Mathematica Pannonica

20/1 (2009), 1-11

SOME THEOREMS ON THE PRIME DIVISORS OF INTEGERS

I. Kátai

Dept. of Computer Algebra, Eötvös Loránd University, H-1117
Budapest, Pázmány Péter sétány 1/C, Hungary
Dedicated to my friend, János Fehér on his seventieth anniversary
Received: February 2009??
MSC 2000: $11 \mathrm{~N} 37,11 \mathrm{~N} 60$
Keywords: Sum of prime divisors, number of prime divisors.
Abstract: The distribution of $\kappa(n)=$ sum of distinct prime divisors $\bmod t_{k}$ is investigated over the set of integers having k distinct prime divisors.

1. Introduction

Let \mathcal{P} be the set of primes, p with and without suffixes always denote prime numbers. Let $p(n)$ be the smallest and $P(n)$ be the largest prime divisors of n. Let

$$
\omega(n)=\sum_{p \mid n} 1 ; \quad \kappa(n)=\sum_{p \mid n} p ; \quad \varrho(n):=\frac{\kappa(n)}{\omega(n)} .
$$

Let $\mathcal{P}_{k}=\{n \mid \omega(n)=k\}$. For the sake of simplicity we shall write $x_{1}=\log x, x_{2}=\log x_{1}, x_{r+1}=\log x_{r}(r=2,3, \ldots)$.

Let $R(x)=\#\{n \leq x \mid \varrho(n)=$ integer $\}$.
W. Banks and his coauthors proved in [1] that

$$
c_{1}<\frac{R(x) x_{2}}{x}<c_{2} \quad \text { if } \quad x>c_{3}
$$

E-mail address: katai@compalg.inf.elte.hu
Financially supported by OTKA T46993.
with some positive constants c_{1}, c_{2}, c_{3}.
In [4] I proved that

$$
\begin{equation*}
R(x)=\left(1+o_{x}(1)\right) c \cdot \frac{x}{x_{2}} \quad(x \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

with a suitable constant $c>0$.
I obtained it quite easily by using our method developed in a joint paper with J.-M. De Koninck [2]. We used this method in [3] as well.

We shall prove much more than (1.1) (Th. 1). Namely we can determine the asymptotic of

$$
\begin{equation*}
\#\left\{n \leq x, \omega(n)=k, \quad \kappa(n)=l \quad\left(\bmod t_{k}\right)\right\} \tag{1.2}
\end{equation*}
$$

where $1 \leq t_{k} \leq c x_{2}, l\left(\bmod t_{k}\right)$ arbitrary, and $k \in J_{x}=\left[x_{2}-x_{2}^{3 / 4}, x_{2}+x_{2}^{3 / 4}\right]$.
We note that our theorem remains valid for every k located in an interval larger than J_{x}. Furthermore, we can give the asymptotic of the numbers in (1.2) after substituting $\kappa(n)$ by $\kappa_{r}(n)(r=2,3, \ldots)$, where $\kappa_{r}(n)=\sum_{p \mid n} p^{r}$, or with $\kappa_{P}(n)=\sum_{p \mid n} P(p)$, where $P \in \mathbb{Z}[x]$.

2. Lemmata

2.1. Let $e(\alpha):=e^{2 \pi i \alpha}$ for real number α.

Lemma 1. Let

$$
c_{R}(n):=\sum_{\substack{h=1 \\(h, R)=1}}^{R} e\left(\frac{h n}{R}\right)
$$

be the Ramanujan sum. Then

$$
c_{R}(n)=\frac{\mu(t) \varphi(R)}{\varphi(t)}, \quad t=\frac{R}{(R, n)} .
$$

Proof. See G. Tenenbaum [5], p. 35. \diamond
Lemma 2. Let \mathbb{Z}_{q}^{*} be the set of reduced residue classes $\bmod q, \lambda_{q, h}(s)$ be the number of solutions of $l_{1}+\cdots+l_{h} \equiv s \bmod q$, where l_{ν} run over all possible values of \mathbb{Z}_{q}^{*}, independently. Then

$$
\begin{equation*}
\lambda_{q, h}(s)=\frac{1}{q} \sum_{a=0}^{q-1} e\left(\frac{-s a}{q}\right) c_{q}(a)^{h} . \tag{2.1}
\end{equation*}
$$

(1) If $q=p_{1}^{a_{1}} \ldots p_{\nu}^{a_{\nu}}$ is odd, then

$$
\begin{equation*}
\left|\frac{\lambda_{q, h}(s)}{\varphi(q)^{h}}-\frac{1}{q}\right| \leq \frac{c}{q} \sum_{j=1}^{\nu} \frac{1}{\varphi\left(p_{j}\right)^{h-1}} \tag{2.2}
\end{equation*}
$$

(2) If $q=$ even $=2^{a_{0}} p_{1}^{a_{1}} \ldots p_{\nu}^{a_{\nu}}$, p_{j} are odd, then

2a) in the case $h+s \equiv 1(\bmod 2)$ we have $\lambda_{q, h}(s)=0$,
$2 \mathrm{~b})$ in the case $h+s \equiv 0(\bmod 2)$ we obtain

$$
\begin{equation*}
\left|\frac{\lambda_{q, h}(s)}{\varphi(q)^{h}}-\frac{2}{q}\right| \leq \frac{c}{q} \sum_{j=1}^{\nu} \frac{1}{\varphi\left(p_{j}\right)^{h-1}} \tag{2.3}
\end{equation*}
$$

c is an absolute, positive constant.
Proof. (2.1) is clear. Let $q=$ odd. Separating $a=0$ in (2.1) we have

$$
\begin{equation*}
\left|\frac{\lambda_{q, h}(s)}{\varphi(q)^{h}}-\frac{1}{q}\left(\frac{c_{q}(0)}{\varphi(q)}\right)^{h}\right| \leq \frac{1}{q} \sum_{a=1}^{q-1}\left|\frac{c_{q}(a)}{\varphi(q)}\right|^{h} . \tag{2.4}
\end{equation*}
$$

Since $c_{q}(0)=\varphi(q)$, and
from Lemma 1 we obtain that

$$
\sum_{b=1}^{p_{j}^{a_{j}}}\left|\frac{c_{p_{j} a_{j}}(b)}{\varphi\left(p_{j}^{a_{j}}\right)}\right|^{h}=1+\sum_{\substack{l=1 \\\left(l, p_{j}\right)=1}}^{p_{j}-1} \frac{|\mu(l)|}{\left|\varphi\left(p_{j}\right)\right|^{h}} \leq 1+\frac{1}{\left|\varphi\left(p_{j}\right)\right|^{h-1}}
$$

The right-hand side of (2.4) equals to $\frac{U-1}{q} \leq \frac{1}{q}\left\{\prod\left(1+\frac{1}{\left|\varphi\left(p_{j}\right)\right|^{h-1}}\right)-1\right\}$, whence (2.2) is obvious.

The assertion for the case 2a) is clear.
Let us consider 2b). Observe that in (2.1) for $a=q / 2$ we have $c_{q}\left(\frac{q}{2}\right)=\frac{\mu(2) \varphi(q)}{\varphi(2)}=-\varphi(q)$, thus $e\left(\frac{-s a}{q}\right) c_{q}\left(\frac{q}{2}\right)^{h}=(-1)^{h-s} \varphi(q)^{h}$. Separating $a=0$ and $a=q / 2$ in (2.1), we obtain

$$
\left|\frac{\lambda_{q, h}(s)}{\varphi(q)^{h}}-\frac{2}{q}\right| \leq \frac{1}{q} \sum_{\substack{a \bmod q) \\ a \neq 0, q / 2}}\left|\frac{c_{q}(a)}{\varphi(q)}\right|^{h} .
$$

We can repeat the argument used earlier, and obtain (2.3) directly. \diamond
2.2. Let

$$
\pi(x, k, l)=\sum_{\substack{p \leq x \\ p \equiv l \\(\bmod k)}} 1 .
$$

Lemma 3 (Siegel-Walfisz). Let c, B be arbitrary positive constants. Then for $\frac{x}{x_{1}^{c}} \leq y \leq x, k \leq x_{1}^{B},(k, l)=1$, we have

$$
\begin{equation*}
\pi(x+y, k, l)-\pi(x, k, l)=\frac{l i(x+y)-l i x}{\varphi(k)}\left(1+\mathcal{O}\left(\exp \left(-c_{1} \sqrt{x_{1}}\right)\right)\right) \tag{2.5}
\end{equation*}
$$

uniformly in k, l, c_{1} is an absolute positive constant.
Let $\pi_{r}(x)=\#\{n \leq x \mid \omega(n)=r\}$. According to Hardy and Ramanujan we have

$$
\begin{equation*}
\pi_{r}(x) \leq c_{1} \frac{x}{x_{1}} \frac{\left(x_{2}+c\right)^{r-1}}{(r-1)!} \quad(x \geq e) \tag{2.6}
\end{equation*}
$$

$c, c_{1}>0$ are absolute constants.
Lemma 4. Let $U_{r}(x, W)$ be the number of those $n \leq x$ with $\omega(n)=r$ for which $p^{2} \mid n$ and $p>W$. Then

$$
\begin{equation*}
U_{r}(x, W) \leq c_{1} \frac{x}{x_{1}} \frac{\left(x_{2}+c\right)^{r-2}}{(r-2)!} \frac{1}{W \log W}+\mathcal{O}\left(x^{3 / 4}\right) \tag{2.7}
\end{equation*}
$$

if $2 \leq W \leq x^{1 / 4}$, say.
Proof. If $p^{2} \mid n, n \leq x, \omega(n)=r, p>W$, then $n=p^{\alpha} m, \omega(m)=r-1$, $\alpha \geq 2, m \leq x / p_{\alpha}$, then the number of m is less than

$$
c\left(\sum_{\substack{p>W \\ \alpha \geq 2 \\ p^{\alpha} \leq \sqrt{x}}} \frac{1}{p^{\alpha}}\right) \frac{x}{x_{1}} \frac{\left(x_{2}+c\right)^{r-2}}{(r-2)!}+x \sum_{p \geq \sqrt{x}} 1 / p^{\alpha} .
$$

Hence (2.7) is clear. \diamond
Lemma 5. Let $G_{L}(x)$ be the number of those integers $n \leq x$ which have two prime divisors p_{1} and p_{2} satisfying $L<p_{1}<p_{2}<4 p_{1}$. Then

$$
\begin{equation*}
G_{L}(x) \ll \frac{x}{\log L} \tag{2.8}
\end{equation*}
$$

Let $G_{L, r}(x)$ be the number of those $n \leq x$ with $\omega(n)=r$ for which $p_{1} p_{2} \mid n$ holds with prime numbers p_{1}, p_{2} such that $L<p_{1}<p_{2}<4 p_{1}$. Assume that $r \geq 3$. Then

$$
\begin{equation*}
G_{L, r}(x) \ll \frac{x}{x_{1}} \frac{x_{2}^{r-3}}{(r-3)!} \frac{1}{(\log L)}+\frac{x}{x_{1}} . \tag{2.9}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
G_{L}(x) & \leq \sum_{L<p_{1}<p_{2}<4 p_{1}}\left[\frac{x}{p_{1} p_{2}}\right] \leq x \sum_{L<p_{1} \leq \sqrt{x}} \frac{1}{p_{1}} \sum_{p_{1}<p_{2}<4 p_{1}} \frac{1}{p_{2}} \\
& \ll x \sum_{p_{1}>L} \frac{1}{p_{1} \log p_{1}} \ll x / \log L .
\end{aligned}
$$

Thus (2.8) is true.
We have

$$
\begin{equation*}
G_{L, r}(x) \leq \sum_{\substack{L<p_{1} \leq p_{2} \leq 4 p_{1} \\ \alpha, \beta}} \pi_{r-2}\left(\frac{x}{p_{1}^{\alpha} p_{2}^{\beta}}\right) . \tag{2.10}
\end{equation*}
$$

The contribution of those $p_{1}^{\alpha} p_{2}^{\beta}$ for which $\alpha \geq 2$ and $p_{1}^{\alpha}>x^{1 / 4}$ or $\beta \geq 2$ and $p_{2}^{\beta}>x^{1 / 4}$ is less than

$$
\ll \sum_{p_{1}^{\alpha}>x^{1 / 4}} \frac{x}{p_{1}^{\alpha}} \sum_{p_{1}<p_{2}<4 p_{1}} \frac{1}{p_{2}} \ll x \sum \frac{1}{p_{1}^{\alpha} \log L} \ll x^{0,9} .
$$

The contribution of those $p_{1} p_{2}$ for which $p_{1}>x^{1 / 4}$ is less than $G_{x^{1 / 4}}(x) \ll$ $\ll \frac{x}{x_{1}}$. Finally, if $p_{1}^{\alpha} \leq x^{1 / 4}, p_{2}^{\beta} \leq x^{1 / 4}$ then

$$
\pi_{r-2}\left(\frac{x}{p_{1}^{\alpha} p_{2}^{\beta}}\right) \leq \frac{c x}{p_{1}^{\alpha} p_{2}^{\beta}} \frac{1}{x_{1}} \frac{x_{2}^{r-3}}{(r-3)!}
$$

From these inequalities (2.9) follows. \diamond
2.3. Let B and c_{0} be large positive constants,

$$
\begin{equation*}
\mathcal{L}:=\left\{l_{j}: j=0,1,2, \ldots\right\}, \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
l_{0}=\exp \left(x_{2}^{B}\right), \quad l_{j+1}=l_{j}+\frac{l_{j}}{\left(\log l_{j}\right)^{c_{0}}} \tag{2.12}
\end{equation*}
$$

Let $I\left(l_{j}\right)=\left[l_{j}, l_{j+1}\right), \beta\left(l_{j}\right)=l i\left(l_{j+1}\right)-l i\left(l_{j}\right)$. If $u \in \mathcal{L}, u=l_{\nu}$, then let $\Delta u:=l_{\nu+1}-l_{\nu}$, and so $I(u)=[u, u+\Delta u]$.

Let $Y=[\sqrt{x}, x]$. We shall consider such h-tuples $\left(u_{1}, \ldots, u_{h}\right)$ for which

$$
\begin{equation*}
\left(l_{0} \leq\right) u_{1}<\cdots<u_{h}, \quad u_{\nu} \in \mathcal{L} \quad(\nu=1, \ldots, h) . \tag{2.13}
\end{equation*}
$$

We say that $\left(u_{1}, \ldots, u_{h}\right)$ is
a) feasible if $u_{1} \cdots u_{h} \leq Y$,
b) well spaced if $u_{j+1} \geq 2 u_{j} \quad(j=1, \ldots, h-1)$,
c) completely suitable, if $\left(u_{1}+\Delta u_{1}\right) \cdots\left(u_{h}+\Delta u_{h}\right) \leq Y$.

Let

$$
\mathcal{M}_{h}\left(l_{0}, Y\right)=\left\{m=p_{1} \cdots p_{h} \leq Y, \quad l_{0} \leq p_{1}<\cdots<p_{h}\right\}
$$

and let

$$
\begin{equation*}
M_{h}\left(l_{0}, Y\right):=\#\left(\mathcal{M}_{h}\left(l_{0}, Y\right)\right) . \tag{2.14}
\end{equation*}
$$

Let us assume that $h \leq c x_{2}$.
Adapting the method of Sathe and A. Selberg, we can deduce that

$$
\begin{equation*}
M_{h}\left(l_{0}, Y\right)=\left(1+o_{Y}(1)\right) \frac{Y}{\log Y} \cdot \frac{x_{2}^{h-1}}{(h-1)!} \prod_{p<l_{0}}(1-1 / p) \tag{2.15}
\end{equation*}
$$

We shall count those elements $m=p_{1} \cdots p_{h} \in \mathcal{M}_{h}\left(l_{0}, Y\right)$ for which at least one of the following assertion is true:
α) there exists such an i for which $p_{i+1}<4 p_{i}$,
乃) $p_{i+1}>4 p_{i}(i=1, \ldots, h-1)$, and if $u_{1}, \ldots u_{h} \in \mathcal{L}$ are defined by $p_{i} \in I\left(u_{i}\right)$, then

$$
\left(u_{1}+\Delta u_{1}\right) \cdots\left(u_{h}+\Delta u_{h}\right)>Y
$$

From Lemma 5 we obtain that no more than

$$
\begin{equation*}
c \frac{Y}{\log Y} \frac{x_{2}^{h-3}}{(h-3)!} \frac{1}{\log l_{0}}+\frac{Y}{x_{1}} \tag{2.16}
\end{equation*}
$$

integers exist, for which α) holds.
Assume that $p_{i} \in I\left(u_{i}\right)(i=1, \ldots, h), u_{i+1} \geq 2 u_{i}(i=1, \ldots, h-1)$,

$$
u_{1} \cdots u_{h} \leq p_{1} \cdots p_{h} \leq\left(u_{1}+\Delta u_{1}\right) \cdots\left(u_{h}+\Delta u_{h}\right)
$$

Since the right-hand side is bigger than Y, therefore

$$
\prod_{\nu=1}^{h} u_{\nu}=\prod_{\nu=1}^{h}\left(u_{\nu}+\Delta u_{\nu}\right) \cdot \prod_{\nu=1}^{h} \frac{1}{1+\frac{\Delta u_{\nu}}{u_{\nu}}}>Y \exp \left\{-\frac{1}{2} \sum_{\nu=1}^{h} \frac{\Delta u_{\nu}}{u_{\nu}}\right\}
$$

and

$$
\sum_{\nu=1}^{h} \frac{\Delta u_{\nu}}{u_{\nu}} \leq \sum_{\nu=0}^{h-1} \frac{1}{\left(\log 2^{\nu} l_{0}\right)^{c_{0}}} \ll \frac{h x_{2}}{x_{2}^{B c_{0}}}
$$

Thus $p_{1} \cdots p_{h} \in\left[Y_{1}, Y\right]$, where $Y_{1}=Y \exp \left(-c \frac{h x_{2}}{x_{2}^{B c_{0}}}\right)$.
Consequently, the number of elements $m \in \mathcal{M}_{h}\left(l_{0}, Y\right)$ belonging to β), is no more than

$$
\begin{align*}
\pi_{h}(Y)-\pi_{h}\left(Y_{1}\right) & \ll\left(Y-Y_{1}\right) \frac{1}{x_{1}} \frac{x_{2}^{h-1}}{(h-1)!} \ll \tag{2.17}\\
& \ll Y \cdot \frac{1}{x_{1}} \frac{x_{2}^{h-B c_{0}+1}}{(h-1)!}, \quad \text { if } \quad h \ll x_{2}
\end{align*}
$$

This can be deduced from the asymptotic formula for $\pi_{h}(x)$ (see e.g. [5]). In [6] a short interval version of the asymptotic of $\pi_{h}(x)$ has been proved.

Assume now that $\left(u_{1}, \ldots, u_{h}\right)$ is feasible, well-spaced, and completely suitable. Let

$$
\begin{equation*}
E_{h}\left(u_{1}, \ldots, u_{h}\right)=\#\left\{p_{1} \cdots p_{h} \mid p_{\nu} \in I\left(u_{\nu}\right), \quad \nu=1, \ldots, h\right\} \tag{2.18}
\end{equation*}
$$

Let

$$
\begin{equation*}
\beta(u)=l i(u+\Delta u)-l i u, \quad \text { if } \quad u \in \mathcal{L} . \tag{2.19}
\end{equation*}
$$

In [3] we proved
Lemma 6. If $\left(u_{1}, \ldots, u_{h}\right)$ is a well-spaced, feasible h-tuple, then

$$
\begin{equation*}
E_{h}\left(u_{1}, \ldots, u_{h}\right)=\prod_{\nu=1}^{h} \beta\left(u_{\nu}\right)\left(1+\mathcal{O}\left(e^{-c_{3} x_{2}^{B / 2}}\right)\right) \tag{2.20}
\end{equation*}
$$

the constant implied by \mathcal{O} is absolute.
2.4. Let $1 \leq R \leq c x_{2}$, and classify the primes $p>l_{0} \bmod R$. It is known that

$$
\pi(u+\Delta u, R, t)-\pi(u, R, t)=\frac{1}{\varphi(R)} \beta(u)\left(1+\mathcal{O}\left(e^{-c(\log u)^{1 / 2}}\right)\right)
$$

if $(t, R)=1$.
Let $H=H_{R}$ be defined on the set of primes $p>l_{0}$ by $H(p) \equiv p \quad(\bmod R), \quad H(p) \in[0, R-1]$.
Let $\alpha=t_{1} \cdots t_{h}$ be a word over the alphabet

$$
\mathcal{E}_{R}=\{t \mid t \in[0, R-1], \quad(t, R)=1\} .
$$

We say that $H\left(p_{1} \cdots p_{h}\right)=\alpha$, if $p_{1}<\cdots<p_{h}, \quad H\left(p_{j}\right)=t_{j}$.

Let
$E_{h}^{(R)}\left(u_{1}, \ldots, u_{h} \mid \alpha\right):=\#\left\{p_{1} \cdots p_{h} \mid p_{j} \in I\left(u_{j}\right), H\left(p_{j}\right)=t_{j}, j=1, \ldots, h\right\}$.
By the observation used in [3] we obtain also

$$
\begin{equation*}
E_{h}^{(R)}\left(u_{1}, \ldots, u_{h} \mid \alpha\right)=\frac{1}{\varphi(R)^{h}} E_{h}\left(u_{1}, \ldots, u_{h}\right)\left(1+\mathcal{O}\left(\exp \left(-c\left(\log l_{0}\right)^{1 / 2}\right)\right)\right) \tag{2.22}
\end{equation*}
$$

Let $T_{R}(\alpha):=\sum_{j=1}^{h} t_{j}(\bmod R)$, for $\alpha=t_{1} t_{2} \cdots t_{h}$.
From Lemma 2 we deduce that

$$
\begin{align*}
& \quad \sum_{T_{R}(\alpha) \equiv s(\bmod R)} E_{h}^{(R)}\left(u_{1}, \ldots, u_{h} \mid \alpha\right)= \tag{2.23}\\
& =\frac{\lambda_{R, h}(s)}{\varphi(R)^{h}} E_{h}^{(R)}\left(u_{1}, \ldots, u_{h}\right)\left(1+\mathcal{O}\left(\exp \left(-c\left(\log l_{0}\right)^{1 / 2}\right)\right)\right)= \\
& =\frac{\delta_{R}(h+s)}{R} E_{h}^{(R)}\left(u_{1}, \ldots, u_{h}\right)\left(1+\mathcal{O}\left(\exp \left(-c\left(\log l_{0}\right)^{1 / 2}\right)\right)\right)+ \\
& \quad+\mathcal{O}\left(\frac{1}{R \cdot 2^{h-1}} E_{h}^{(R)}\left(u_{1}, \ldots, u_{h}\right)\right),
\end{align*}
$$

where $\delta_{R}(m)=1$ if $R=$ odd, while for $R=$ even $\delta_{R}(m)=2$ if $m \equiv 0$ $(\bmod 2)$, and $\delta_{r}(m)=0$, if $m \equiv 1(\bmod 2)$. Hence, by (2.15), (2.16), (2.23) we obtain that

$$
\begin{align*}
& M_{h}\left(l_{0}, Y, R, s\right):=\#\left\{\nu=p_{1} \ldots p_{h} \leq Y \mid l_{0} \leq p_{1}<\ldots<p_{h}\right. \tag{2.24}\\
& \left.\quad T_{R}\left(H\left(p_{1}\right) \ldots H\left(p_{h}\right)\right) \equiv s(\bmod R)\right\}= \\
& =\frac{\delta_{R}(h+s)}{R} M_{h}\left(l_{0}, Y\right)+\mathcal{O}\left(\exp \left(-c\left(\log l_{0}\right)^{1 / 2}\right)+\frac{1}{2^{h-1}}\right) M_{h}\left(l_{0}, Y\right)+ \\
& +\mathcal{O}\left(\frac{Y}{x_{1}}\left(\frac{x_{2}^{h-3}}{(h-3)!} \cdot \frac{1}{\log l_{0}}+1\right)\right)
\end{align*}
$$

3. Formulation and proof of the theorem

Let us write every $n \leq x$ as $(n=) A\left(n, l_{0}\right) B\left(n, l_{0}\right)$, where

$$
A\left(n, l_{0}\right)=\prod_{\substack{p^{\alpha} \cup n \\ p<l_{0}}} p^{\alpha} ; \quad B\left(n, l_{0}\right)=\frac{n}{A\left(n, l_{0}\right)}
$$

Let $k \in J_{x}, 1 \leq t_{k} \leq c x_{2}$. We classify the integers $n \in \mathcal{P}_{k}, n \leq x$ according to $A\left(n, l_{0}\right)$.

Let $\mathcal{P}_{k, m}(x)$ be the set of those $n \in \mathcal{P}_{k}, n \leq x$, for which $A\left(n, l_{0}\right)=$ $=m$, and $\mathcal{P}_{k, m}^{\prime}(x)$ be that subset of $\mathcal{P}_{k, m}(x)$ which consists of those $n=m \nu \in \mathcal{P}_{k, m}$ for which ν is square-free. From Lemma 4 we obtain that

$$
\begin{equation*}
\#\left(\cup\left(\mathcal{P}_{k, m}(x) \backslash \mathcal{P}_{k, m}^{\prime}(x)\right)\right) \ll \frac{\pi_{k}(x)}{l_{0} \log l_{0}} \tag{3.1}
\end{equation*}
$$

where we sum over all m satisfying $A\left(m, l_{0}\right)=m$.
Starting from the well-known estimate

$$
\psi(x, y):=\#\{n \leq x \mid P(n) \leq y\} \ll x \exp \left(-\frac{x_{1}}{2 \log y}\right)
$$

(see for instance Tenenbaum [5]) we can deduce that

$$
\begin{equation*}
\#\left\{n \leq x \mid A\left(n, l_{0}\right)>\exp \left(x_{2}^{B+1}\right)\right\} \ll \frac{x}{x_{2}^{2 B}} \tag{3.2}
\end{equation*}
$$

We omit the details.
Furthermore, for a suitable constant $b>0$,

$$
\begin{equation*}
\#\left\{n \leq x \mid \omega\left(A\left(n, l_{0}\right)\right)>b x_{3}\right\} \ll \frac{x}{x_{2}^{2 B}} \tag{3.3}
\end{equation*}
$$

holds.
The proof is simple. The left-hand side of (3.3) is less than

$$
\begin{aligned}
\frac{1}{2^{b x_{3}}} \sum_{n \leq x} \tau\left(A\left(n, l_{0}\right)\right) & \leq \frac{x}{2^{b x_{3}}} \sum_{P(d) \leq l_{0}} \frac{\tau(d)}{d} \ll \frac{x}{2^{b x_{3}}} \prod_{p<l_{0}}\left(1+\frac{2}{p}+\frac{3}{p^{2}}+\cdots\right) \ll \\
& \ll \frac{x}{2^{b x_{3}}} \exp \left(\log \log l_{0}\right) \ll \frac{x}{x_{2}^{2 B}}, \quad \text { if } \quad b>\frac{3 B}{\log 2} .
\end{aligned}
$$

Let

$$
\begin{equation*}
B\left(x, k, t_{k}, s\right):=\#\left\{n \leq x \mid n \in \mathcal{P}_{k}, \quad \kappa(n) \equiv s \quad\left(\bmod t_{k}\right)\right\} \tag{3.4}
\end{equation*}
$$

Theorem. Let $J_{x}=\left[x_{2}-x_{2}^{3 / 4}, x_{2}+x_{2}^{3 / 4}\right], k \in J_{x}, t_{k}$ be an integer $1 \leq t_{k} \leq c x_{2}$, c an arbitrary constant. Then

$$
\begin{equation*}
\frac{B\left(x, k, t_{k}, s\right)}{\pi_{k}(x)}=\frac{\mu\left(t_{k}\right)}{t_{k}}\left(1+o_{x}(1)\right) \tag{3.5}
\end{equation*}
$$

holds uniformly in $k \in J_{x}$, and t_{k}.
Proof. (3.5) is an easy consequence of our previous inequalities and lemmas.

Let m be fixed, $P(m)<l_{0}$, and consider all those $n=m \nu \leq x$ for which ν is square-free, $p(\nu) \geq l_{0}, \omega(n)=k, \kappa(n) \equiv s\left(\bmod t_{k}\right)$. In the notations of (2.24) the following relation holds.

$$
\begin{align*}
& M_{k-\omega(m)}\left(l_{0}, \frac{x}{m}, t_{k}, s-\kappa(m)\right)= \tag{3.6}\\
& =\left(1+o_{x}(1)\right) \frac{\delta_{t k}(k+s-(\kappa(m)+\omega(m)))}{t_{k}} M_{k-\omega(m)}\left(l_{0}, \frac{x}{m}\right) .
\end{align*}
$$

Let $\varrho\left(l_{0}\right)=\prod_{p<l_{0}}(1-1 / p)$. From (2.15) we deduce that

$$
\begin{equation*}
M_{k-\omega(m)}\left(l_{0}, \frac{x}{m}\right)=\left(1+o_{x}(1)\right) \varrho\left(l_{0}\right) \cdot \frac{1}{m} \cdot \pi_{k}(x) \tag{3.7}
\end{equation*}
$$

if

$$
m \ll \exp \left(x_{2}^{B+1}\right), \quad \omega(m) \leq b x_{3}, \quad P(m)<l_{0}
$$

Furthermore, if $t_{k}=$ odd, then $\delta_{t_{k}}(\nu)=1$ for every ν, if $t_{k}=$ even, then $\kappa(m)+\omega(m) \equiv 0(\bmod 2)$, if m is odd, and $\kappa(m)+\omega(m) \equiv 1(\bmod 2)$, if m is even, consequently

$$
\delta_{t_{k}}(k+s)-(\kappa(m)+\omega(m))= \begin{cases}\delta_{t_{k}}(k+s) & \text { if } \quad m=\text { odd } \\ \delta_{t_{k}}(k+s-1) & \text { if } \quad m=\text { even }\end{cases}
$$

Let t_{k} be odd. From (3.6), (3.7), and from

$$
\begin{equation*}
\sum^{*} \frac{1}{m}=\left(1+o_{x}(1)\right) \prod_{p<l_{0}}\left(1+\frac{1}{p}+\cdots\right)=\left(1+o_{x}(1)\right) \frac{1}{\varrho\left(l_{0}\right)} \tag{3.8}
\end{equation*}
$$

we obtain (3.5) for $t_{k}=$ odd. On the left-hand side we sum over m under (3.8).

Let $t_{k}=$ even. If $k+s \equiv 0(\bmod 2)$, then we have to sum over odd m satisfying (3.8):

$$
\begin{equation*}
\sum_{\text {odd }}^{*} \frac{1}{m}=\left(1+o_{x}(1)\right)=\prod_{3 \leq p<l_{0}}\left(1+\frac{1}{p}+\cdots\right)=\cdot\left(1+o_{x}(1)\right) \cdot \frac{1}{2} \cdot \frac{1}{\varrho\left(l_{0}\right)} \tag{3.9}
\end{equation*}
$$

If $k+s \equiv 1(\bmod 2)$, then we have to sum over the even m. Since (3.8)-(3.9) equals to $\sum_{m=\text { even }}^{*} \frac{1}{m}$, therefore it is $\left(1+o_{x}(1)\right) \frac{1}{2} \cdot \frac{1}{\varrho\left(l_{0}\right)}$, also.

The proof of the theorem is complete. \diamond

References

[1] BANKS, W. D., GARAEV, M. Z., LUCA, F. and SHPARLINSKI, I. E.: Uniform distribution of the fractional part of the average prime divisor, Forum Math. 17 (2005), 885-901.
[2] DE KONINCK, J.-M. and KÁTAI, I.: On the distribution of subsets of primes in the prime factorization of integers, Acta Arithm. 72 (1995), 169-200.
[3] DE KONINCK, J.-M. and KÁTAI, I.: On the local distribution of certain arithmetic functions, Liet. matem. rink. 46 (2006), 315-331.
[4] KÁTAI, I.: On the average prime divisors, Annales Univ. Budapest, Sectio Computatorica 27 (2007), 137-144.
[5] TENENBAUM, G.: Introduction to analytic and probabilistic number theory, Cambridge University Press, Cambridge, 1995.
[6] KÁTAI, I.: A remark on a paper of K. Ramachandra, in: Proceedings of the Number Theory Conference held in 1984 in Ooty, Lecture Notes, Springer, Berlin, 147-152.

