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Abstract: The distribution of k(n) = sum of distinct prime divisors mod
is investigated over the set of integers having k distinct prime divisors.

1. Introduction

Let P be the set of primes, p with and without suffixes always
denote prime numbers. Let p(n) be the smallest and P(n) be the largest
prime divisors of n. Let

o) =31 ) =Yg o) = 1.
Pl pln

Let P, = {n | w(n) = k}. For the sake of simplicity we shall write
ry =logx, xy =logxy, x.11 =logzx, (r=2,3,...).
Let R(z) = #{n < x| o(n) = integer}.
W. Banks and his coauthors proved in [1] that
R(x)xy

< < Co if T > C3
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with some positive constants ¢y, ¢s, c3.
In [4] I proved that

(1.1) R(z) = (1 + 0,(1))c- xﬁ (& — 0)
2
with a suitable constant ¢ > 0.
I obtained it quite easily by using our method developed in a joint
paper with J.-M. De Koninck [2]. We used this method in [3] as well.
We shall prove much more than (1.1) (Th. 1). Namely we can
determine the asymptotic of

(1.2) #{n <z, whn)=k r(n)=10 (mod )}
: 3/4 3/4

where 1<ty <cxq, [ (mod t;) arbitrary, and k€ J, = [:cg—:cQ , To+1% ]

We note that our theorem remains valid for every k located in an
interval larger than J,. Furthermore, we can give the asymptotic of the
numbers in (1.2) after substituting x(n) by k.(n) (r = 2,3,...), where
kr(n) = > p", or with kp(n) =>_ P(p), where P € Z|x].

pln

pln

2. Lemmata

2.1. Let e(a) := e*™ for real number a.
Lemma 1. Let

h=1
(h,R)=1
be the Ramanujan sum. Then
pu(t)e(R) R
cp(n) = ——7=—, t= .
)= Rom)

Proof. See G. Tenenbaum [5], p. 35. ¢

Lemma 2. Let Z; be the set of reduced residue classes mod q, Agn(s)
be the number of solutions of Iy + --- + I, = s modq, where I, run over
all possible values of Z;, independently. Then

2.1) Aon(s) = éfe (_—Sa) ¢o(a)"
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(1) If ¢ = pi* ... p% is odd, then

‘ c
q
(2) If ¢ = even = 2%p{" ... pl, p; are odd, then

2a) in the case h+ s =1 (mod 2) we have \;1(s) =0,
2b) in the case h+ s =0 (mod 2) we obtain

v

(2.2)

S
A“
(S
\_/
»QIH

90

Jj=1

v

(2.3)

>

.Q

A
'Qll\D

' c
a Yh= o(p.)h—1’
155 %
c is an absolute, positive constant.
Proof. (2.1) is clear. Let ¢ = odd. Separating a = 0 in (2.1) we have

1 1 &= "
(2.4) M“?__< 0) <1 %a
e(@"  qa\ vl q = {»(q)
Since ¢,(0) = ¢(q), and
q h v p;j h
cq(a) Cp,2 (D)
(U =) ’ - Y
; (q) ]1:[1; w(p;’)
from Lemma 1 we obtain that
p;j h pj—l
Cy,.aj b
Y| a(j) NS \M(l)\h§1+ 1h_1.
— | ¢(py’) = le(p))l |o(p;)]
Tpj)=1
The right-hand side of (2.4) equals to =2 < % {H (1 + W) — 1},

whence (2.2) is obvious.
The assertion for the case 2a) is clear.
Let us consider 2b). Observe that in (2.1) for a = ¢/2 we have

ea h .
¢ (3) = H45% = —(q), thus e (T) g ()" = (- 1)" ¢(q)". Sepa-

rating a = 0 and a = ¢/2 in (2.1), we obtain

%M$_q§1 3

h
el al " a5,
a#0,q/2

We can repeat the argument used earlier, and obtain (2.3) directly. ¢

cq(a) "

©(q)
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2.2. Let
m(x, k1) = Z L.
p<z
p=l (mod k)

Lemma 3 (Siegel-Walfisz). Let ¢, B be arbitrary positive constants.
Then for w% <y<uam k<P, (k1) =1, we have

li(x —;(yk)) liz (1 + O(exp(—c1y)))
uniformly in k,l, ¢ is an absolute positive constant.

Let m,(z) = #{n <z | w(n) = r}. According to Hardy and Rama-
nujan we have

(2.5) m(z+y, k1) —7(z, k1) =

x (xg +¢)"
2.6 (x) < ==
(26) @) < oS
¢, c; > 0 are absolute constants.

Lemma 4. Let U.(z,W) be the number of those n < x with w(n) = r
for which p* | n and p > W. Then

(x> e),

(e +c)2 1

2' r\4 S -
27) Url, W) Clzzl (r—2)! WlogW

+ O,

if2 < W < a4, say.
Proof. If p? | n, n <z, w(n) =r, p> W, then n = pm, w(m) =r — 1,
a > 2, m < x/p,, then the number of m is less than

1|z (xg + )2
c — +x 1
;V p* | x1 (r—2)! Z /P
paZQ p>\/_
pr<VzT
Hence (2.7) is clear. ¢
Lemma 5. Let G (x) be the number of those integers n < x which have

two prime divisors p1 and ps satisfying L < p1 < ps < 4p1. Then
x
log L’

Let G, .(x) be the number of those n < x with w(n) = r for which pips | n
holds with prime numbers py,ps such that L < p; < ps < 4p,. Assume
that r > 3. Then

(2.8) Gr(z) <
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(2.9) Gr,(z) < — ' + —.
. 1

Proof. We have

FEEIDS [i}gx Ly 2

L<pi1<p2<4p1 p1p2 L<p1<Vz ! p1<p2<4p1 P2

1
Lz < x/log L.
pz p1log py /1o

Thus (2.8) is true.
We have

(2.10) Gro()< D mo ( axﬁ) '

L<py <py<dp DP1P2
o,

The contribution of those p§ p2 for which a > 2 and p§ > z'/4 or g > 2
and pg > x'/* is less than

< Z _O‘ Z _< ZpllogL z>?.

py>al/4 P p1<p2<4p1

The contribution of those p;p, for which p; > x'/4 is less than Gan(r) <
< Z. Finally, if pf < 24 pf < 2'/* then

( x ) oo 1 a3
Tr—9 ~ — .
pips ) pips i (r—3)!

From these inequalities (2.9) follows. ¢
2.3. Let B and ¢y be large positive constants,

(2.11) L:={l:j=0,1,2,...},

where

(2.12) lo=exp(zy), Ly =1+ L
. 0 2 ) j+1 — (lOgl )Co

Let I(l;) = [l;,1j+1), B(l;) = li(lj11) — li(l;). fu e L, u=1,, then let
Au:=1,,1 — 1, and so I(u) = [u,u + Aul.

Let Y = [\/z,z]. We shall consider such h-tuples (u1,...,uy) for
which
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(2.13) (lo<S)uy <---<wup, uw, €Ll (v=1,...,h).

We say that (ug,...,up) is
a) feasible if uy -+ uy <Y,
b) well spaced if u;41 >2u; (j=1,...,h—1),
c¢) completely suitable, if (u; + Auq) - -« (up + Aup) < Y.
Let
Mp(lo,Y)={m=p1---pn <Y, lo<pi <---<pan},
and let

(2.14) Mp(lo,Y) := #(Mu(lo, Y)).

Let us assume that h < cxs.
Adapting the method of Sathe and A. Selberg, we can deduce that

215) Myl Y) = (1 +or (D1 ,H1—1/p

p<lo

We shall count those elements m = py---p, € My(lp,Y) for which at
least one of the following assertion is true:
«) there exists such an ¢ for which p; 11 < 4p;,
B) pix1 >4p; (i =1,...,h—1), and if uy,...u, € L are defined by
pi € I(u;), then
(up + Auyq) - (up + Auy) > Y.
From Lemma 5 we obtain that no more than

Yy i1 +Y
logY(h 3)!'log ly

(2.16)

integers exist, for which «) holds.
Assume that p; € I(w;) (i=1,...,h), w1 >2u; (i=1,...,h—1),
up - up <precopp < (up A+ Aug) - (up + Aug).
Since the right hand side is bigger than Y, therefore

o Au,
HuV—HUV—FAuy)-VH:lleAUL: >Yexp{ 2; uij},
and
h Au, o hl’g
; Uy ; logQVlo 952300'
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Thus py - - -pp € [Y1, Y], where Y] = Yexp(—c hgfo).
Zo

Consequently, the number of elements m € My,(ly,Y') belonging to
3), is no more than

1 xh—l
. Y) — 1 (Y] Y -V ——2
(2 17) 7Th( ) 7Th( 1) <<( 1)1’1 (h— 1)' <
1 h—Bco+1
y.—2 _ if h .
S e e

This can be deduced from the asymptotic formula for m,(z) (see e.g. [5]).
In [6] a short interval version of the asymptotic of m,(x) has been proved.

Assume now that (uq,...,u,) is feasible, well-spaced, and com-
pletely suitable. Let

(2.18) En(uq, ... up) = #{p1 oo | py € I(wy,), v=1,. ..,h}.
Let

(2.19) Blu) =lilu+ Au) —liu, if weL.

In [3] we proved
Lemma 6. If (uq,...,u) is a well-spaced, feasible h-tuple, then

(2.20) En(uy, ... up) = ﬁﬁ(uy) <1 +0O (e—chf/z)) ;

the constant implied by O 1is absolute.
2.4. Let 1 < R < cx, and classify the primes p > [y mod R. It is
known that

m(u+ Au, R, t) — m(u, R,t) = ﬁﬂ(m (1 + 0O (e—c(logu)1/2>)

if (¢, R) = 1.
Let H = Hg be defined on the set of primes p > [y by
H(p)=p (mod R), H(p)€[0,R—1].
Let o =t;---t, be a word over the alphabet
Er={t|te|0,R—-1], (t,R)=1}.
We say that H(py---pp) =, ifp1 <--- <pn, H(pj) =1t
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Let
(2.21)

E}(LR)(ul, o | @) #{p1 pn | p; € I(uy), H(p;) =t;, j =1,. h}.
By the observation used in [3] we obtain also

(2.22)

1
E,(lR)(ul, coup | a) =

S ) (14 O(exp(—c(log 1)'2))).

h
Let Tgr(a) := > t; (mod R), for av = tyty - - t,.
=1

From Len_lma 2 we deduce that

(2.23) > B (un. . un | a) =

Tr(a)=s (ntlxod R)

= B (ur, .. up) (1 + O(exp(—c(logl)'/?))) =
= 7E;(LR) (w1, ..., up) (1 + O(exp(—c(log 10)1/2))) +

1
+ O (WE}(LR) (u17 v ,Uh)) )

where dr(m) = 1 if R = odd, while for R = even dg(m) =2 if m =0
(mod 2), and §,(m) = 0, if m = 1 (mod 2). Hence, by (2.15), (2.16),
(2.23) we obtain that

(2.24) My(l,Y, R, s) #{V =p1...on <Y |lo<p1 <..<pp,

Tr(H(p1) ... H(ps)) =s (mod R)} =
Or(h+s)

1
:TMh(lo,Y)+O<eXp( c(log lp)"/?) + 2h_1)Mh(lo,Y)+
h—3

+O(Y ((ha72 3)! 10210 H))‘
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3. Formulation and proof of the theorem

Let us write every n < x as ( —) A(n,ly)B(n,ly), where

n
o) ,lo) .
p<lp

Let k € J,., 1 <ty < cwe. We classify the integers n € P, n < x
according to A(n, lp).

Let Py m(x) be the set of those n € Py, n < z, for which A(n,ly) =
= m, and P; (z) be that subset of P, (x) which consists of those
n =mv € Py, for which v is square-free. From Lemma 4 we obtain
that

Wk(l’)

(31) #(UPen() \ Phn®) < 3

where we sum over all m satisfying A(m, ly) = m.
Starting from the well-known estimate

(see for instance Tenenbaum [5]) we can deduce that

(3.2) #{n <z | An,l) >exp(27t")} < 5
3”
We omit the details.
Furthermore, for a suitable constant b > 0,

(3.3) #{n <z | w(An, b)) > by} < x%
2
holds.
The proof is simple. The left-hand side of (3.3) is less than

1 x 7(d) x 2 3
e DT ) < 5 3 DR« ST (142 St )<
n<z P(d)<lo p<lo
T ) 3B
2b exp(loglogly) < 25 if b> g2
Let

(34)  B(z,kty,s) =#{n<z|nePy, k(n)=s (modt)}.
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Theorem. Let J, = [:cg - x§/4,x2 + xg/ﬂ, k € Jg, tx be an integer

1 <ty < cxo, ¢ an arbitrary constant. Then

B(LL’, ]{7, tka 3) _ :U’(tk> (

(3.5) (@) ;

14 0,(1))
holds uniformly in k € J,, and ty.
Proof. (3.5) is an easy consequence of our previous inequalities and
lemmas.

Let m be fixed, P(m) < ly, and consider all those n = mv < x for
which v is square-free, p(v) > ly, w(n) =k, k(n) =s (mod t;). In the
notations of (2.24) the following relation holds.

x
(36)  Miwim) (zo, = s — ﬁ(m)> -

O (k + 5 — (K(m) +w(m)))

k m
Let o(lp) = [] (1 —1/p). From (2.15) we deduce that
B Miwon (o 2) = (14 0r(1)oll) - mie)

if
m < exp(xF™),  w(m) <bxs, P(m) <.
Furthermore, if t; = odd, then 6, (v) = 1 for every v, if t;, = even, then
k(m) +w(m) =0 (mod 2), if m is odd, and k(m) +w(m) =1 (mod 2),
if m is even, consequently
0, (k +s) if m = odd,

O, (k + s) — (k(m) + w(m)) = {5t (k+s—1) if m = even.

Let t; be odd. From (3.6), (3.7), and from

. 1 1
(3.8) Z = (14 04(1)) H <1+ — +) = (1+om(1))9(l0)

p<lo p

we obtain (3.5) for t; = odd. On the left-hand side we sum over m under
(3.8).

Let t,, = even. If K+ s = 0 (mod 2), then we have to sum over
odd m satisfying (3.8):
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(3.9)

S =)= ] <1+1+-~):.(1+om(1)).%- .

odd

p Q(lo).

3<p<lo

If k+s=1 (mod 2), then we have to sum over the even m. Since

(3.8)—(3.9) equals to Z* L therefore it is (1 + 0,(1))3 - -1, also.

2 o(lo)’
m=even

The proof of the theorem is complete. {
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