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Abstract: In this paper a result concerning the starlikeness of the image of the
Alexander operator is improved. The technique of differential subordinations
is used.

1. Introduction

We introduce the notations U(zp,7) = {z € C: |z — 29| < r} and
U,1)="U.

Let A be the class of analytic functions defined on the unit disc U
and having the form f(z) = 2z + a»2? + azz® + ... .

The subclass of A consisting of functions for which the domain f(U)
is starlike with respect to 0, is denoted by S*. An analytic description of
S* is

. e ® }
S_{feA.Re 8 >0, zeU;.

Another subclass of A which we deal with is defined by

C:{f€A|3geS*:Rez§(,S)>0, zeU}.
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This is the class of close-to-convex functions.
We mention that C' and S* contain univalent functions.
The Alexander integral operator is defined by the equality:

o [0

Recall that if f and ¢ are analytic in U and g is univalent, then the
function f is said to be subordinate to g, written f < g if f(0) = g(0)

and f ( ) C g(U).
2] it has been proved that A(C) ¢ S*.

n [
n [1] (p. 310-311) the authors have proved the following result:
Theorem 1. Let A be the operator of Alexander and let g € A satisfy

29'(2) o |, 229 (2))
(1) Re= 2 |lm— =, z€U
If f € A satisfies

2f'(2)

fe 9(2)

>0, zeU

then ' = A(f) € S*.
The aim of this paper is to prove an improvement of Th. 1.

2. Preliminaries

In order to prove the main result we need the following lemmas.

Lemma 1 [1] p. 22. Let p(z)=a+>_ axz"* be analytic in U with p(z) # a,
k=n

n>1andlet q: U(0,1) — C be a univalent function with q(0) = a. If

there exist two points zo € U(0,1) and (o € OU(0, 1) so that q is defined

in Co, p(20) = q(Co) and p(U(0,70)) C q(U), where 1o = [20], then there

exists an m € [n,+00) so that

(i) 200 (20) = mCoq' (o)

(ii) Re (1 + Z;p(io))) > mRe <1 + %) .

We mention that zop'(z0) is the outward normal to the curve
p(OU(0,r9)) at the point p(zy). (OU(0,ry) denotes the border of the disc
U(O,’T’Q)).

Lemma 2 [1] p. 26. Let p(z) = a+ Y, ax2®, p(z) # a and n > 1. If
k=n

and

zo € U and
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Rep(z) = min{Rep(2) : 2] <[]},

then ip(z0) |2
. , n |p(z) —a
(1> zop (ZO) < —Em
and

(i) Re 220" (20)] + 209/ (20) < 0.

Lemma 3. If p is an analytic function in U, p(0) =1 and
1
(2) Rep(z) > §|Im (zp'(2) +p*(2))|, z€U,

then |Im(p(2))| <1, ze€U.
Proof. Note from (2) we know that Rep(z) > 0, 2z € U. Let € > 0 be
arbitrary and let B be the band defined by the equality
B={ze€C||Imz[<1+¢Rez>0}

We will prove that
(3) Imp(z) <1+e€ zeU.

If (3) does not hold then according to Lemma 1 there exist a point
zp € U and a real number s € [0, +00) so that

p(U(0, |2])) C B and

p(z0) =s+i(l+e€),s>0

20P (20) =i, a > 0.

i(1+g) | P0)

- i(1+¢€)

20P' (20) is the outward normal to the smooth curve v = {p(z) : z €
€ C, |z| = |20}
Condition (2) becomes

s> %}Im (ia+ [s +i(1 +€))]
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or equivalently
1
s> §|0z +2(1+€)s].
This inequality can be true only if & = 0 and s = 0, but this means that

p(U(0, [z0])) € B and p(z) = i(1 +¢).

yﬂ

i(1+¢€) I zop"(20)

P(zo) =x +i(l+¢)

- i(1+¢)

\/

This contradicts the fact that «y is a smooth curve. The case p(zg) =
=s—1i(1+e€), zop'(z0) = —ia can be treated analogously. The obtained
contradiction implies that

Im (p(2))| <1+4+e€ z€U
for every € > 0. Now if we put € — 0 then results
m(p(z))| <1, ze€U O

Remark 1. If we put in Lemma 3 p(z) = Zg((z then

)’
() () +p7(z) = 2 ((j”

and we get that the condition

/ / /
Rezg(z) zl'lmM , ze€U
g9(z) — 2 9(2)
/
implies the inequality (Im Zg(ij) ' <1l,zel.

Lemma 4. Let q be an analytic function in U and q(0) = 1. If g € A,

‘Im ())

: 29'(2)
(5) Re (zq (2) + ) q(z)) >0, z€U



An improvement of a criterion for starlikeness 5

implies that Req(z) > 0, z € U.
Proof. If Req(z) > 0, z € U does not hold true, then Lemma 2 implies
that there are two real numbers s,¢ € R and a complex number zy € U

1
so that q(z9) = is, 2q'(z) =t < —5(52 +1).
Thus

Re (zoq’(zo) + Zogg(lz(j; )q(Zo)) = Re (t i zogg(lz(j)o)is> :

Zog,(ZO) 1

< Lo I
—=S8 — slm .
-2 9(20) 2

According to the conditions of the lemma we have

Zog/(Zo) ?
A= (Im ) —-1<0

9(20)
and so
!
—182 _ sIm 209 (ZO> o 1 <0
2 9(20) 2
for all s € R.

This contradicts condition (5) and yields Req(z) >0, z € U. ¢

3. The main result

Theorem 2. Let g € A be a function which satisfies the condition

zg'(z) _ 1 o 2(z9'(2)) ;
©) ey 3 ‘I ( o) ) 2l
If f e Aand
Rezf(z) >0, zelU,
9(2)

then F'= A(f) € S*, where A denotes the Alezander operator.

Proof. The first part of the proof follows the idea of the authors of
Th. 1.
From F' = A(f) we get that

Fl(z) + 2F"(2) = f'(2).
This can be rewritten in the form

P(2)(2p'(2) +p°(2)) =
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where p(z) = 22 and P(z) = g(z).

F(z) (2)
The conditions of the theorem imply that:
(7) Re [P(2)(2p/(2) +p*(2))] >0, zecU.

In the first step we will prove that Re P(z) > 0, z € U. A differentiation of
the equality g(z)- P(z) = F(z) leads to g(2)-zP'(2)+29'(2)P(z) = f(2).
Differentiating again, we get that
2 o : iy 29'(2) 2(zg'(2)) _ 2f'(2)
2°P"(2) + 2P'(2) + 22P'(2) o) + P(z) 1) o)
If Re P(z) > 0 does not hold for every z € U, then according to Lemma 2
there are two real numbers s,¢ € R and a point zg € U so that

(8) P(z) = is
2P (z0) =t < —%(32 +1)
Re [25P" (20) + 20P'(20)] < 0.
The conditions of the theorem imply Re % > 0 and

3= (m () o () <o

From this and (8) results

Re % = Re[22P"(20) + 20P'(20)] + 220P'(20)Re Zogg(/z(j;)
+Re (P(ZO)%/) < 2(Re z(;g('z(;@ +
—slm (%) < —323?%2(3)) _
() g

This means that Re % < 0 is in contradiction with the hypoth-

esis of the theorem and so Re P(z) > 0 for all z € U.

Now we return to the relation (7). If Rep(z) > 0 does not hold for
every z € U, then we apply Lemma 2 for the second time and we get
that there are two real numbers s1,t; € R and a point z; € U so that

p(z1) = isy

1
le/(zl) = tl S —5(8% + 1)
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This leads us to a contradiction with the inequality (7) as follows:
Re [P(z1) (210 (21) + p*(21))] = Re [P(z1)(t — s7)] < 0.
The obtained contradiction implies that

B ezF/(z)
Rep(z) =R FC)

>0, zeU

and so ' € S*. O

We will prove that the condition (1) in Th. 1 can be replaced by

the condition ’Im 29| < 1, z € U, namely by the inequality from the

9(z)
conclusion of Rem. 1.

Theorem 3. Let g € A be a function, which satisfies the condition

9) 'Im Zj;;) <1, zel.
If f e A and
Re ZJ(S) >0, zelU,

then F' = A(f) € S* where A denotes the Alexander operator.
Proof. From F' = A(f) we obtain that
F'(2) + 2F"(2) = f'(2).
This can be rewritten using the notations p(z) = ZIJZES) and P(z) = £&
in the following way

P(2)(2p'(2) + p(2))
The conditions of Th. 3 imply that
(10) Re P(2)(zp(2) + p*(2)) >0, z€U.

First we prove that Re P(z) > 0, z € U.
If we let Q(z) = % a simple differentiation of the equalities

9(2) - Q(2) = f(z) and g(2)P(z) = F(z) leads to

_2f(2)

zeU.
9(2),

; zg'(2) _2f'(?)
(11> ZQ (Z> + g(z) Q(Z) - g(z>
" ) oy _ F(2)
, 2q' (% _ f(=z
(12) 2P'(z) + o) P(z) = o)’ zeU.
The condition Re Zj; (,S) > 0, equality (11) and Lemma 4 imply that

ReQ(z) > 0, z € U, namely Re% >0,z€eU.
Now equality (12) and Lemma 4 imply that Re P(z) > 0, z € U.
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If Rep(z) > 0, z € U would not be true, then according to Lemma 2
there are two real numbers s,¢ € R and a point 2o € U so that p(zy) = is
and zop'(z9) = t < —3(s* + 1). Thus

P(z0) (200 (20) + p*(20)) = P(20)(t — 5%)
and Re P(zp) > 0 implies that

Re [P(20) (200 (20) + p*(20))] < 0.

This inequality contradicts (10), hence we deduce Re p(z) = Re
zeU. ¢
Theorem 4. If p is an analytic function in U, p(0) =1 and
(13) Rep(z) > [Im (2p'(2) +p*(2))|, 2 €U,
then Rep(z) > [Imp(z)], z¢€U.
Proof. To prove the assertion we introduce the notation

D:{ZE(C:|arg(z)|§§}.

2F'(z)
F(z)

> 0,

We observe that the assertion Rep(z) > [Imp(z)|, =z € U is equivalent
to

(14) p=q,

where
1+ 2
q(z) =4/ 7
—z

is the Riemann mapping from U to D. (The branch of y/z is chosen such
that Tmy/z > 0.)

If (14) does not hold true, then Lemma 1 implies that there are two
points 2o € U and ¢y € C, |(o| = 1 so that p(U(0, |20])) C ¢(U),

p(20) = 4(Co)

and
Zop/(zo) = mCoQ(Co)
where m € R, m > 1.

If arg (o = B then ¢q((p) = \/ctgg (? i—z@) : ctgg > 0 and

—1
Coq/(CO) = .
4y/ctg 2 sin? & (ﬁ j:z'ﬁ>

2 2

We discuss the case

q(¢o) =r\/ctg= | — +i—

(V2 V2
2\ 2 2 |
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The other case is similar.
In this case condition (13) becomes
\/_ tg 5 m + ctg g
424/ ctg g sin? g

and using the notation t = \/ctg £, it can be rewritten as follows

(15) mt* + 4v2t% — 4t +m < 0.
The condition m > 1 implies that
th 4+ 4V26 — A+ 1 < mtt + 4V280 — 487 .
An elementary analysis of the behaviour of the function
@ [0,+00) = R, o(t) =t +4v2t° — 4t? + 1
shows that ¢(t) > 0,t € [0, 00) and this contradicts (15). The contradic-
tion implies that p < ¢q. ¢

Conclusions

1. The result of Th. 2 is stronger than Th. 1.

2. Th. 1 says that a subclass of the class of close-to-convex functions
is mapped by the Alexander operator in the class of starlike functions.

3. Rem. 1 shows that the condition (6) of Th. 2 implies condition
(9) of Th. 3 and so Th. 2 is a consequence of Th. 3. Th. 3 asserts that
a larger class (as in the case of Th. 2) of analytic functions is mapped
by the Alexander operator in S*, but this larger class contains functions
which are not necessary close-to-convex.

4. Tt would be interesting to study the validity of Th. 1 if we replace
condition (1) by the weaker condition ReReZ2%) > [Im22&)| ;e U

9(2) 9(2)
(which is the consequence of Th. 4 and equality (4)).
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