ G
[(

A ◦F−1
)

(y)
]

=
(

G ◦
(

A ◦F−1
))

(y). Therefore,

(y, w) ∈
(

G ◦
(

A ◦ F−1
))

=
(

G ◦ A ◦ F−1
)

also holds.

Remark 2.5. Note that the operation ⊠ and the above assertion (1)
can be naturally extended to arbitrary families of relations.

3. The intersection convolution of relations

Definition 3.1. If X is a groupoid, then for any x ∈ X and A, B ⊂ X,
we define

Γ(x, A, B) =
{

(u, v) ∈ A×B : x = u + v
}

.
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Remark 3.2. Now, in particular, we may simply write Γ(x)=Γ(x, X, X).
This Γ is just the inverse relation of the operation + in X. Moreover, we
have Γ

(

x, A, B
)

= Γ(x) ∩ (A × B).

Definition 3.3. If F and G are relations on one groupoid X to another
Y , then we define a relation F ∗ G on X to Y such that

(

F ∗ G
)

(x) =
⋂

{

F (u) + G(v) : (u, v) ∈ Γ(x, D
F
, D

G
)
}

for all x ∈ X. The relation F ∗ G is called the intersection convolution

of the relations F and G.

Remark 3.4. If in particular F and G are relations of X to Y , then we
may simply write
(

F ∗ G
)

(x) =
⋂

x=u+v

(

F (u) + G(v)
)

=
⋂

{

F (u) + G(v) : (u, v) ∈ Γ(x)
}

.

A particular case of Def. 3.3 was already considered in [3]. But, the
following theorem has only been proved in [4].

Theorem 3.5. If F and G are relations on a group X to a groupoid Y ,

then for any x ∈ X we have

(F ∗ G)(x) =
⋂

{

F (x − v) + G(v) : v ∈ (−D
F

+ x) ∩ D
G

}

=

=
⋂

{

F (u) + G(−u + x) : u ∈ D
F
∩ (x − D

G
)
}

.

Hence, by using that −X + x = X and x − X = X for all x ∈ X,
we can immediately get

Corollary 3.6. If F and G are relations on a group X to a groupoid

Y , then for any x ∈ X we have

(1)
(

F ∗ G)(x) =
⋂

v∈D
G

(

F (x − v) + G(v)
)

whenever F is total;

(2)
(

F ∗ G
)

(x) =
⋂

u∈D
F

(

F (u) + G(−u + x)
)

whenever G is total.

Thus, in particular, we can also state the following

Corollary 3.7. If F and G are relations of a group X to a groupoid Y ,

then for any x ∈ X we have

(F ∗ G)(x) =
⋂

v∈X

(

F (x − v) + G(v)
)

=
⋂

u∈X

(

F (u) + G(−u + x)
)

.

Remark 3.8. The multiplicative form of the first statement of this
corollary closely resembles to the definition of the ordinary convolution
of integrable functions.
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4. Relationships between the inversion and the inter-

section convolution

An example given in [1] shows that in general (F ∗G)−1 6= F−1∗G−1.
However, by using the first part of Cor. 3.6, we can easily prove the
following

Theorem 4.1. If F is a relation of one group X onto another Y and g

is a function on X to Y , then

(F ∗ g)−1 ⊂ F−1 ∗ g−1.

Proof. If y ∈ Y and x ∈ (F ∗ g)−1(y), then

y ∈ (F ∗ g)(x) =
⋂

v∈Dg

(

F (x − v) + g(v)
)

.

Therefore, for any v ∈ Dg, we have y ∈ F (x − v) + g(v), and thus

y − g(v) ∈ F (x − v) + g(v) − g(v) = F (x − v).

Hence, it follows that x − v ∈ F−1
(

y − g(v)
)

, and thus

x = x − v + v ∈ F−1
(

y − g(v)
)

+ v ⊂ F−1
(

y − g(v)
)

+ g−1
(

g(v)
)

.

Now, we can see that

x ∈
⋂

v∈Dg

(

F−1
(

y − g(v)
)

+ g−1
(

g(v)
))

=

=
⋂

w∈Rg

(

F−1(y − w) + g−1
(

w)
)

=

=
⋂

w∈D
g−1

(

F−1(y − w) + g−1
(

w)
)

=
(

F−1 ∗ g−1
)

(y).

Therefore,

(F ∗ g)−1(y) ⊂
(

F−1 ∗ g−1
)

(y)

for all y ∈ Y , and thus the required inclusion is also true. ♦

From the above theorem, we can immediately derive the following

Corollary 4.2. If F is a relation of one group X onto another Y and

g is an injective function on X to Y , then

(F ∗ g)−1 = F−1 ∗ g−1.

Proof. By applying Th. 4.1 to F−1 and g−1 instead of F and g, we can
note that

(

F−1 ∗ g−1
)

−1
⊂

(

F−1
)

−1
∗

(

g−1
)

−1
= F ∗ g,

and thus F−1 ∗ g−1 ⊂ (F ∗ g)−1 also holds. ♦
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Now, as an immediate consequence of this corollary, we can also
state

Corollary 4.3. If F is a symmetric relation of a group X and g is a

symmetric function on X, then F ∗ g is a symmetric relation on X.

Proof. Now, we have F = F−1 and g = g−1. Thus,
R

F
= D

F−1
= D

F
= X

and g is injective. Hence, by Cor. 4.2, it is clear that

(F ∗ g)−1 = F−1 ∗ g−1 = F ∗ g.

Therefore, the required assertion is also true. ♦

By using the second part of Cor. 3.6, we can quite similarly prove
the following

Theorem 4.4. If f is a function on one group X to another Y and G

is a relation of X onto Y , then

(f ∗ G)−1 ⊂ f−1 ∗ G−1.

Hence, it is clear that in particular we also have the following

Corollary 4.5. If f is an injective function on one group X to another

Y and G is a relation of X onto Y , then

(f ∗ G)−1 = f−1 ∗ G−1.

Thus, in particular, we can also state the following

Corollary 4.6. If f is a symmetric function on a group X and G is a

symmetric relation of X, then f ∗ G is a symmetric relation on X.

5. Relationships between the composition and the

intersection convolution

In contrast to the above results, the following theorem will, in par-
ticular, show that the intersection convolution of transitive relations is
usually a transitive relation.

Theorem 5.1. If F and G are relations on one groupoid X to another

Y and H and K are relations on Y to a groupoid Z such that R
F
⊂ D

H

and R
G
⊂ D

K
, then
(

H ∗ K
)

◦
(

F ∗ G
)

⊂
(

H ◦ F
)

∗
(

K ◦ G
)

.

Proof. If (x, z) ∈
(

H ∗ K
)

◦
(

F ∗ G
)

, then

z ∈
(

(H ∗ K) ◦ (F ∗ G)
)

(x) = (H ∗ K)[(F ∗ G)(x)].

Therefore, there exists y ∈ Y such that
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y ∈
(

F ∗ G
)

(x) =
⋂

{

F (u) + G(v) : (u, v) ∈ Γ(x, D
F
, D

G
)
}

and

z ∈
(

H ∗ K
)

(y) =
⋂

{

H(s) + K(t) : (s, t) ∈ Γ(y, D
H
, D

K
)
}

.

Thus, for any (u, v) ∈ Γ(x, D
F
, D

G
), we have y ∈ F (u)+G(v). Therefore,

there exist s ∈ F (u) and t ∈ G(v) such that y = s + t. Hence, we can
infer that
H(s) ⊂ H

[

F (u)
]

=
(

H ◦ F
)

(u) and K(t) ⊂ K
[

G(v)
]

=
(

K ◦ G
)

(v).

Moreover, by using that
s ∈ F (u) ⊂ R

F
⊂ D

H
and t ∈ G(v) ⊂ R

G
⊂ D

K
,

we can also see that (s, t) ∈ Γ(y, D
H
, D

K
). Hence, since z ∈

(

H ∗K
)

(y),
it is clear that

z ∈ H(s) + K(t) ⊂
(

H ◦ F
)

(u) +
(

K ◦ G
)

(v).

Therefore,

z ∈
⋂

{

(H ◦ F )(u) + (K ◦ G)(v) : (u, v) ∈ Γ(x, D
F
, D

G
)
}

=

=
(

(H ◦ F ) ∗ (K ◦ G)
)

(x).

Thus, (x, z) ∈
(

H ◦ F
)

∗
(

K ◦ G
)

also holds. This proves the required
inclusion. ♦

From the above theorem, we can immediately derive the following

Corollary 5.2. If F and G are relations on a groupoid X such that

R
F
⊂ D

F
and R

G
⊂ D

G
, then

(

F ∗ G
)2

⊂ F 2 ∗ G2.

Proof. By Th. 5.1, we have
(

F ∗ G
)2

=
(

F ∗ G
)

◦
(

F ∗ G
)

⊂
(

F ◦ F
)

∗
(

G ◦ G
)

= F 2 ∗ G2. ♦

Now, as an immediate consequence of this corollary, we can also
state

Corollary 5.3. If F and G are transitive relations on a groupoid X such

that R
F
⊂ D

F
and R

G
⊂ D

G
, then F∗G is also a transitive relation on X.

Proof. Because of the above assumptions, we have

D
F2

= D
F
, D

G2
= D

G
and F 2 ⊂ F, G2 ⊂ G.

Hence, by Cor. 5.2 and Def. 3.3, it is clear that
(

F ∗ G
)2

⊂ F 2 ∗ G2 ⊂ F ∗ G.

Therefore, the required assertion is also true. ♦
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6. Relationships between the box product and the

intersection convolution

Theorem 6.1. If F and G are relations on one groupoid X to another

Y , then for any x ∈ X and y ∈ Y the following assertions are equivalent:

(1) y ∈ (F ∗ G)(x);

(2) Γ(x, D
F
, D

G
) ⊂ G−1 ◦ Γ(y, R

F
, R

G
) ◦ F ;

(3) Γ(x, D
F
, D

G
) ⊂

(

F ⊠ G
)

−1[

Γ(y, R
F
, R

G
)
]

;

(4) Γ(x, D
F
, D

G
) ⊂

(

F−1 ⊠ G−1
)[

Γ(y, R
F
, R

G
)
]

.

Proof. By Th. 2.4, it is clear that (2), (4) and (3) are equivalent. There-
fore, it is enough to show only that (1) and (3) are also equivalent.

For this, note that if (1) holds, then

y ∈
⋂

{

F (u) + G(v) : (u, v) ∈ Γ(x, D
F
, D

G
)
}

.

Thus, for any (u, v) ∈ Γ(x, D
F
, D

G
), we have y ∈ F (u)+G(v). Therefore,

there exist s ∈ F (u) and t ∈ G(v) such that y = s + t. Hence, it follows
that

(s, t) ∈ Γ(y, R
F
, R

G

)

and (s, t) ∈ F (u) × G(v) =
(

F ⊠ G
)

(u, v).

Therefore,

(u, v) ∈
(

F ⊠ G
)

−1
(s, t) ⊂

(

F ⊠ G
)

−1[

Γ(y, R
F
, R

G
)
]

,

and thus (3) also holds.
Conversely, note that if (3) holds, then for any (u, v) ∈ Γ(x, D

F
, D

G
)

we have (u, v) ∈
(

F ⊠G
)

−1[

Γ(y, R
F
, R

G
)
]

. Therefore, there exists (s, t) ∈

∈ Γ(y, R
F
, R

G
) such that (u, v) ∈

(

F ⊠ G
)

−1
(s, t). Hence, it follows that

y = s + t and (s, t) ∈
(

F ⊠ G
)

(u, v) = F (u) × G(v).

This implies that s ∈ F (u) and t ∈ G(v), and thus y = s + t ∈ F (u)+
+G(v). Therefore,

y ∈
⋂

{

F (u) + G(v) : (u, v) ∈ Γ(x, D
F
, D

G
)
}

,

and thus (1) also holds. ♦

Remark 6.2. Note that, for any y ∈ Y , we have
(

F ⊠ G
)

−1[

Γ(y)
]

=
(

F ⊠ G
)

−1[

Γ(y) ∩ R
F ⊠G

]

=

=
(

F ⊠ G
)

−1[

Γ(y) ∩
(

R
F
× R

G

)]

=

=
(

F ⊠ G
)

−1[

Γ(y, R
F
, R

G
)
]

.

Therefore, in the above theorem we may write Γ(y) in place of
Γ(y, R

F
, R

G
).
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Now, as an immediate consequence of Th. 6.1 and Rem. 6.2, we can
also state

Corollary 6.3. If F and G are relations of one groupoid X to another

Y , then for any x ∈ X and y ∈ Y the following assertions are equivalent:

(1) y ∈ (F ∗ G)(x);

(2) Γ(x) ⊂ G−1 ◦ Γ(y) ◦ F ;

(3) Γ(x) ⊂
(

F ⊠ G
)

−1[

Γ(y)
]

;

(4) Γ(x) ⊂
(

F−1 ⊠ G−1
)[

Γ(y)
]

.

Hence, it is clear that in particular we also have

Corollary 6.4. If F and G are symmetric relations of a groupoid X to

itself, then for any x, y ∈ X the following assertions are equivalent:

(1) y ∈ (F ∗ G)(x);
(2) Γ(x) ⊂ G ◦ Γ(y) ◦ F ;

(3) Γ(x) ⊂
(

F ⊠ G
)[

Γ(y)
]

.

Remark 6.5. This corollary also strongly suggests that the intersec-
tion convolution of symmetric relations is not, in general, a symmetric
relation.

References
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