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Institute of Mathematics, University of Bia lystok, Akademicka 2,
15-267 Bia lystok, Poland

Krzysztof Prażmowski
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1. Introduction

There is a great deal of papers which discuss adjacencies in Grass-
mann spaces and related geometries, just to mention [9], [10], [11], [18],
[19]. They merely say that the geometry of the underlying structure can
be expressed in the language of binary adjacency on subspaces of a given
space. This can also be put in the following way: an adjacency preserving
bijective transformation is given by an automorphism of the underlying
structure. These are just analogues of the well known Chow theorem (cf.
[4]) for null systems or a bit more general result by Dieudonné (cf. [7,
Ch. III s. 2,3]).

What we would like to do here is to define the affine geometry in
terms of adjacency on an affine polar Grassmannian. There are two ap-
proaches to affine polar Grassmannians possible. One can start with a
polar space in its original sense given by Veldkamp in [27] and further de-
veloped in [3], [6] as a pure point-line geometry (a bit different approach
to polar geometry is given in [26] which, as shown in [12], is equivalent
to the aforementioned one). Then a hyperplane, i.e. a proper subspace
meeting every line of the space, needs to be singled out in it as Cohen and
Shult do in [5]. That way one gets a synthetic affine polar space. This
construction resembles the construction of an affine space in a projective
space and that was the intention of [5]. Now, provided that we have a
dimension function, it is enough to put a Grassmannian structure on an
affine polar space in a standard way to get an affine polar Grassmannian.
We are however, following another idea. We start with an affine space
over a vector space equipped with a reflexive form and put a Grassman-
nian structure on isotropic subspaces as in [20]. That way we are able
to use relatively better known adjacencies in analytic, versus synthetic,
affine Grassmannians.

In fact, our work can be also considered as a natural extension of
investigations on Alexandrov–Zeeman-type theorems which state that a
bijection of a metric affine space preserving a fixed distance d is actually
an automorphisms of this space (cf. [2, Ch. 4], [13], [17]). In the partic-
ular case where d = 0 (cf. [1], [28]) the bijections in question are exactly
those which preserve the adjacency (binary collinearity) of points of the
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corresponding affine polar space1 and the Alexandrov–Zeeman-type the-
orems correspond well with the known fact that the geometry of a polar
space can be expressed in terms of the adjacency of its points (cf. [6]).

The course of reasoning that leads to our main result can be di-
vided into three steps. First we find cliques of all the three adjacencies
investigated in the paper. They let us reconstruct the linear structure
and parallelism in affine polar k-Grassmannians (Sec. 3). The next step
is to get the dimension k down to 1. It is done by means of cliques of
type star (Sec. 4). Finally, we get our principal result (Th. 4.1) that the
underlying affine space as well as affine polar space both can be expressed
in terms of each of the three adjacencies.

2. Basic notions and preliminary facts

Let M = 〈S,L〉 be a partial linear space. We write ℘̃(M) for the
class of all subspaces of M, and ℘(M) for the class of strong subspaces
of M. If M is an exchange space, then the dimension function is well
defined for elements of ℘(M) and then we write ℘k(M) for k-dimensional
subspaces of M. For distinct X1, X2 ∈ ℘

k(M) we write (comp. general
discussion in [8])

X1 ∼−
X2 iff X1 ∩X2 ∈ ℘

k−1(M),

X1 ∼
+ X2 iff X1 ∪X2 ⊂ X for some X ∈ ℘

k+1(M),

X1 ∼∼ X2 iff X1 ∼−
X2 and X1 ∼

+ X2.

Assume that ℘k+1(M) 6= ∅. Let X ′, X ′′ ∈ ℘(M) such that X ′ ⊂ X ′′. We
define:

[X ′, X ′′]k := {X ∈ ℘
k(M) : X ′ ⊂ X ⊂ X ′′},

S(X ′) := {X ∈ ℘
k(M) : X ′ ⊂ X}, for dim(X ′) = k − 1 – a star

T(X ′′) := {X ∈ ℘
k(M) : X ⊂ X ′′}, for dim(X ′′) = k + 1 – a top

p(X ′, X ′′) := [X ′, X ′′]k = S(X ′) ∩ T(X ′′) for
dim(X′)=k−1

dim(X′′)=k+1
– a pencil.

1More precisely, dealing with the problems related to Alexandrov–Zeeman-type
theorems we must define in terms of the adjacency the metric structure of the un-
derlying metric affine space (i.e. we must define orthogonality as well as the affine

structure of lines). Here we are primarily interested in the incidence structure of an
affine polar space and we pass over the problem how to define orthogonality in our
approach.
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Then we put:

Pk(M) :=
{
p(X ′, X ′′) : X ′ ∈ ℘

k−1(M), X ′′ ∈ ℘
k+1(M), X ′ ⊂ X ′′

}
,

Pk(M) := 〈℘k(M),Pk(M)〉.

If M is a projective or affine space, then Pk(M) is a well known
projective or affine Grassmannian respectively.

Let V = 〈V,+, θ, ·〉 be a vector space over a commutative field F

with characteristic 6= 2, and let ξ be a nondegenerate reflexive bilinear
form on V with index m > 0 (cf. [14, Ch. I]). The form ξ determines
the orthogonality relation ⊥ξ=⊥. We write Subk(V) for the set of k-
dimensional vector subspaces of V, and Qk(ξ) for the set of k-dimensional
isotropic subspaces; then Qk(ξ) 6= ∅ iff k ≤ m. Next, let A be the
affine space over V, i.e. the affine space A = A(V) = 〈V,L〉, whose
lines (elements of L) are all the cosets a+U with U ∈ Sub1(V); we write
shortly L = V +Sub1(V). It is a folklore that ℘̃(A) = ℘(A) = V +Sub(V)
and ℘k(A) = V +Subk(V) for every k ≤ dim(V). The substructure U(ξ)
of A defined by

U1(V, ξ) := U(ξ) := 〈V,G〉, with G = V + Q1(ξ)

will be referred to as the affine polar space determined by ξ. Clearly, U(ξ)
is a partial linear space. The following is known.

Fact 2.1. U(ξ) is an exchange space. If ξ is antisymmetric then Q1 =
= Sub1(V) and then simply U(ξ) = A.

Let ξ be symmetric. Then ℘(U(ξ)) = V + Q(ξ) so, ℘k(U(ξ)) =
= V + Qk(ξ) ⊂ ℘

k(A) for every k with 1 ≤ k ≤ m.

From now on we assume that

the form ξ is symmetric, dim(V) = dim(A) ≥ 3, U := U(ξ), and k ≤ m.

Consequently, the structure Uk(V, ξ) = Pk(U(ξ)) is a substructure of
the affine Grassmannian Pk(A). An important, though evident is the
following corollary to the known properties of quadratic Grassmannians
(cf. [29]).

Fact 2.2. If a pencil q = p(A,B) ∈ Pk(A) contains at least three
elements of ℘(U), then B ∈ ℘(U) and thus q ⊂ ℘(U) and q ∈ Pk(U).

Let us recall that, when the affine Grassmannian Pk(A) is con-
sidered, then quite frequently it is assumed that some other type of
lines (parallel pencils) is also admitted. Namely, for U ∈ ℘

k(A) and
B ∈ ℘

k+1(A) such that U ⊂ B we write

p∗(U,B) := [U ]‖ ∩ T(B), where [U ]‖ = {U ′ : U ‖ U},

P∗
k(A) :=

{
p∗(U,B) : U ∈ ℘

k(A), B ∈ ℘
k+1(A), U ⊂ B

}
.
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It is known that the structure P∗
k(A) = 〈℘k(A),P∗

k(A)〉 is a (not
connected) partial linear space, and also the structure P†

k(A) :=
:= 〈℘k(A),Pk(A) ∪ P∗

k(A)〉 is a partial linear space, which is sometimes
also called an affine Grassmann space like Pk(A) is. Now we can extend
the family of pencils of the Grassmann space Uk(V, ξ) by the set P∗

k(U)
of all parallel pencils p∗

k(U,B) with B ∈ ℘
k+1(U(ξ)), and this extension,

which will be denoted by U†
k(V, ξ) (or shortly by U†

k) is a partial linear
space as well. Note that 2.2 does not remain valid for elements of P∗(A).

Consequently, it may be also convenient to define the (auxiliary)
relation ∼q for X1, X2 ∈ ℘

k(U):

X1 ∼
q X2 iff X1 ∪X2 ⊂ X for some X ∈ ℘

k+1(U) and X1 ‖ X2;

After that we see that ∼∼ is simply the (binary) collinearity of points of
Uk, ∼+ is the collinearity in U†

k (and ∼q is the collinearity in U∗
k).

In the considerations presented below the symbol S(H) with H ∈
∈ ℘

k−1(U) may be somehow misleading, since it may denote either the set
of all k-subspaces of A which contain H , or its proper subset consisting
of all k-subspaces of U, which contain H . To avoid this trouble we use
the symbol S(H) for the first set, and S0(H) for the second one. Happily,
if B ∈ ℘

k+1(U) then the top T(B) defined in A is also a top in U.
In the sequel we shall study the three adjacencies ∼

−
, ∼+, and

∼∼ in the family ℘
k(U(ξ)). As an auxiliary tool we shall also consider

corresponding adjacencies in A and in the projective completion P of A.
Let Xi = ai+Ui ∈ ℘

k(U) be distinct for i = 1, 2; i.e. let U1, U2 ∈ Qk.
We consider several particular cases. We set X ′ = X1∩X2, U

′ = U1∩U2,
U ′′ = U1 + U2, and let X ′′ = X1 ⊔X2 be the affine subspace spanned by
X1 ∪X2. Recall that

– either X ′ = ∅, or X ′ = a + U ′, where a ∈ X ′ is arbitrary, and
– X ′′ = ai + (U ′′ + 〈a2 − a1〉) both for i = 1 and i = 2.
∗ Let X ′ ∈ ℘

k−1(A): Then U ′ ∈ Qk−1. We can write Xi = a + Ui

and X ′ = a+ U ′ for any a ∈ X ′. In particular, X1 ∼−
X2.

In such a case we have U ′′ ∈ Subk+1(V) andX ′′ = a+U ′′ ∈ ℘
k+1(A).

Consequently, X1 ∼+ X2 iff U ′′ ∈ Qk+1 which, on the other hand, is
equivalent to U1 ⊥ U2.

∗ Let X ′′ ∈ ℘
k+1(A): Then one of the following two possibilities

hold:
a) either U ′ = U1 = U2 and then X1 ‖ X2, or
b) U ′′ ∈ Subk+1(V).
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In case b) we directly get X1 ∼
−
X2. In case a) we have, evidently,

X1 6∼−
X2, and also dim(U1 + 〈a2 − a1〉) = k+ 1 so, to obtain X1 ∼

+ X2

we need U1 + 〈a2 − a1〉 ∈ Q, which means that U1 ⊥ (a2 − a1) and
(a2 − a1) ⊥ (a2 − a1).

∗ Let X1 ‖ X2: Then U1 = U2 and X ′′ ∈ ℘
k+1(A) so, we come to

the case a) above and then the above investigations explain also when
X1 ∼

+ X2 holds.
Now, we are going to determine maximal cliques of the introduced

adjacencies.

Fact 2.3. Let H ∈ ℘
k−1(U), B ∈ ℘

k+1(U), and Y ∈ ℘
m(U). Assume

that H ⊂ Y . Finally, let A ∈ ℘
k(U) and Z be the direction of A, i.e. a

suitable subspace of P; assume that A ⊂ Y .
(i) The set S0(H) is a maximal ∼

−
-clique, but it is not a ∼+-clique.

It is a subspace of Uk but it is not strong.
(ii) If k < m−1, then the set [H, Y ]k is a maximal ∼+-clique so, it

is also a maximal ∼∼-clique. Moreover, it is a subspace of Uk, isomorphic
to the projective space P1(Y/H). It is also a subspace of U†

k.
(iii) If k < m, then the set T(B) is a maximal ∼+-clique, but it is

not a ∼
−

-clique. Clearly, it is a subspace of U†
k; in fact it is the affine

Grassmann space P†
k(B) of hyperplanes of the affine space B.

(iv) Let us write ð(Z) = [A]‖ for the parallel class of A, and
[A, Y ]∗k = [A∞, Y ]∗k := ð(Z)∩ [∅, Y ]k. If k < m−1, then the set [Z, Y ]∗k is
a maximal ∼+-clique. Clearly, no two distinct elements of [Z, Y ]∗k are in
the relation ∼

−
. Nevertheless, this set is a subspace of U†

k, isomorphic
to the affine space A(Y/A).

(v) Let k < m and K ⊂ ℘
k(B). Note that K consists of hyperplanes

of the affine space B. Assume that K does not contain a pair of distinct
parallel hyperplanes, and for every hyperplane direction in B (i.e. through
every hyperplane of the projective horizon of B) there is a hyperplane in
K with this direction. Then K is a maximal ∼∼-clique (and, consequently,
a maximal ∼

−
-clique as well).

(vi) In case k = m − 1 both the sets [H, Y ]k and [Z, Y ]∗k are lines
of Uk and U†

k respectively, properly contained in the ∼+-clique T(Y ).
Consequently, every line of Pk(U) =: Uk can be properly extended

to at least one maximal ∼+-clique, and at least one maximal ∼
−

-clique.

Proof. Possibly, (v) needs a small justification. Note, first, that if K is
a ∼∼-clique, then every two A1, A2 ∈ K must intersect so, they cannot be
parallel. Two nonparallel hyperplanes of B are in the relation ∼∼ so, if
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there would be A ∈ ℘
k(B) which is not parallel to any one in K, then

K ∪ {A} would be also a ∼∼-clique and then K is not maximal. ♦

It turns out that these are all the possible maximal cliques.

Proposition 2.4. The cliques listed in 2.3 are all the maximal cliques
of corresponding adjacencies.

(i) Every maximal ∼+-clique of Uk either is contained in an affine
star and has form 2.3(ii), or is contained in an affine direction and has
form 2.3(iv), or is contained in a top and has form 2.3(iii).

(ii) Every maximal ∼
−

-clique of Uk either is contained in a star
and has form 2.3(i) or is contained in a top and has form 2.3(v).

(iii) Every maximal ∼∼-clique of Uk either is contained in a star and
has form 2.3(ii) or is contained in a top and has form 2.3(v).

Proof. Let us begin a more detailed analysis. Let K be a maximal
∼+-clique of U, (or a maximal ∼

−
-clique). Then K is contained in a

maximal ∼+-clique (a maximal ∼
−

-clique resp.) K̃ of A, which on the
other hand can be extended to a maximal clique K of P. From 2.3, K
is not a line of Pk(P). From the known properties of Grassmannians of
projective spaces, either

c) K = S(Z) for some Z ∈ ℘
k−1(P), or

d) K = T(D) for some D ∈ ℘
k+1(P).

Let H∞ be the hyperplane of P which completes A to P.
Consider the case d). If D ⊂ H∞ we have K = ∅ so, B := D\H∞ ∈

∈ ℘
k+1(A). Therefore, K̃ = T(B) holds in A.

Next, we consider the case c). Suppose that Z ⊂ H∞. Then K̃
consists of all the k-subspaces of A which have Z as its direction so, it is
a parallel pencil [A]‖ =: ð(Z) (A ∈ ℘

k(A) with direction Z is arbitrary)
of subspaces of A.

Next, let H := Z \ H∞ ∈ ℘
k−1(A). In this case K̃ = S(H) holds

in A. In every of the above cases we have to determine what are maximal
cliques of adjacencies of U contained in corresponding affine cliques. In
any case we assume that K contains at least two distinct points A,A′,
which are then adjacent in the currently investigated sense.

∗ Let K ⊂ T(B): Then B = A ⊔ A′ ∈ ℘
k+1(U). If K is maximal

∼+-clique, this gives simply that K = T(B) holds in U.
Next, assume that K is a maximal ∼

−
-clique. Then, clearly, K has

form described in 2.3(v).
∗ Let K ⊂ ð(Z): Evidently, no ∼

−
-clique may satisfy this condition
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so, let K be a maximal ∼+-clique.
Set Y =

⋃
K. We can write A = a + U for some a ∈ V and

U ∈ Qk; clearly, A ‖ U . Then M = −a + K = {−a + C : C ∈ K}
is a maximal ∼+-clique, K = a + M, and Y = a + M , where M =
=

⋃
M. Let A1, A2 ∈ M, and let yi ∈ Ai; then Ai = U + yi. Since

θ ∈ U ⊔ Ai = U + 〈yi〉 ∈ ℘
k+1(U) we get U ⊥ yi and yi ⊥ yi. Moreover,

A1⊔A2 = y1 +(U+〈y2−y1〉)∈℘k+1(U), which gives (y2−y1) ⊥ (y2−y1).
This yields that the subspace 〈M〉 of V spanned by M is isotropic, from
the maximality of M we conclude with M = 〈M〉 ∈ Qm and thus Y ∈
∈ ℘

m(U). Finally, K = [Z, Y ]∗k.
∗ Let K ⊂ S(H): We obtain H = A ∩ A′ ∈ ℘

k−1(U) so, if K is a
maximal ∼

−
-clique we conclude with K = S0(H).

Assume that K is a maximal ∼+-clique and set, as above, Y =
⋃

K.
With analogous reasoning we come to Y ∈ ℘

m(U) and K = [H, Y ]k.
This closes our analysis and completes the proof. ♦

As an immediate consequence and a by-product of 2.3 and 2.4 we
obtain

Corollary 2.5. The class of maximal strong subspaces of Uk consists
of sets of the form 2.3(ii). The class of maximal strong subspaces of U†

k

consists of sets of the form 2.3(ii), 2.3(iv), and 2.3(iii) provided k<m−1;
if k = m − 1 then the class of maximal strong subspaces of U†

k consists
of sets of the form 2.3(iii).

In the next step we shall try to reconstruct the underlying geome-
tries U and A in terms of the adjacencies ∼

−
and ∼+. Dealing with ∼

−

we shall follow mostly some affine ideas (comp. [22]), while dealing with
∼+ mainly ideas related to polar spaces (cf. [19]) will be used. In any
case the crucial role will be played by the notion of a generating triangle:

Let ρ be a binary symmetric relation on a set X. A triple
x1, x2, x3 of elements of X will be called a ρ-generating tri-
angle iff xi ρ xj for 1 ≤ i < j ≤ 3, and there is the unique
maximal ρ-clique that contains x1, x2, x3. If x1, x2, x3 is a
generating triangle we write ∆ρ(x1, x2, x3).

In an elementary language we can define even more generally:

(1)
∆ρ

n(x1, . . . , xn) :⇐⇒ ρ(x1, . . . , xn) and

∀a, b
[
a, b ρ x1, . . . , xn ==⇒ a ρ b

]

and then ∆ρ = ∆ρ
3. As an immediate consequence of 2.4(ii) we obtain
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Lemma 2.6. Let B ∈ ℘
k+1(U) and Z = {A1, . . . , An} be any n-element

subset of T(B) (n <∞). Assume that Ai ∼−
Aj for every 1 ≤ i < j ≤ n

and n is less than the cardinality of the projective horizon of B. Then
Z has at least two distinct extensions to a ∼

−
-clique and therefore the

relation ∆∼
−

n (A1, . . . , An) fails.

3. Definability of geometry in terms of adjacencies

3.1. Minkowskian geometry and the Alexandrov–
Zeeman theorem

Let m = 1 i.e. let the underlying metric affine space R = (A,⊥) be
a Minkowskian space. Then only two adjacencies are sensible: ∼+ =∼∼
on ℘

0(U) and ∼
−

on ℘
1(U). Here relevant results are known.

Theorem 3.1. Let dim(A) ≥ 3. The structures U, A, and R can be
defined in terms of the relation ∼+ on ℘

k(U) with k = 0. If m = 1 then
the structures U, A, and R can be defined in terms of the relation ∼

−

on the set ℘k(U) with k = 1.

Proof. The first claim is simply a reformulation of the Alexandrov–
Zeeman theorem mentioned in the Introduction, as it is formulated in
[17]. The second claim is a direct consequence of the first one, as a point
of A can be identified with the (equivalence class of) pair of lines of U

which pass through this point. ♦

In what follows, we generalize 3.1 to an arbitrary sensible k. Clearly,
the relation ∼

−
on ℘

0(U) is total and therefore useless. Consequently,
in view of 3.1 in the subsequent Subs. 3.2–3.5 we assume that k > 0.

3.2. The ∼+-adjacency

Here, in this subsection, following 2.3(vi) we need to assume that
k < m − 1 to have all three types of maximal ∼+-cliques. We write T
for the family of maximal ∼+-cliques defined in (iii) of 2.3, S for those
defined in (ii), and S∗ for those defined in (iv). Clearly, if K,K′ ∈ T then
|K∩K′| ≤ 1. We write K0 = K∩K′. In the projective or lattice-theoretic
notation we have [Z1, Y1]k ∩ [Z2, Y2]k = [Z1 ⊔ Z2, Y1 ∩ Y2]k. Therefore, to
have K0 6= ∅ we need, first, Z1 ⊂ Y2, Z2 ⊂ Y1, dim(Z1 ⊔ Z2) ≤ k, and
dim(Y1∩Y2) ≥ k. Similarly, to get that |K0| ≥ 2 we need dim(Z1⊔Z2) < k
and dim(Y1 ∩ Y2) > k.
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Let us consider the following cases:
∗ K = T(B) ∈ T and K′ = [H ′, Y ′]k ∈ S: Either K0 = ∅, or

K0 = p(H ′, B) ∈ P is a line of Uk.
∗ K = T(B) ∈ T and K′ = [U, Y ′]∗k ∈ S∗: As above, if K0 6= ∅ then

K0 = p∗(U,B) ∈ P∗ is a line of U†
k.

∗ K = [H, Y ]k ∈ S and K′ = [H ′, Y ′]k ∈ S: If H 6= H ′ then |K0| ≤ 1
(because in the affine Grassmannian we have |S(H) ∩ S(H ′)| ≤ 1 in this
case). Assume that H = H ′. Then K0 = [H, Y ∩ Y ′]k and (cf. [19, Fact
2.5]) dim(Y ∩ Y ′) may vary from k − 1 (then K0 = ∅) through k (then
K0 is a point) and k + 1 (then K0 is a line of Uk) to m.

∗ K = [A, Y ]∗k ∈ S∗ and K′ = [A′, Y ′]∗k ∈ S∗: As previously,
to have |K0| ≥ 2 we need (apply properties of projective stars) to
know that A and A′ determine the same subspace of the horizon H∞,
which means, in fact, that A ‖ A′. Assume that A ‖ A′, then K0 =
= [A∞, Y ∩Y ′]∗k. Without loss of generality we can assume that A ⊂ Y, Y ′

and then the above reasoning can be applied to justify that K0 may be
a point, a line (of U

†
k, but not of Uk), and so on.

∗ K = [H, Y ]k ∈ S and K′ = [A, Y ′]∗k ∈ S∗: To have at least a point
in K0 we must have at least one A′ ‖ A such that H ⊂ A′; without loss
of generality we can simply assume that H ⊂ A ⊂ Y . One can note that
in such a case K0 = {A} is a single point.

Proposition 3.2. Assume that k < m − 1. Let A1, A2 ∈ ℘
k(U) with

A1 ∼
+ A2 and A1 6= A2. Then the set

(2)
⋂

{K : A1, A2 ∈ K, K is a maximal ∼+ -clique}

is a k-pencil (proper or parallel) of U i.e. it is a line of U
†
k. Consequently,

the structure U†
k is definable in terms of the relation ∼+ considered in

℘
k(U).

Proof. Let B = A1 ⊔ A2, thus B ∈ ℘
k(U). If

1) A1 ∩ A2 6= ∅ we put L = p(A1 ∩A2, B) ∈ Pk(U),

2) otherwise A1 ‖ A2 and we put L = p∗(A1, B) ∈ P∗
k(U).

From 2.3 and 2.4 we know that every maximal ∼+-clique is a subspace of
U†

k and thus L is a subset of the set defined by (2). Finally, we extend B
to some Y ∈ ℘

m(U) and this extension is essential. (B ( Y ). We have
L = T(B)∩ [A1 ∩A2, Y ]k in case 1), and L = T(B)∩ [A1, Y ]∗k in case 2),
which closes the proof. ♦

Proposition 3.3. Let k < m − 1 and let K be a maximal ∼+-clique.
The property
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if a maximal ∼+-clique K′ crosses K in at least two points,

then K ∩ K′ is a line of U†
k

characterizes the relation K ∈ T so, it distinguishes the class T in the
class of all maximal ∼+-cliques. Consequently, the classes S ∪S∗ and T
both are definable in terms of the relation ∼+.

Proof. It suffices to apply the classification of intersections of maximal
cliques given above and note, that for every K ∈ S∪S∗ there is K′ ∈ S∪S∗

such that K ∩ K′ is greater than a line. ♦

Lemma 3.4. The classes S and S∗ are distinguishable in terms of the
relation ∼+.

Proof. From 2.3 we learn that if K ∈ S, then the geometry of U
†
k re-

stricted to K is a projective geometry; in particular, it satisfies the Veblen
condition. If K ∈ S∗, then it carries the geometry of an affine space and
therefore it does not satisfy the Veblen condition. This together with 3.2
closes the proof. ♦

Corollary 3.5. For K,K′ ∈ S we write K ≈0 K′ iff |K ∩ K′| ≥ 2; let ≈
be the transitive closure of ≈0. If k < m− 1, then the two formulas

A1 ∼∼ A2 ⇐⇒ ∃K ∈ S [A1, A2 ∈ K](3)

A1 ∼−
A2 ⇐⇒ ∃K1,K2 ∈ S [A1 ∈ K1, A2 ∈ K2, K1 ≈ K2](4)

define corresponding adjacencies in terms of ∼+.

Proof. The validity of (3) is evident. To justify the validity of (4)
it suffices to note that if Ki = [Hi, Yi]k ∈ S and |K1 ∩ K2| ≥ 2, then
H1 = H2 so, Ai ∈ Ki gives A1, A2 ∈ S(H1). Conversely, assume that
A1, A2 ∈ S(H), where H ∈ ℘

k−1(U). For any two Y1, Y2 ∈ ℘
m(U), such

that H ⊂ Ai ⊂ Yi for i = 1, 2 we consider a sequence of maximal strong
subspaces of U which joins (via ≈0) K1 and K2, where Ki = [H, Yi]k. ♦

3.3. The ∼
−

-adjacency

In view of 2.3 we assume here that k < m. When we deal with the
relation ∼

−
, the situation becomes more complex, as the cliques of this

relation need not to be subspaces of U†
k.

Let A1, A2, A3 ∈ ℘
k(U), assume that Ai ∼−

Aj for 1 ≤ i < j ≤ 3.
From 2.6, ∆∼

− (A1, A2, A3) iff A1, A2, A3 are in some S(H) with H ∈
∈ ℘

k−1(U), and they are not in one pencil. In such a case we obtain

S0(H) = [A1, A2, A3]∼
−

=
{
A ∈ ℘

k(U) : A ∼
−
A1, A2, A3

}
.
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Let us write S for the family of maximal ∼
−

-cliques defined in (i) of 2.3;
in view of the above the set S =

{
[A1, A2, A3]∼

−

: ∆
∼

−

3 (A1, A2, A3)
}

is
definable in terms of the relation ∼

−
.

Proposition 3.6. For pairwise distinct A1, A2, A3 ∈ ℘
k(U) with A1 ∼−

A2 we write

(5)
L(A1, A2, A3) ⇐⇒ ∃K ∈ S

[
A1, A2, A3 ∈ K ∧ A1, A2, A3 ∈ K′

for some ∼
−

-clique such that K′ \ K 6= ∅
]
.

Assume that k < m. Then we obtain (comp. [22]) that L(A1, A2, A3) iff
A1, A2, A3 are in one (proper) k-pencil of U. Consequently, the structure
Uk is definable in terms of the relation ∼

−
considered in the

set ℘k(U).

Proof. Indeed, if A1, A2 ∈ K ∈ S, then K = S0(A) and A1 ∩ A2 = A ∈
∈ ℘

k−1(U). Let B be the affine space A1 ⊔A2 (clearly, B ∈ ℘
k+1(A) but

we do not claim thatB ∈ ℘(U)). Since A3 ∈ K we get thatA ⊂ A3. Since
A1, A2 ∈ K′ and K′ 6= K we get that K′ ⊂ T(B) and thus A1, A2, A3 ∈
∈ p(A,B) =: q. Finally, from 2.2 we get that q ∈ Pk(U).

Conversely, let A1, A2, A3 ∈ p(A,B) ∈ Pk(U) be pairwise dis-
tinct. Set K = S0(A) so, clearly, A1, A2, A3 ∈ K ∈ S. Next, from
2.6, there is A0 ∈ T(B) \ S0(A) such that A0 ∼

−
A1, A2, A3; for a clique

K′ = {A1, A2, A3, A0} we have A0 ∈ K′ \ K. Finally, we conclude with
L(A1, A2, A3). ♦

As a corollary to 3.6 we obtain also

Proposition 3.7. Let A1 6= A2. We have
A1 ∼∼ A2 ⇐⇒ ∃A3 L(A1, A2, A3) ∧ A3 6= A1, A2

so, the relation ∼∼ is definable in terms of ∼
−

provided that k < m.

3.4. The ∼∼-adjacency

In this case the situation needs some other methods. First we
assume that k < m − 1. Evidently, if a ∈ H ⊂ B ⊂ Y ∈ ℘

m(U)
and H ∈ ℘

k−1(U), B ∈ ℘
k+1(U), then q = p(H,B) = [a,B]k ∩ [H, Y ]k

is the intersection of two maximal cliques of ∼∼ in U. However, not
every nontrivial intersection of two maximal ∼∼-cliques is a line, and if
A1 ∼∼ A2, A1 6= A2 then

⋂
{K : A1, A2 ∈ K, K is a maximal ∼∼ -clique} =

= {A1, A2}. What is more, no triple may satisfy ∆∼∼
3 , unless k = m− 2.

Therefore, the lines of Uk, even if definable, must be reconstructed with
some other methods.
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In view of 2.4, maximal ∼∼-cliques fall into two classes. We write S
for the family of maximal cliques of the form 2.3(ii), and T for the set of
maximal cliques defined in 2.3(v). Let K be a maximal ∼∼-clique in Uk.
Take arbitrary A ∈ K and put K0 = K \ {A}. In view of 2.4(iii) two
possibilities arise:

∗ K = [H, Y ]k ∈ S: Then [K0]∼∼ = K so, K0 has the unique exten-
sion K to a maximal clique of ∼∼.

∗ T ∋ K ⊂ T(B): For arbitrary A′ ∈ ℘
k(B) such that A ‖ A′

we have K0 ∪ {A′} ∈ T . Consequently, K0 has at least two distinct
extensions to a maximal ∼∼-clique.

Besides, for any two A′, A′′ which complete K0 to a maximal ∼∼-
clique we have A′ ∼q A′′.

As a consequence of these considerations we get

Corollary 3.8. If k < m − 1, then the two types S and T of maximal
∼∼-cliques can be distinguished in terms of the relation ∼∼. Therefore, the
families T and S are definable in terms of the relation ∼∼ considered in
℘

k(U). Moreover, the relation ∼q is also definable.

Lemma 3.9. Let k = m− 1. For A1, A2 ∈ ℘
k(U) we have

A1 ∼
q A2 ⇐⇒ ∃A′, A′′

[
A1, A2 ∼∼ A′, A′′ ∧ A′ ∼∼ A′′ ∧ ¬A1 ∼∼ A2

]
.

Proof. It suffices to note that in this case sets of the form 2.3(ii) are lines
of Uk and they are not maximal ∼∼-cliques. Therefore, if Ai ∼∼ A′, A′′ and
distinct A′, A′′ ∈ p(H,B) then Ai ∈ T(B). ♦

Corollary 3.10. Let k < m. Since, evidently, we have A1 ∼+ A2 ⇐⇒
⇐⇒ A1 ∼∼ A2 ∨ A1 ∼q A2, the relation ∼+ on ℘

k(U) is definable in
terms of ∼∼.

Corollary 3.11. If k < m − 1, then in view of 3.8, the formula (4)
defines the relation ∼

−
in terms of ∼∼.

Proposition 3.12. Assume that k < m− 1. Let A1 ∼∼ A2 and A1 6= A2

for some A1, A2 ∈ ℘
k(U). This is equivalent to say that H := A1 ∩A2 ∈

∈ ℘
k−1(U), B := A1 ⊔ A2 ∈ ℘

k+1(U), and A1, A2 ∈ p(H,B) ∈ Pk(U).
Then

p(H,B) =
⋂

{K : A1, A2 ∈ K, K ∈ S}.

Consequently, the structure Uk is definable in terms of the relation ∼∼.
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3.5. The ∼q-adjacency

It is rather clear that the relation ∼q cannot be used to express
the geometry of Uk. From 2.3 and 2.4 we learn immediately that the
maximal ∼q-cliques are sets of the form 2.3(iv), though in case k = m−1
they are simply lines of U∗

k; we write S∗ (comp. Subs. 3.2) for the class
of such cliques. Consequently, a direct analogue of 3.12 holds:

Remark 3.13. Assume that k < m. Let A1 ∼q A2 and A1 6= A2

for some A1, A2 ∈ ℘
k(U). This is equivalent to say that A1 ‖ A2 and

B := A1 ⊔ A2 ∈ ℘
k+1(U), i.e. A1, A2 ∈ p∗(A1, B) ∈ P∗

k(U). Then

p∗(A1, B) =
⋂

{K : A1, A2 ∈ K, K ∈ S∗}.

Thus the structure U∗
k is definable in terms of the relation ∼q.

4. Reducing dimensions, definability of the affine

structure

The idea is simple and standard.
(I) In terms of ∼− we can interpret the family {S0(H):H∈℘k−1(U)};

via the map H 7−→ S0(H) its elements can be identified with the ele-
ments of ℘k−1(U). Clearly, S0(H1) ∩ S0(H2) 6= ∅ iff H1 ∼+ H2 so, our
interpretation enables us to define 〈℘k−1(U),∼+〉 within the structure
〈℘k(U),∼

−
〉.

(II) In terms of both ∼+ and of ∼∼ we can interpret the family
{[H, Y ]k : H ∈ ℘

k−1(U), Y ∈ ℘
m(U), H ⊂ Y }. Equivalence classes of

elements of this set under the relation ≈ defined in 3.5 correspond to the
elements of ℘k−1(U): [H1, Y1]k ≈ [H2, Y2]k iff H1 = H2. As above, we
obtain an interpretation of 〈℘k−1(U),∼+〉 in the structure 〈℘k(U),∼+〉
(in 〈℘k(U),∼∼〉 resp.).

Inductively, we come to the relation ∼
−

on ℘
1(U) and, finally, to

∼+ on ℘
0(U). Finally, 3.1 can be applied.

Summing up we have

Theorem 4.1. Let k < m and ∼∈ {∼+,∼
−
,∼∼}. If ∼=∼+,∼∼ we

assume, additionally, that k < m − 1 and if ∼=∼
−

we assume that
k > 0. Then the affine space A and the affine polar space U contained
in A are both definable in 〈℘k(U),∼〉. Consequently, both A and U are
also definable in Uk and in U

†
k provided that k < m− 1.
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5. One extraordinary and one special case

Theorem 4.1 does not decide three cases: ∼
−

on ℘m(U) and ∼∼,∼
+

on ℘
m−1(U). In this section these cases will be decided.
The family ℘

k(U) admits one more adjacency, directly inherited
from the structure of the Grassmannian over A. Note that for distinct
A,B ∈ ℘

k(U) ⊂ ℘
k(A) the relation A ∼

−
B ∨ A ‖ B holds iff A∼+ B

holds in P†
k(A); in such a case we write A −∼+ B.

Fact 5.1. Let D ∈ ℘
k+1(A) \℘k+1(U) contain two nonparallel subspaces

in ℘
k(U), let H ∈ ℘

k−1(U), let D′ ∈ ℘
k+1(U), and let A ∈ ℘

k(U).
(I) The sets T(D′), S0(H), and [A]‖ are maximal cliques of the

relation −∼+.
(II) Let ℘k(U) ∋ A′, A′′ ⊂ D and A′ ∦ A′′. The set{

A ∈ [A′]‖ ∪ [A′′]‖ : A ⊂ D
}

is a maximal −∼+-clique.

Proposition 5.2. Every maximal −∼+-clique is one of the above.

Proof. Let A′ −∼+ A′′, then either A′ ‖ A′′ or A′ ∼
−
A′′. Let D be the

affine subspace spanned by A′ ∪A′′ and, in the second case, we set H :=
:= A′ ∩ A′′. Assume that A′ ∼

−
A′′ and let A′′′ −∼+ A′, A′′. Then either

A′′′⊃H or A′′′⊂D. In the first case if A0 −∼
+ A′, A′′, A′′′ then A0 ∈ S0(H).

In the second one we have to consider two cases. Either A′′′ ∦ A′, A′′ and
then D ∈ ℘

k+1(U) and a clique which contains A′, A′′, A′′′ is contained
in T(D). Or there is no such A′′′, D ∈ ℘

k+1(A) \ ℘k+1(U) and then the
corresponding clique is contained in the set of the form (II). Analogously
we proceed when A′ ‖ A′′. ♦

Let us write T ∗ for the set of cliques of the form (II), S∗ for the
class of the affine parallel classes of elements of ℘k(U), T for the class
of tops T(D) with D ∈ ℘

k+1(U), and S for the class of stars S0(H) with
H ∈ ℘

k−1(U). Let K be the class of all the maximal −∼+-cliques.

Lemma 5.3. Let K ∈ K. Then

(6) K ∈ T ∗ ⇐⇒ ∃2K ′ ∈ K
[
|K ∩K ′| ≥ 2

]
,

so the class T ∗ is elementarily distinguishable in terms of −∼+.
If K ∈ T ∗, K ′ ∈ K, and |K ∩K ′| ≥ 2 then K ′ ∈ S∗; if K ′ ∈ S∗

then there is K ∈ T ∗ such that |K ∩K ′| ≥ 2; this justifies that the class
S∗ is also elementarily distinguishable in terms of −∼+.

We have for distinct A,B ∈ ℘
k(U)

A ‖ B ⇐⇒ ∃K ∈ S∗ [A,B ∈ K],
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A ∼
−
B ⇐⇒ A −∼+ B ∧ ¬A ‖ B,

and thus the relation ‖ and, consequently, ∼
−

can be characterized in
terms of −∼+.

Let us consider the structure 〈℘m−1(U), ℘m(U),⊂〉 and write down
this almost trivial fact:

Lemma 5.4. If D, D1, D2 ∈ ℘
m(A) and D ∼

−
D1, D2, then

dim(D1 ⊔D2) ≤ m+ 2.

Proof. It suffices to notice that dimDi⊔D = m+1 for i = 1, 2, and that
subspaces D1 ⊔D, D2 ⊔D share a hyperplane D, so dim(D1 ⊔D2 ⊔D) ≤
≤ m + 2. ♦

Now we are able to express the adjacency −∼+ in terms of ∼
−

.

Proposition 5.5. Let A1, A2 ∈ ℘
m−1(U).

A1 −∼
+ A2 ⇐⇒

⇐⇒ ∀D1, D2 ∈ ℘
m(U)

[
∧

i=1,2
(Ai⊂Di) ==⇒ ∃D∈℘m(U) [D ∼

−
D1, D2]

]
.

Proof. Assume that A1 −∼
+ A2. If A1 ∼−

A2, then D is any from ℘
m(U)

through D1 ∩D2. If A1 ‖ A2, then we can find necessary D through say
A1 so that D ∼

−
D2.

In case A1 6−∼
+ A2, that is when dim(A1∩A2) < m−2 and A1 ∦ A2,

there are D1, D2 ∈ ℘
m(U) such that Ai ⊂ Di, i = 1, 2 and m + 2 <

dim(D1 ⊔D2) in A. We are through by 5.4. ♦

Taking into account the fact that the maximal ∼
−

-cliques in the
family ℘

m(U) are the stars of the form S0(H) with H ∈ ℘
m−1(U), and

the maximal ∼+-cliques in the set ℘
m−1(U) are the tops T(D) with

D ∈ ℘
m(U) we see that in terms of any of the two above adjacencies the

structure 〈℘m−1(U), ℘m(U),⊂〉 is definable, and thus the relation −∼+

on ℘
m−1(U) is definable. Finally, in view of 5.3, the adjacency ∼

−
on

℘
m−1(U) is definable as well. This all leads to:

Theorem 5.6. The affine space A and affine polar space U are definable
in terms of adjacency ∼

−
on ℘

m(U) as well as in terms of ∼+ and of ∼∼
on ℘

m−1(U).

Let us emphasize one important instance of 5.6: m = 1, which
corresponds to Minkowskian geometry. Note that 5.6 in the case m = 1
is exactly 3.1.
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6. From the point of view of foundations

The structures considered as ground structures, affine polar spaces,
were defined by us in an analytical manner, originating from vector spaces
equipped with symmetric bilinear forms; to put it in more geometrical
terms, from metric affine spaces that satisfy the theorem on the three
altitudes and admit isotropic lines but have no line orthogonal to all the
others (axiomatic characterization to be found e.g. in [25] in the logically
equivalent language of equidistance relation, see also [17]). The incidence
structures obtained by restricting the class of lines of a metric affine space
to its isotropic lines are precisely our affine polar spaces. The collinearity
relation of the underlying metric affine space can be expressed in terms
of the derived affine polar space.

Even a stronger result is valid (a form of the Alexandrov–Zeeman
theorem): the collinearity of the underlying affine space and correspond-
ing metric structure (say, orthogonality and/or “equidistance relation”)
are definable in terms of binary collinearity of the induced affine polar
space (cf. [17] and Theorem 3.1). The result does not require that the
index m is finite nor that it assumes any specific value > 0. In view of
the above, the class of our affine polar spaces is axiomatisable.

Let U be an affine polar space (in the above meaning, with the
ground metric affine space R). Clearly, its k-dimensional strong sub-
spaces (i.e. k-dimensional isotropic subspaces of R) are definable in U

and thus also the adjacencies ∼∼, ∼+, and ∼
−

are definable in U. That
means there are formulas ψk

1 , ψk
2 , and ψk

3 in the language of U such that
the class ℘k(U) of such subspaces is exactly

(7)
{{
x : U |= ψk

3 [a1, . . . , ak+1, x]
}

: U |= ψk
1 [a1, . . . , ak+1]

}

and if U |= ψk
1

[
a′1, . . . , a

′
k+1

]
, U |= ψk

1

[
a′′1, . . . , a

′′
k+1

]
then

(8)

{
x : U |= ψk

3

[
a′1, . . . , a

′
k+1, x

]}
=

{
x : U |= ψk

3

[
a′′1, . . . , a

′′
k+1, x

]}
⇐⇒

⇐⇒U |= ψk
2

[
a′1, . . . , a

′
k+1, a

′′
1, . . . , a

′′
k+1

]
.

Analogously, elementary (2k + 2)-ary formulas define adjacencies.
What we have proved (cf. 4.1, 5.6) is that (identifying, intuitively,

A ∈ ℘
t−1(U) with the set {B ∈ ℘

t(U) : A ⊂ B} for t = k, k − 1, . . . , 1)
one can define the underlying structure U in terms of the considered
adjacencies on ℘

k(U).
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The general schema of such an interpretation of a structure in terms
of relations on its subspaces is well presented in [16] and, in a manner
even more suitable for this exposition, in [21]. To make presentation of
our results simpler we have presented most of them in terms of maximal
cliques of the relation ∼=∼+,∼

−
,∼∼ and thus in a nonelementary lan-

guage. It is relatively easy to rephrase them in an elementary language,
though. Generally, to this aim it suffices to note that for a particular
type J of maximal ∼-cliques there is a natural number s such that

(9) J =
{
[A1, . . . , As]∼ : A1, . . . , As ∈ ℘

k(U), ∆∼
s (A1, . . . , As)

}
.

However, we must be cautious, as s may depend on the index; e.g., (9) is
valid for ∼=∼+, J = S, and s = m−k+ 1. Elementarizing formulas of
Subs. 3.2 entirely that way we get the results simply but for particular
values of k only. That is why below we follow a bit more complicated
way.

Note that (9) is valid for ∼=∼+ and s = 3 when J = T and
k 6= m−2, and when J = T ∪S ∪S∗ and k = m−2. If k = m−2 all the
reasonings of Subs. 3.2 are directly repeated. Assume that k 6= m−2. Let
us write L

†(A1, A2, A3) iff A1, A2, A3 are on a line of U†
k. Let A1 ∼

+ A2.
Then

(10) L
†(A1, A2, A3) ⇐⇒ ∀A0

[
A0 ∼

+ A1, A2 ==⇒ A0 ∼
+ A3

]
.

For distinct A1 ∼+ A2 let A1, A2 be the line of U†
k that contains them.

Note that if A1, A2, A3 are pairwise ∼+-adjacent then the plane
Π(A1, A2, A3) that contains them is definable in terms of the relation
L

†. In the class of all planes one can elementarily distinguish the class E
of projective planes: these are subspaces that satisfy the projective Veb-
len condition. Let distinct A1, A2 satisfy A1 ∼

+ A2.

(11)

A1, A2 is a proper pencil (i.e. A1 ∼∼ A2) ⇐⇒

⇐⇒ ∀A3

[
¬L

†(A1, A2, A3) ∧ ¬∆∼+

(A1, A2, A3) ∧

∧ A3 ∼
+ A1, A2 =⇒ Π(A1, A2, A3) ∈ E

]
.

Let E ′ be the class of star-planes i.e. the class of planes Π(A1, A2, A3)

in E such that A1 ∼∼ A2 and ¬∆∼+

(A1, A2, A3). Its elements have form
[H,D]k with H ∈ ℘

k−1(U), D ∈ ℘
k+2(U).

(12)
A1 ∼−

A2 ⇐⇒ ∃Π0,Π1,Π2,Π3 ∈ E ′
[
A1 ∈ Π0 ∧ A2 ∈ Π3 ∧

∧ |Πi−1 ∩ Πi| ≥ 2 for i = 1, 2, 3
]
.
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When ∼=∼
−

then (9) remains valid with s = 3 and J = S. As
previously, we write L(A1, A2, A3) when A1, A2, A3 are on a line of Uk.
Then for pairwise distinct A1, A2, A3 we have

L(A1, A2, A3) ⇐⇒ ∃A′
0, A

′′
0

[
∆∼

− (A1, A2, A
′
0) ∧

∧ A3 ∼−
A1, A2, A

′
0, A

′′
0 ∧ A′′

0 ∼
−
A1, A2 ∧(13)

∧ ¬∃A′′′
1 , A

′′′
2 ,A

′′′
3

[
∆∼

− (A′′′
1 , A

′′′
2 , A

′′′
3 ) ∧ A1, A2, A

′′
0 ∼

−
A′′′

1 , A
′′′
2 , A

′′′
3

]]
.

For ∼=∼∼, (9) does not hold for any family of maximal ∼-cliques,
as determined in Subs. 3.4. Nevertheless, when A1 ∼∼ A2 we have

(14)

L(A1, A2, A0) ⇐⇒ A0 ∼∼ A1, A2 ∧ ∀A3

[
A3 ∼∼ A1, A2 ∧

∧ ∃A′
1, A

′
2, A

′
3

[
A′

1, A
′
2, A

′
3 ∼∼ A1, A2, A3 ∧

∧ ¬A′
1 ∼∼ A′

2 ∧ ¬A′
2 ∼∼ A′

3 ∧ A′
1 ∼∼ A′

3

]
=⇒ A0 ∼∼ A3

]
.

Now again the class of planes of U† can be defined; note that from the
point of view of U they can be projective planes, affine planes, and slit
planes as well. We have

(15)

A1 ∼
q A2 ⇐⇒ ¬A1 ∼∼ A2 ∧

∧ ∃A′
1, A

′
2, A

′
3

[
¬L(A′

1, A
′
2, A

′
3) ∧∼∼ (A′

1, A
′
2, A

′
3) ∧

∧ A1, A2 ∼∼ A′
1, A

′
2, A

′
3 ∧

∧ ∀A3

[
A3 ∼∼ A′

1, A
′
2, A

′
3 ∧ ¬A3 ∼∼ A1 ==⇒ ¬A3 ∼∼ A2

]]
.

Well, finally we have rewritten definitions from Subs. 3.2–3.4 in an
elementary language of the relation ∼ on ℘

k(U). In an analogous way
we can elementarize definitions of Sec. 5.

Our main result yields now

Theorem. Let ∼=∼
−

, 0 < k ≤ m or ∼=∼+,∼∼, k < m. The class
of the graphs of adjacency ∼ on k-subspaces associated with affine polar
spaces is axiomatizable and thus the geometry of our affine polar spaces
can be elementarily characterized in terms of adjacency ∼ on k-subspaces.

A bijection of the class of k-dimensional isotropic subspaces of an
at least 3 dimensional metric affine space R with index m which pre-
serves (in both directions) a respective adjacency is determined by an
automorphism of R.

As we already noted in the introduction, the term “affine polar
space” refers in the literature to a wider class of structures; namely to
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structures obtained from a polar space Q by deleting a hyperplane H .
An axiom system for such structures (except those derived from Q of
index 1) is presented in [5]; from the point of view of polar geometry, Q

with index 1 is simply a generalized quadrangle, but its suitable derived
affine polar space corresponds to an important geometry: to Minkowskian
geometry. Thus affine polar spaces in the sense of [5] contain all of our
affine polar spaces except those associated with Minkowskian spaces.
Note that each of our spaces is determined by a symmetric bilinear form
and thus the corresponding affine space must be Pappian; from the point
of view of polar geometry it is derived from Q determined by a polarity
associated with a symmetric bilinear form, where H consists of all the
points collinear with a fixed point of Q. If a polar space Q is determined
in a Pappian projective space by a polarity associated with a sesquilinear
form η then η is bilinear iff the following Net Axiom is satisfied on Q:

(Net) If points a1, a2, a3, a4 yield a quadrangle without diagonal lines,

K, L are lines such that K crosses a1, a2, a3, a4 and

L crosses a1, a4, a2, a3, then K,L have a common point.

Consequently, our non-Minkowskian affine polar spaces can be char-
acterized as those models of [5] which satisfy, additionally:

– all their planes are Pappian with characteristic 6= 2;
– there are lines L,M such that L ≡M and L ∦ M (in the notation

of [5]);
– suitable affine variant of (Net) is satisfied.
Our affine polar spaces are line reducts of affine spaces; they arise

by restricting the line set of a (metric-) affine space to its subset. Note
that the class of affine polar spaces in the sense of [5] contains another
subclass of line reducts of affine spaces. Namely, if a polar space Q is
associated with a symplectic polarity in a projective space P and H is its
hyperplane then H = [a]∼ (H = a⊥, in the terminology of [5]) for some
point a of P and H is a hyperplane of P as well. In that case deleting H
we arrive to an affine space A and corresponding associated affine polar
space U is a line reduct of A. Let G be the class of lines of U. One can
note that the formula

(16) ∀y [y ∼ a, b ==⇒ y ∼ x]

defines the ternary collinearity of A in terms of the binary collinearity ∼
of U and thus A is definable in U. In this case, however, the class G is
not closed under the parallelism of A, which was crucial in investigations
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on our affine polar spaces. On the other hand, in this case the parallelism

‖̃ on G inherited from A coincides with the parallelism ‖ defined in [5],

while for our affine polar spaces we have ‖( ‖̃.

A. Final remarks

An affine polar space can be also represented in terms of the derived
affine (more precisely: metric-affine) space of a quadric. Let P be the
projective space P1(V). For given W ∈ Sub(V) we write Θ(V,W ) for the
set of all linear complements of W in V. Assume that codim(W ) = k,
then Θ(V,W )⊂ Subk(V). We write then Ak(V,W ) for the structure of
linear complements of W, i.e. for the spine space Ak,0(V,W ) in the termi-
nology of [23] (a suitable restriction of Pk(V)). Recall that A1(V,W ) ∼=
∼= A(W ) and, generally, Ak(V,W ) is representable as a substructure of
the affine space A(Hom(V�W,W )) (see [24]).

Now assume that W ∈ Qk(ξ) and let QW
k = Qk(ξ) ∩ Θ(V,W⊥).

The restriction of the structure Ak(V,W ) to the set QW
k will be called

the derived space of Qk at W , where Qk is the geometry of pencils on the
quadric Qk (a Grassmann space of the polar space 〈Q1,Q2〉) (cf. [19]).
This restriction will be denoted by Qk(V,W ). The following is known:

Fact A.1 ([15]). Let 〈w〉 = W ∈ Q1(ξ), where ξ is a symmetric bilinear
form on a vector space V. There is a vector space V◦ and a nondegenerate
symmetric bilinear form ξ◦ on V◦ such that Q1(V,W ) ∼= U1(V

◦, ξ◦).
Every space U1(V◦, ξ◦) can be represented in this way.

Problem A.2. Can the above be generalized to arbitrary k ≤ ind(ξ)?
And for symplectic form ξ? If so, is it possible to generalize our main
results concerning adjacencies for Qk(V,W )?

Acknowledgements. We wish to thank the referee for his valuable
comments which made our presentation more precise as it comes to bib-
liographical references and richer in the area of logic and foundations of
geometry.
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