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and q 6= 1

2
. In this paper we give all the functions f, g : I → R+

such that
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)

[r(1 − q)g(y)−(1 − r)qg(x)] =
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1. Introduction

In order to formulate the problem we need to define the notion of
weighted quasi-arithmetic mean. Let J ⊂ R be a nonvoid open interval
and denote by CM(J) the class of continuous and strictly monotone real
valued functions defined on the interval J . A function M : J2 → J is
called a weighted quasi-arithmetic mean on J if there exist 0 < p < 1
and ϕ ∈ CM(J) such that

M(u, v) = ϕ−1(pϕ(u) + (1 − p)ϕ(v)) =: Aϕ(u, v; p)

for all u, v ∈ J . In this case the number p is said to be the weight and
the function ϕ is called the generating function of the weighted quasi-
arithmetic mean M . If p = 1

2
in the above equation then M is called a

quasi-arithmetic mean on J (see [7], [5], [1], [3], [10]). If ϕ(u) = u for all
u ∈ J , then we have

A(u, v; p) := Aid(u, v; p) = pu+ (1 − p)v (u, v ∈ J),

which is the well-known weighted arithmetic mean on J .
Now we can formulate the general problem as follows: When will

the nontrivial linear combination of two weighted quasi-arithmetic means
defined on the same interval J be a weighted arithmetic mean on J? In
other words, determine all M,N : J2 → J weighted quasi-arithmetic
means and the constants µ 6= 0, 1 and r ∈ (0, 1), such that

µM(u, v) + (1 − µ)N(u, v) = A(u, v; r)

holds for all u, v ∈ J . In detail this equation means the following: deter-
mine all the functions ϕ, ψ ∈ CM(J) and the constants (p, q, r) ∈ (0, 1)3,
µ 6= 0, 1 such that

µϕ−1(pϕ(u)+(1−p)ϕ(v))+(1−µ)ψ−1(qψ(u)+(1−q)ψ(v)) = ru+(1−r)v
holds for all u, v ∈ J .

If we suppose that ϕ, ψ ∈ CM(J) are differentiable on J and
ϕ′(u) > 0, ψ′(u) > 0 for all u ∈ J , and we differentiate the above
equation first with respect to u and then with respect to v, then we have

µ
pϕ′(u)

ϕ′(Aϕ(u, v; p))
+ (1 − µ)

qψ′(u)

ψ′(Aψ(u, v; q))
= r

and

µ
(1 − p)ϕ′(v)

ϕ′(Aϕ(u, v; p))
+ (1 − µ)

(1 − q)ψ′(v)

ψ′(Aψ(u, v; q))
= 1 − r

for all u, v ∈ J . Multiplying the first equation by (1−q)ψ′(v), the second
equation by −qψ′(u) and adding the new equations, we have
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µp(1 − q)ϕ′(u)ψ′(v) − µq(1 − p)ϕ′(v)ψ′(u)

ϕ′(Aϕ(u, v; p))
= r(1−q)ψ′(v)−(1−r)qψ′(u)

for all u, v ∈ J . With the notations f := ϕ′◦ϕ−1, g := ψ′◦ϕ−1, I := ϕ(J)
for the unknown functions f, g : I → R+ and ϕ(u) = x and ϕ(v) = y
(x, y ∈ I), from the above equation we have

(1)
f(px+ (1 − p)y)[r(1− q)g(y)− (1 − r)qg(x)] =

= µ[p(1 − q)f(x)g(y)− (1 − p)qf(y)g(x)]

for all x, y ∈ I. The functional eq. (1) depends on the parameters
(p, q, r) ∈ (0, 1)3 and µ 6= 0, 1 for which, if x = y in (1), by f(x) > 0,
g(x) > 0 we have

(2) µ(p− q) = r − q.

The functional eq. (1) was studied in the following special cases:

(i) p = q = r = µ = 1/2 by J. Matkowski ([12]), then by Z. Daróczy
and Zs. Páles ([5]) under much weaker conditions.

(ii) p = q (then by (2) r = q) by Z. Daróczy and Zs. Páles in [6], [5].

(iii) µ = r J. Jarczyk and J. Matkowski in [9], and J. Jarczyk ([8]), P.
Burai ([2]).

(iv) µ = r and p = 1/2, q 6= 1/2 by Z. Daróczy in [3] without any
conditions.

In this paper we generalise Z. Daróczy’s result from [4], studying
the functional eq. (1) in the case p = 1/2 and p 6= q. Hence, by (2) we
have r 6= q and r 6= 1

2
and

µ =
r − q
1
2
− q

= 2 · r − q

1 − 2q
.

This means we have to determine all the functions f, g : I → R+ (I ⊂ R

nonvoid open interval) and the constants (q, r) ∈ (0, 1)2, such that

(3)
f

(

x+ y

2

)

[r(1 − q)g(y) − (1 − r)qg(x)] =

=
r − q

1 − 2q
[(1 − q)f(x)g(y)− qf(y)g(x)]

holds for all x, y ∈ I.
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2. Main result

Theorem 1. Let I ⊂ R be a nonvoid open interval and 0 < r < 1,
0 < q < 1, r, q 6= 1/2, r 6= q. If the functions f, g : I → R+ are solutions

of the functional eq. (3) then the following cases are possible:

1) If r 6= q2

q2+(1−q)2
then there exist constants a, b ∈ R+ such that

f(x) = a and g(x) = b for all x ∈ I;

2) If r = q2

q2+(1−q)2
then there exists an additive function A : R → R

and real c1, c2 > 0 such that

g(x) = c1e
A(x) and f(x) = c2e

2A(x) for all x ∈ I.

Conversely, the functions given in the above cases are solutions of eq. (3).

To prove Th. 1 we need the following lemmas.

Lemma 1. Let I ⊂ R be a nonvoid open interval and 0 < r < 1,
0 < q < 1, r 6= q, r, q 6= 1/2. If the functions f, g : I → R+ satisfy the

functional eq. (3) then

(4) f

(

x+ y

2

)

[g(x) + g(y)] = [f(x)g(y) + f(y)g(x)]

is true for all x, y ∈ I.

Proof. By interchanging x and y in (3) we have

(5)
f

(

x+ y

2

)

[r(1 − q)g(x) − (1 − r)qg(y)] =

=
r − q

1 − 2q
[(1 − q)f(y)g(x)− qf(x)g(y)]

for all x, y ∈ I.
We add eqs. (3) and (5), then we have

f

(

x+ y

2

)

[g(x) + g(y)] (r − q) =
r − q

1 − 2q
[f(x)g(y) + f(y)g(x)] (1 − 2q)

for all x, y ∈ I.

From this equation it follows (4). ♦

Lemma 2. Let I ⊂ R be a nonvoid open interval and 0 < r < 1,
0 < q < 1, r 6= q, r, q 6= 1/2. If the functions f, g : I → R+ satisfy the

functional eq. (3) then

(6)
f(x)g(y)

{

q(1−q)(1−2r)g(y)−[r(1−2q)−q2(1−2r)]g(x)
}

=

= f(y)g(x)
{

q(1−q)(1−2r)g(x)−[r(1−2q)−q2(1−2r)]g(y)
}

is true for all x, y ∈ I.
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Proof. From (4) by (3) we obtain

f(x)g(y) + f(y)g(x)

g(x) + g(y)
[r(1 − q)g(y) − (1 − r)qg(x)] =

=
r − q

1 − 2q
[(1 − q)f(x)g(y)− qf(y)g(x)]

for all x, y ∈ I. By short computation we obtain (6) for all x, y ∈ I. ♦

Lemma 3. Let I ⊂ R be a nonvoid open interval and 0 < r < 1,
0 < q < 1, r 6= q, r, q 6= 1/2, r 6= q2

q2+(1−q)2
. If the functions f, g : I → R+

satisfy the functional eq. (3) then the following propositions

(7) q(1 − q)(1 − 2r)g(y)− [r(1 − 2q) − q2(1 − 2r)]g(x) 6= 0

and

(8)
f(x)g(y)

f(y)g(x)
=
q(1 − q)(1 − 2r)g(x) − [r(1 − 2q) − q2(1 − 2r)]g(y)

q(1 − q)(1 − 2r)g(y)− [r(1 − 2q) − q2(1 − 2r)]g(x)

are true for all x, y ∈ I.

Proof. If x = y, then the expression in (7) becomes:

g(x)[q(1 − q)(1 − 2r) − r(1 − 2q) + q2(1 − 2r)] = g(x)(q − r) 6= 0,

therefore assertion (7) is true.
If x 6= y we assert that

q(1 − q)(1 − 2r)g(y)− [r(1 − 2q) − q2(1 − 2r)]g(x) 6= 0.

Contrary, we suppose that

q(1 − q)(1 − 2r)g(y)− [r(1 − 2q) − q2(1 − 2r)]g(x) = 0

and then by r(1 − 2q) − q2(1 − 2r) 6= 0, which is equivalent to r 6=
6= q2

q2+(1−q)2
, we have

g(x)

g(y)
=

q(1 − q)(1 − 2r)

r(1 − 2q) − q2(1 − 2r)
.

With the above assumption by q(1 − q)(1 − 2r) 6= 0, from (6) we have

g(x)

g(y)
=
r(1 − 2q) − q2(1 − 2r)

q(1 − q)(1 − 2r)
.

From the previous two equations we have

[q(1 − q)(1 − 2r)]2 = [r(1 − 2q) − q2(1 − 2r)]2,

i.e.
(q − r)(1 − 2q)[(1 − r)q + (1 − q)r] = 0

which is impossible. Hence, (7) is true for all x, y ∈ I. From (6) by (7)
we have (8) for all x, y ∈ I. ♦
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Lemma 4. Let I ⊂ R be a nonvoid open interval and let 0 < r < 1,
0 < q < 1, r, q 6= 1/2, r 6= q be fixed numbers such that r 6= q2

q2+(1−q)2
. If

the functions f, g : I → R+ with the property f(y0) = g(y0) = 1 (y0 ∈ I)
satisfy functional eq. (3), then

(9) [g(x) − g(y)][1 − g(x)][1 − g(y)] = 0

for all x, y ∈ I.

Proof. By Lemma 3 we know that (7) and (8) are true. From (8) with
y = y0 ∈ I we have

f(x) = g(x)
q(1 − q)(1 − 2r)g(x) − [r(1 − 2q) − q2(1 − 2r)]

q(1 − q)(1 − 2r) − [r(1 − 2q) − q2(1 − 2r)]g(x)

for all x ∈ I. With the notations α := q(1 − q)(1 − 2r) 6= 0 and β :=
:= r(1 − 2q) − q2(1 − 2r) 6= 0 the above equation becomes

f(x) = g(x)
αg(x) − β

α− βg(x)
for all x ∈ I.

We substitute this form of f in eq. (8) and we obtain

g(x)αg(x)−β
α−βg(x)

g(y)

g(y)αg(y)−β
α−βg(y)

g(x)
=
αg(x) − βg(y)

αg(y) − βg(x)

for all x, y ∈ I, i.e.
[αg(x)−β][α−βg(y)][αg(y)−βg(x)] = [αg(y)−β][α−βg(x)][αg(x)−βg(y)]
for all x, y ∈ I. From this equation with the notation

F (x, y) := [αg(x) − β][α− βg(y)][αg(y)− βg(x)]

we have F (x, y) = F (y, x) for all x, y ∈ I. From this equation with an
easy computation and with the notation A := αβ2 + α2β it follows

Ag(x) −Ag(y) + Ag2(x)g(y)− Ag(x)g2(y) + Ag2(y) −Ag2(x) = 0

for all x, y ∈ I. We can easily observe that

A = αβ2 + α2β = αβ(α+ β) 6= 0,

for αβ 6= 0 and α+ β = (1 − 2q)[(1 − r)q + (1 − q)r] 6= 0. Hence

[g(x) − g(y)][1 + g(x)g(y)− g(x) − g(y)] = 0.

But this is (9) for all x, y ∈ I. ♦

Proof of Th. 1. (i) First we suppose that the functions f, g : I → R+

are solutions of the functional eq. (3) (where 0 < r < 1, 0 < q < 1,

r, q 6= 1/2, r 6= q), r 6= q2

q2+(1−q)2
and f(y0) = g(y0) = 1 for y0 ∈ I. We

assert, that in this case f(x) = g(x) = 1 for all x, y ∈ I. Contrary, we
suppose that there exists y1 ∈ I (y1 6= y0), such that
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g(y1) = c 6= 1 and c > 0.

With the substitution y = y1 in (9) we have

(10) [g(x) − c][1 − g(x)] = 0

for all x ∈ I. We define
E := {x | x ∈ I, g(x) = 1} 6= ∅

and
E∗ := {x | x ∈ I, g(x) = c} 6= ∅.

By eq. (10) any x ∈ I is in E or in E∗, i.e. E ∩E∗ = ∅ and I = E ∪E∗.
By Lemma 3

(11) f(x) = g(x)
αg(x) − β

α− βg(x)
=

{

1 if x ∈ E

cαc−β
α−βc

if x ∈ E∗.

If x ∈ E and y ∈ E∗ then by eq. (4) we have

f

(

x+ y

2

)

=
f(x)c + f(y)

c+ 1
=
c+ cαc−β

α−cβ

c+ 1
.

Now, x+y
2

∈ E or x+y
2

∈ E∗. In the first case we have

c+ cαc−β
α−cβ

c+ 1
= 1

or in the second case
c+ cαc−β

α−cβ

c + 1
= c

αc− β

α− cβ
.

In both cases we obtain c2 = 1, i.e. c = 1, which is a contradiction.
Then g(x) = 1 for all x ∈ I and by (11) it follows f(x) = 1 for all

x ∈ I.
(ii) If the pair (f, g) (f, g : I → R+) is a solution of (3) then the

pair
(

f

f(y0)
, g

g(y0)

)

(y0 ∈ I) is a solution of (3) too, and f(y0)
f(y0)

= 1, g(y0)
g(y0)

= 1.

By (i) we have f(x)
f(y0)

= 1, g(x)
g(y0)

= 1 for all x ∈ I. With f(y0) := a > 0 and

g(y0) := b > 0 we obtain the assertion of Th. 1 for the case r 6= q2

q2+(1−q)2
.

In the case r = q2

q2+(1−q)2
, by Lemmas 1 and 2, and with the nota-

tions of Lemma 4 (6) becomes

f(x)g(y)αg(y) = f(y)g(x)αg(x) for all x, y ∈ I.

Hence

(12) f(x) = cg2(x), c > 0, for all x ∈ I.
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Replacing this form of f in (4) we have

g2

(

x+ y

2

)

= g(x)g(y) for all x, y ∈ I,

consequently, by [10], [11] there exist A : R → R additive function and
real c1 > 0 such that g(x) = c1e

A(x) for all x ∈ I, and by (12), f(x) =
= c2e

2A(x), c2 > 0 for all x ∈ I and we obtain the assertion of Th. 1.

3. Application

Returning to the generalized problem we need the following defini-
tion.

Definition 1. Let ϕ, ψ ∈ CM(J). If there exist a 6= 0 and b such that

ψ(x) = aϕ(x) + b if x ∈ J

then we say that ϕ is equivalent to ψ on J and denote it by ϕ(x) ∼ ψ(x)
if x ∈ J or in short ϕ ∼ ψ on J .

It is well known that if 0 < p < 1 and ϕ, ψ ∈ CM(J), then
Aϕ(x, y; p) = Aψ(x, y; p) for all x, y ∈ J if and only if ϕ ∼ ψ on J .

We define the following sets:

T+(J) :=
{

t ∈ R | J + t ⊂ R+

}

T−(J) :=
{

t ∈ R | − J + t ⊂ R+

}

.

With the help of these notations, set

γ+
t (x) :=

√
x+ t if t ∈ T+(J) (x ∈ J)

γ−t (x) :=
√
−x+ t if t ∈ T−(J) (x ∈ J).

Theorem 2. Let J ⊂ R be a nonvoid open interval and 0 < r < 1,
0 < q < 1, r, q 6= 1

2
, r 6= q. If ϕ, ψ ∈ CM(J) solve the functional

equation

(13)

2(r − q)

1 − 2q
ϕ−1

(

ϕ(u) + ϕ(v)

2

)

+

+

(

1 − 2(r − q)

1 − 2q

)

ψ−1(qψ(u) + (1 − q)ψ(v)) = ru+ (1 − r)v

for all u, v ∈ J and ϕ, ψ are differentiable on J and ϕ′(u) > 0, ψ′(u) > 0
for all u ∈ J then ϕ ∼ id and ψ ∼ id on J , furthermore, in the case

r = q2

q2+(1−q)2
the following cases are also possible:

ϕ ∼ log γ+
t , ψ ∼ γ+

t if t ∈ T+(J)
or
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ϕ ∼ log γ−t , ψ ∼ γ−t if t ∈ T−(J).

Proof. It is enough to solve the functional eq. (13) up to the equivalence
of the functions ϕ and ψ. With the notations f := ϕ′◦ϕ−1, g := ψ′◦ϕ−1,
I := ϕ(J) we get that eq. (3) holds. Due to the definition of f , we obtain
the differential equation for the function ϕ:

(14) ϕ′(x) = f(ϕ(x)) x ∈ J.

By Th. 1, the case r 6= q2

q2+(1−q)2
gives the constant solutions, from which

follows that ϕ ∼ id, ψ ∼ id. If r = q2

q2+(1−q)2
then

(15) f(x) = c2e
2A(x) and g(x) = c1e

A(x) for all x ∈ I,

where c1, c2 > 0 and A : R → R is an additive function. Since 1
f

is a

derivative, f has a continuity point and therefore in (15) by [11] A(x) =
= cx, x ∈ R , c ∈ R.

In the case c = 0 ϕ ∼ id and ψ ∼ id.
In the case c 6= 0 from (14) we have

ϕ′(u) = c2e
2cϕ(u) for all u ∈ J,

from which we deduce that either there exists t ∈ T+(J) such that
ϕ∼ log γ+

t on J or there exists t ∈ T−(J) such that ϕ∼ log γ−t on J .
Due to the definition of g, by (15) we obtain that

ψ′(u) = ecϕ(u) > 0 for all u ∈ J.

We know that ϕ′(u) = c2e
2cϕ(u) > 0, hence ϕ′(u) = ψ′(u)2, u ∈ J , from

which we get that either there exists t ∈ T+(J) such that ψ ∼ γ+
t on J

or there exists t ∈ T−(J) such that ψ ∼ γ−t on J . ♦

Remark 1. Let J := (−∞, 0). Then T+(J) = ∅ and T−(J) 6= ∅, for

example 1 ∈ T−(J). If the conditions of Th. 2 hold and r = q2

q2+(1−q)2
,

then
ϕ(u) ∼ log

√
−u+ 1 ∼ log(−u+ 1)

and
ψ(u) ∼

√
−u+ 1 (u ∈ J)

are solutions of the functional eq. (13). Indeed, because of

ϕ−1

(

ϕ(u) + ϕ(v)

2

)

= −
√

(−u+ 1)(−v + 1) + 1,

and
ψ−1(qψ(u) + (1 − q)ψ(v)) = −(q

√
−u+ 1 + (1 − q)

√
−v + 1)2 + 1,

u, v ∈ (−∞, 0), we have
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µ
[

−
√

(−u+1)(−v+1)+1
]

+ (1−µ)
[

−q2(−u+1)−(1−q)2(−v+1)−
−2q(1 − q)

√

(−u+ 1)(−v + 1) + 1
]

= ru+ (1 − r)v,

which is equivalent to
√

(−u+ 1)(−v + 1)[−µ − 2q(1 − q)(1 − µ)] + µ+ (1 − µ)q2u−
−(1 − µ)q2 + (1 − µ)(1 − q)2v − (1 − q)2(1 − µ) + 1 − µ =

= ru+ (1 − r)v.

By µ = 2· r−q
1−2q

and r = q2

q2+(1−q)2
we get (1−µ)q2 = r and (1−µ)(1−q)2 =

= 1 − r and the above equation becomes
ru− r + (1 − r)v − (1 − r) + 1 = ru+ (1 − r)v,

i.e. ϕ, ψ solve the functional eq. (13).
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[3] DARÓCZY, Z.: On a class of means of two variables, Publ. Math. Debrecen 55

(1999), 177–197.
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