AN IMPROVEMENT OF A CRITERION FOR STARLIKENESS

Róbert Szász

Department of Mathematics and Informatics, Sapientia University, Calea Sighişoarei 1c, Corunca, Romania

Received: September 2008??
MSC 2000: 30 C 45
Keywords: The operator of Alexander, starlike functions, close-to-convex functions.

Abstract: In this paper a result concerning the starlikeness of the image of the Alexander operator is improved. The technique of differential subordinations is used.

1. Introduction

We introduce the notations $U\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ and $U(0,1)=U$.

Let \mathcal{A} be the class of analytic functions defined on the unit disc U and having the form $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$.

The subclass of \mathcal{A} consisting of functions for which the domain $f(U)$ is starlike with respect to 0 , is denoted by S^{*}. An analytic description of S^{*} is

$$
S^{*}=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}
$$

Another subclass of \mathcal{A} which we deal with is defined by

$$
C=\left\{f \in \mathcal{A} \mid \exists g \in S^{*}: \operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U\right\} .
$$

[^0]This is the class of close-to-convex functions.
We mention that C and S^{*} contain univalent functions.
The Alexander integral operator is defined by the equality:

$$
A(f)(z)=\int_{0}^{z} \frac{f(t)}{t} d t
$$

Recall that if f and g are analytic in U and g is univalent, then the function f is said to be subordinate to g, written $f \prec g$ if $f(0)=g(0)$ and $f(U) \subset g(U)$.

In [2] it has been proved that $A(C) \not \subset S^{*}$.
In [1] (p. 310-311) the authors have proved the following result:
Theorem 1. Let A be the operator of Alexander and let $g \in \mathcal{A}$ satisfy

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq\left|\operatorname{Im} \frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}\right|, \quad z \in U \tag{1}
\end{equation*}
$$

If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, \quad z \in U
$$

then $F=A(f) \in S^{*}$.
The aim of this paper is to prove an improvement of Th. 1.

2. Preliminaries

In order to prove the main result we need the following lemmas.
Lemma 1 [1] p. 22. Let $p(z)=a+\sum_{k=n}^{\infty} a_{k} z^{k}$ be analytic in U with $p(z) \not \equiv a$, $n \geq 1$ and let $q: U(0,1) \rightarrow \mathbb{C}$ be a univalent function with $q(0)=a$. If there exist two points $z_{0} \in U(0,1)$ and $\zeta_{0} \in \partial U(0,1)$ so that q is defined in $\zeta_{0}, p\left(z_{0}\right)=q\left(\zeta_{0}\right)$ and $p\left(U\left(0, r_{0}\right)\right) \subset q(U)$, where $r_{0}=\left|z_{0}\right|$, then there exists an $m \in[n,+\infty)$ so that
(i) $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$
and
(ii) $\operatorname{Re}\left(1+\frac{z_{0} p^{\prime \prime}\left(z_{0}\right)}{p^{\prime}\left(z_{0}\right)}\right) \geq m \operatorname{Re}\left(1+\frac{\zeta_{0} q^{\prime \prime}\left(\zeta_{0}\right)_{0}}{q^{\prime}\left(\zeta_{0}\right)}\right)$.

We mention that $z_{0} p^{\prime}\left(z_{0}\right)$ is the outward normal to the curve $p\left(\partial U\left(0, r_{0}\right)\right)$ at the point $p\left(z_{0}\right) .\left(\partial U\left(0, r_{0}\right)\right.$ denotes the border of the disc $\left.U\left(0, r_{0}\right)\right)$.
Lemma 2 [1] p. 26. Let $p(z)=a+\sum_{k=n}^{\infty} a_{k} z^{k}, p(z) \not \equiv a$ and $n \geq 1$. If $z_{0} \in U$ and

$$
\operatorname{Re} p\left(z_{0}\right)=\min \left\{\operatorname{Re} p(z):|z| \leq\left|z_{0}\right|\right\}
$$

then
(i) $z_{0} p^{\prime}\left(z_{0}\right) \leq-\frac{n}{2} \frac{\left|p\left(z_{0}\right)-a\right|^{2}}{\operatorname{Re}\left(a-p\left(z_{0}\right)\right)}$
and
(ii) $\operatorname{Re}\left[z_{0}^{2} p^{\prime \prime}\left(z_{0}\right)\right]+z_{0} p^{\prime}\left(z_{0}\right) \leq 0$.

Lemma 3. If p is an analytic function in $U, p(0)=1$ and

$$
\begin{equation*}
\operatorname{Re} p(z) \geq \frac{1}{2}\left|\operatorname{Im}\left(z p^{\prime}(z)+p^{2}(z)\right)\right|, \quad z \in U \tag{2}
\end{equation*}
$$

then $|\operatorname{Im}(p(z))| \leq 1, \quad z \in U$.
Proof. Note from (2) we know that $\operatorname{Re} p(z) \geq 0, \quad z \in U$. Let $\epsilon>0$ be arbitrary and let \mathcal{B} be the band defined by the equality

$$
\mathcal{B}=\{z \in \mathbb{C}| | \operatorname{Im} z \mid \leq 1+\epsilon, \operatorname{Re} z \geq 0\} .
$$

We will prove that

$$
\begin{equation*}
\operatorname{Im} p(z) \leq 1+\epsilon, \quad z \in U . \tag{3}
\end{equation*}
$$

If (3) does not hold then according to Lemma 1 there exist a point $z_{0} \in U$ and a real number $s \in[0,+\infty)$ so that
$p\left(U\left(0,\left|z_{0}\right|\right)\right) \subset \mathcal{B}$ and
$p\left(z_{0}\right)=s+i(1+\epsilon), s \geq 0$
$z_{0} p^{\prime}\left(z_{0}\right)=i \alpha, \alpha \geq 0$.

$z_{0} p^{\prime}\left(z_{0}\right)$ is the outward normal to the smooth curve $\gamma=\{p(z): z \in$ $\left.\in \mathbb{C},|z|=\left|z_{0}\right|\right\}$.

Condition (2) becomes

$$
s \geq \frac{1}{2}\left|\operatorname{Im}\left(i \alpha+[s+i(1+\epsilon)]^{2}\right)\right|
$$

or equivalently

$$
s \geq \frac{1}{2}|\alpha+2(1+\epsilon) s| .
$$

This inequality can be true only if $\alpha=0$ and $s=0$, but this means that $p\left(U\left(0,\left|z_{0}\right|\right)\right) \subset \mathcal{B}$ and $p\left(z_{0}\right)=i(1+\epsilon)$.

This contradicts the fact that γ is a smooth curve. The case $p\left(z_{0}\right)=$ $=s-i(1+\epsilon), z_{0} p^{\prime}\left(z_{0}\right)=-i \alpha$ can be treated analogously. The obtained contradiction implies that

$$
|\operatorname{Im}(p(z))| \leq 1+\epsilon, \quad z \in U
$$

for every $\epsilon>0$. Now if we put $\epsilon \rightarrow 0$ then results

$$
|\operatorname{Im}(p(z))| \leq 1, \quad z \in U . \quad \diamond
$$

Remark 1. If we put in Lemma $3 p(z)=\frac{z g^{\prime}(z)}{g(z)}$, then

$$
\begin{equation*}
z p^{\prime}(z)+p^{2}(z)=\frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)} \tag{4}
\end{equation*}
$$

and we get that the condition

$$
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq \frac{1}{2}\left|\operatorname{Im} \frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}\right|, \quad z \in U
$$

implies the inequality $\left|\operatorname{Im} \frac{z g^{\prime}(z)}{g(z)}\right| \leq 1, z \in U$.
Lemma 4. Let q be an analytic function in U and $q(0)=1$. If $g \in \mathcal{A}$, $\left|\operatorname{Im} \frac{z g^{\prime}(z)}{g(z)}\right| \leq 1, z \in U$, then the inequality

$$
\begin{equation*}
\operatorname{Re}\left(z q^{\prime}(z)+\frac{z g^{\prime}(z)}{g(z)} q(z)\right)>0, \quad z \in U \tag{5}
\end{equation*}
$$

implies that $\operatorname{Re} q(z)>0, z \in U$.
Proof. If $\operatorname{Re} q(z)>0, z \in U$ does not hold true, then Lemma 2 implies that there are two real numbers $s, t \in \mathbb{R}$ and a complex number $z_{0} \in U$ so that $q\left(z_{0}\right)=i s, z q^{\prime}\left(z_{0}\right)=t \leq-\frac{1}{2}\left(s^{2}+1\right)$.

Thus

$$
\begin{aligned}
\operatorname{Re}\left(z_{0} q^{\prime}\left(z_{0}\right)+\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)} q\left(z_{0}\right)\right) & =\operatorname{Re}\left(t+\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)} i s\right) \leq \\
& \leq-\frac{1}{2} s^{2}-s \operatorname{Im} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}-\frac{1}{2} .
\end{aligned}
$$

According to the conditions of the lemma we have

$$
\Delta=\left(\operatorname{Im} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)^{2}-1 \leq 0
$$

and so

$$
-\frac{1}{2} s^{2}-s \operatorname{Im} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}-\frac{1}{2} \leq 0
$$

for all $s \in \mathrm{R}$.
This contradicts condition (5) and yields $\operatorname{Re} q(z)>0, z \in U . \diamond$

3. The main result

Theorem 2. Let $g \in \mathcal{A}$ be a function which satisfies the condition

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq \frac{1}{2}\left|\operatorname{Im}\left(\frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}\right)\right|, \quad z \in U \tag{6}
\end{equation*}
$$

If $f \in \mathcal{A}$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, \quad z \in U
$$

then $F=A(f) \in S^{*}$, where A denotes the Alexander operator.
Proof. The first part of the proof follows the idea of the authors of Th. 1.

From $F=A(f)$ we get that

$$
F^{\prime}(z)+z F^{\prime \prime}(z)=f^{\prime}(z)
$$

This can be rewritten in the form

$$
P(z)\left(z p^{\prime}(z)+p^{2}(z)\right)=\frac{z f^{\prime}(z)}{g(z)}, \quad z \in U
$$

where $p(z)=\frac{z F^{\prime}(z)}{F(z)}$ and $P(z)=\frac{F(z)}{g(z)}$.
The conditions of the theorem imply that:

$$
\begin{equation*}
\operatorname{Re}\left[P(z)\left(z p^{\prime}(z)+p^{2}(z)\right)\right]>0, \quad z \in U \tag{7}
\end{equation*}
$$

In the first step we will prove that $\operatorname{Re} P(z)>0, z \in U$. A differentiation of the equality $g(z) \cdot P(z)=F(z)$ leads to $g(z) \cdot z P^{\prime}(z)+z g^{\prime}(z) P(z)=f(z)$. Differentiating again, we get that

$$
z^{2} P^{\prime \prime}(z)+z P^{\prime}(z)+2 z P^{\prime}(z) \cdot \frac{z g^{\prime}(z)}{g(z)}+P(z) \cdot \frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}=\frac{z f^{\prime}(z)}{g(z)} .
$$

If $\operatorname{Re} P(z)>0$ does not hold for every $z \in U$, then according to Lemma 2 there are two real numbers $s, t \in \mathbb{R}$ and a point $z_{0} \in U$ so that

$$
\begin{gather*}
P\left(z_{0}\right)=i s \tag{8}\\
z_{0} P^{\prime}\left(z_{0}\right)=t \leq-\frac{1}{2}\left(s^{2}+1\right) \\
\operatorname{Re}\left[z_{0}^{2} P^{\prime \prime}\left(z_{0}\right)+z_{0} P^{\prime}\left(z_{0}\right)\right] \leq 0 .
\end{gather*}
$$

The conditions of the theorem imply $\operatorname{Re} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)} \geq 0$ and

$$
\Delta=\left(\operatorname{Im}\left(\frac{z_{0}\left(z_{0} g^{\prime}\left(z_{0}\right)\right)^{\prime}}{g\left(z_{0}\right)}\right)\right)^{2}-4\left(\operatorname{Re} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)^{2} \leq 0
$$

From this and (8) results

$$
\begin{aligned}
\operatorname{Re} \frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}= & \operatorname{Re}\left[z_{0}^{2} P^{\prime \prime}\left(z_{0}\right)+z_{0} P^{\prime}\left(z_{0}\right)\right]+2 z_{0} P^{\prime}\left(z_{0}\right) \operatorname{Re} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}+ \\
& +\operatorname{Re}\left(P\left(z_{0}\right) \frac{z_{0}\left(z_{0} g^{\prime}\left(z_{0}\right)\right)^{\prime}}{g\left(z_{0}\right)}\right) \leq 2 t \operatorname{Re} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}+ \\
& -s \operatorname{Im}\left(\frac{z_{0}\left(z_{0} g^{\prime}\left(z_{0}\right)\right)^{\prime}}{g\left(z_{0}\right)}\right) \leq-s^{2} \operatorname{Re} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}- \\
& -s \operatorname{Im}\left(\frac{z_{0}\left(z_{0} g^{\prime}\left(z_{0}\right)\right)^{\prime}}{g\left(z_{0}\right)}\right)-\operatorname{Re} \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)} \leq 0
\end{aligned}
$$

This means that $\operatorname{Re} \frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)} \leq 0$ is in contradiction with the hypothesis of the theorem and so $\operatorname{Re} P(z)>0$ for all $z \in U$.

Now we return to the relation (7). If $\operatorname{Re} p(z)>0$ does not hold for every $z \in U$, then we apply Lemma 2 for the second time and we get that there are two real numbers $s_{1}, t_{1} \in \mathbb{R}$ and a point $z_{1} \in U$ so that

$$
\begin{aligned}
p\left(z_{1}\right) & =i s_{1} \\
z_{1} p^{\prime}\left(z_{1}\right) & =t_{1} \leq-\frac{1}{2}\left(s_{1}^{2}+1\right) .
\end{aligned}
$$

This leads us to a contradiction with the inequality (7) as follows:

$$
\operatorname{Re}\left[P\left(z_{1}\right)\left(z_{1} p^{\prime}\left(z_{1}\right)+p^{2}\left(z_{1}\right)\right)\right]=\operatorname{Re}\left[P\left(z_{1}\right)\left(t_{1}-s_{1}^{2}\right)\right] \leq 0
$$

The obtained contradiction implies that

$$
\operatorname{Re} p(z)=\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}>0, \quad z \in U
$$

and so $F \in S^{*} . \diamond$
We will prove that the condition (1) in Th. 1 can be replaced by the condition $\left|\operatorname{Im} \frac{z g^{\prime}(z)}{g(z)}\right| \leq 1, \quad z \in U$, namely by the inequality from the conclusion of Rem. 1.
Theorem 3. Let $g \in \mathcal{A}$ be a function, which satisfies the condition

$$
\begin{equation*}
\left|\operatorname{Im} \frac{z g^{\prime}(z)}{g(z)}\right| \leq 1, \quad z \in U \tag{9}
\end{equation*}
$$

If $f \in \mathcal{A}$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, \quad z \in U
$$

then $F=A(f) \in S^{*}$ where A denotes the Alexander operator.
Proof. From $F=A(f)$ we obtain that

$$
F^{\prime}(z)+z F^{\prime \prime}(z)=f^{\prime}(z)
$$

This can be rewritten using the notations $p(z)=\frac{z F^{\prime}(z)}{F(z)}$ and $P(z)=\frac{F(z)}{g(z)}$ in the following way

$$
P(z)\left(z p^{\prime}(z)+p^{2}(z)\right)=\frac{z f^{\prime}(z)}{g(z),} z \in U .
$$

The conditions of Th. 3 imply that

$$
\begin{equation*}
\operatorname{Re} P(z)\left(z p(z)+p^{2}(z)\right)>0, \quad z \in U \tag{10}
\end{equation*}
$$

First we prove that $\operatorname{Re} P(z)>0, z \in U$.
If we let $Q(z)=\frac{f(z)}{g(z)}$ a simple differentiation of the equalities $g(z) \cdot Q(z)=f(z)$ and $g(z) P(z)=F(z)$ leads to

$$
\begin{equation*}
z Q^{\prime}(z)+\frac{z g^{\prime}(z)}{g(z)} Q(z)=\frac{z f^{\prime}(z)}{g(z)} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
z P^{\prime}(z)+\frac{z g^{\prime}(z)}{g(z)} P(z)=\frac{f(z)}{g(z)}, \quad z \in U . \tag{12}
\end{equation*}
$$

The condition $\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0$, equality (11) and Lemma 4 imply that $\operatorname{Re} Q(z)>0, z \in U$, namely $\operatorname{Re} \frac{f(z)}{g(z)}>0, z \in U$.

Now equality (12) and Lemma 4 imply that $\operatorname{Re} P(z)>0, z \in U$.

If $\operatorname{Re} p(z)>0, z \in U$ would not be true, then according to Lemma 2 there are two real numbers $s, t \in \mathbb{R}$ and a point $z_{0} \in U$ so that $p\left(z_{0}\right)=i s$ and $z_{0} p^{\prime}\left(z_{0}\right)=t \leq-\frac{1}{2}\left(s^{2}+1\right)$. Thus

$$
P\left(z_{0}\right)\left(z_{0} p^{\prime}\left(z_{0}\right)+p^{2}\left(z_{0}\right)\right)=P\left(z_{0}\right)\left(t-s^{2}\right)
$$

and $\operatorname{Re} P\left(z_{0}\right)>0$ implies that

$$
\operatorname{Re}\left[P\left(z_{0}\right)\left(z_{0} p^{\prime}\left(z_{0}\right)+p^{2}\left(z_{0}\right)\right)\right] \leq 0
$$

This inequality contradicts (10), hence we deduce $\operatorname{Re} p(z)=\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}>0$, $z \in U . \diamond$
Theorem 4. If p is an analytic function in $U, p(0)=1$ and

$$
\begin{equation*}
\operatorname{Re} p(z)>\left|\operatorname{Im}\left(z p^{\prime}(z)+p^{2}(z)\right)\right|, \quad z \in U, \tag{13}
\end{equation*}
$$

then $\operatorname{Re} p(z) \geq|\operatorname{Im} p(z)|, \quad z \in U$.
Proof. To prove the assertion we introduce the notation

$$
\mathcal{D}=\left\{z \in \mathbb{C}:|\arg (z)| \leq \frac{\pi}{4}\right\}
$$

We observe that the assertion $\operatorname{Re} p(z) \geq|\operatorname{Im} p(z)|, \quad z \in U$ is equivalent to

$$
\begin{equation*}
p \prec q, \tag{14}
\end{equation*}
$$

where

$$
q(z)=\sqrt{\frac{1+z}{1-z}}
$$

is the Riemann mapping from U to \mathcal{D}. (The branch of \sqrt{z} is chosen such that $\operatorname{Im} \sqrt{z} \geq 0$.)

If (14) does not hold true, then Lemma 1 implies that there are two points $z_{0} \in U$ and $\zeta_{0} \in \mathbb{C},\left|\zeta_{0}\right|=1$ so that $p\left(U\left(0,\left|z_{0}\right|\right)\right) \subset q(U)$,

$$
p\left(z_{0}\right)=q\left(\zeta_{0}\right)
$$

and

$$
z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} q\left(\zeta_{0}\right)
$$

where $m \in \mathbb{R}, m \geq 1$.
If $\arg \zeta_{0}=\beta$ then $q\left(\zeta_{0}\right)=\sqrt{\operatorname{ctg} \frac{\beta}{2}}\left(\frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}\right), \operatorname{ctg} \frac{\beta}{2} \geq 0$ and

$$
\zeta_{0} q^{\prime}\left(\zeta_{0}\right)=\frac{-1}{4 \sqrt{\operatorname{ctg} \frac{\beta}{2}} \sin ^{2} \frac{\beta}{2}\left(\frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}\right)}
$$

We discuss the case

$$
q\left(\zeta_{0}\right)=\sqrt{\operatorname{ctg} \frac{\beta}{2}}\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)
$$

The other case is similar.
In this case condition (13) becomes

$$
\frac{\sqrt{2}}{2} \sqrt{\operatorname{ctg} \frac{\beta}{2}} \geq\left|\frac{m}{4 \sqrt{2} \sqrt{\operatorname{ctg} \frac{\beta}{2}} \sin ^{2} \frac{\beta}{2}}+\operatorname{ctg} \frac{\beta}{2}\right|
$$

and using the notation $t=\sqrt{\operatorname{ctg} \frac{\beta}{2}}$, it can be rewritten as follows

$$
\begin{equation*}
m t^{4}+4 \sqrt{2} t^{3}-4 t^{2}+m \leq 0 \tag{15}
\end{equation*}
$$

The condition $m \geq 1$ implies that

$$
t^{4}+4 \sqrt{2} t^{3}-4 t^{2}+1 \leq m t^{4}+4 \sqrt{2} t^{3}-4 t^{2}+m
$$

An elementary analysis of the behaviour of the function

$$
\varphi:[0,+\infty) \rightarrow \mathbb{R}, \varphi(t)=t^{4}+4 \sqrt{2} t^{3}-4 t^{2}+1
$$

shows that $\varphi(t)>0, t \in[0, \infty)$ and this contradicts (15). The contradiction implies that $p \prec q$. \diamond

Conclusions

1. The result of Th. 2 is stronger than Th. 1.
2. Th. 1 says that a subclass of the class of close-to-convex functions is mapped by the Alexander operator in the class of starlike functions.
3. Rem. 1 shows that the condition (6) of Th. 2 implies condition (9) of Th. 3 and so Th. 2 is a consequence of Th. 3. Th. 3 asserts that a larger class (as in the case of Th. 2) of analytic functions is mapped by the Alexander operator in S^{*}, but this larger class contains functions which are not necessary close-to-convex.
4. It would be interesting to study the validity of Th. 1 if we replace condition (1) by the weaker condition $\operatorname{Re} \operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq\left|\operatorname{Im} \frac{z g^{\prime}(z)}{g(z)}\right|, \quad z \in U$ (which is the consequence of Th. 4 and equality (4)).

References

[1] MILLER, S. S. and MOCANU, P. T.: Differential Subordinations Theory and Applications, Marcel Dekker, 2000.
[2] SZÁSZ, R.: A Counter-Example Concerning Starlike Functions, Studia Univ. Babeş-Bolyai Mathematica LII, No. 3 (2007), 171-172.

[^0]: E-mail address: szasz_robert2001@yahoo.com
 This work was supported by the Sapientia Research Foundation.

