Mathematica Pannonica

20/1 (2009), 1-10

ON THE GENERAL SOLUTION OF A FAMILY OF FUNCTIONAL EQUATIONS WITH TWO PARAMETERS AND ITS APPLICATION

Zoltán Daróczy

Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary

Judita Dascăl
Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary

Dedicated to Professor Ferenc Schipp on the occasion of his seventieth birthday

Received: ??May 2008??
MSC 2000: 39 B 22
Keywords: Mean, functional equation, quasi-arithmetic mean.

> Abstract: Let $I \subset \mathbb{R}$ be a nonvoid open interval and $(r, q) \in(0,1)^{2}$, such that $r \neq q, r \neq \frac{1}{2}$ and $q \neq \frac{1}{2}$. In this paper we give all the functions $f, g: I \rightarrow \mathbb{R}_{+}$ such that
> $f\left(\frac{x+y}{2}\right)[r(1-q) g(y)-(1-r) q g(x)]=\frac{r-q}{1-2 q}[(1-q) f(x) g(y)-q f(y) g(x)]$ for all $x, y \in I$.

[^0]
1. Introduction

In order to formulate the problem we need to define the notion of weighted quasi-arithmetic mean. Let $J \subset \mathbb{R}$ be a nonvoid open interval and denote by $\mathcal{C} \mathcal{M}(J)$ the class of continuous and strictly monotone real valued functions defined on the interval J. A function $M: J^{2} \rightarrow J$ is called a weighted quasi-arithmetic mean on J if there exist $0<p<1$ and $\varphi \in \mathcal{C} \mathcal{M}(J)$ such that

$$
M(u, v)=\varphi^{-1}(p \varphi(u)+(1-p) \varphi(v))=: A_{\varphi}(u, v ; p)
$$

for all $u, v \in J$. In this case the number p is said to be the weight and the function φ is called the generating function of the weighted quasiarithmetic mean M. If $p=\frac{1}{2}$ in the above equation then M is called a quasi-arithmetic mean on J (see [7], [5], [1], [3], [10]). If $\varphi(u)=u$ for all $u \in J$, then we have

$$
A(u, v ; p):=A_{i d}(u, v ; p)=p u+(1-p) v \quad(u, v \in J)
$$

which is the well-known weighted arithmetic mean on J.
Now we can formulate the general problem as follows: When will the nontrivial linear combination of two weighted quasi-arithmetic means defined on the same interval J be a weighted arithmetic mean on J ? In other words, determine all $M, N: J^{2} \rightarrow J$ weighted quasi-arithmetic means and the constants $\mu \neq 0,1$ and $r \in(0,1)$, such that

$$
\mu M(u, v)+(1-\mu) N(u, v)=A(u, v ; r)
$$

holds for all $u, v \in J$. In detail this equation means the following: determine all the functions $\varphi, \psi \in \mathcal{C} \mathcal{M}(J)$ and the constants $(p, q, r) \in(0,1)^{3}$, $\mu \neq 0,1$ such that
$\mu \varphi^{-1}(p \varphi(u)+(1-p) \varphi(v))+(1-\mu) \psi^{-1}(q \psi(u)+(1-q) \psi(v))=r u+(1-r) v$ holds for all $u, v \in J$.

If we suppose that $\varphi, \psi \in \mathcal{C} \mathcal{M}(J)$ are differentiable on J and $\varphi^{\prime}(u)>0, \psi^{\prime}(u)>0$ for all $u \in J$, and we differentiate the above equation first with respect to u and then with respect to v, then we have

$$
\mu \frac{p \varphi^{\prime}(u)}{\varphi^{\prime}\left(A_{\varphi}(u, v ; p)\right)}+(1-\mu) \frac{q \psi^{\prime}(u)}{\psi^{\prime}\left(A_{\psi}(u, v ; q)\right)}=r
$$

and

$$
\mu \frac{(1-p) \varphi^{\prime}(v)}{\varphi^{\prime}\left(A_{\varphi}(u, v ; p)\right)}+(1-\mu) \frac{(1-q) \psi^{\prime}(v)}{\psi^{\prime}\left(A_{\psi}(u, v ; q)\right)}=1-r
$$

for all $u, v \in J$. Multiplying the first equation by $(1-q) \psi^{\prime}(v)$, the second equation by $-q \psi^{\prime}(u)$ and adding the new equations, we have
$\frac{\mu p(1-q) \varphi^{\prime}(u) \psi^{\prime}(v)-\mu q(1-p) \varphi^{\prime}(v) \psi^{\prime}(u)}{\varphi^{\prime}\left(A_{\varphi}(u, v ; p)\right)}=r(1-q) \psi^{\prime}(v)-(1-r) q \psi^{\prime}(u)$
for all $u, v \in J$. With the notations $f:=\varphi^{\prime} \circ \varphi^{-1}, g:=\psi^{\prime} \circ \varphi^{-1}, I:=\varphi(J)$ for the unknown functions $f, g: I \rightarrow \mathbb{R}_{+}$and $\varphi(u)=x$ and $\varphi(v)=y$ $(x, y \in I)$, from the above equation we have

$$
\begin{align*}
& f(p x+(1-p) y)[r(1-q) g(y)-(1-r) q g(x)]= \tag{1}\\
& \quad=\mu[p(1-q) f(x) g(y)-(1-p) q f(y) g(x)]
\end{align*}
$$

for all $x, y \in I$. The functional eq. (1) depends on the parameters $(p, q, r) \in(0,1)^{3}$ and $\mu \neq 0,1$ for which, if $x=y$ in (1), by $f(x)>0$, $g(x)>0$ we have

$$
\begin{equation*}
\mu(p-q)=r-q . \tag{2}
\end{equation*}
$$

The functional eq. (1) was studied in the following special cases:
(i) $p=q=r=\mu=1 / 2$ by J. Matkowski ([12]), then by Z. Daróczy and Zs . Páles ([5]) under much weaker conditions.
(ii) $p=q$ (then by (2) $r=q$) by Z. Daróczy and Zs. Páles in [6], [5].
(iii) $\mu=r$ J. Jarczyk and J. Matkowski in [9], and J. Jarczyk ([8]), P. Burai ([2]).
(iv) $\mu=r$ and $p=1 / 2, q \neq 1 / 2$ by Z. Daróczy in [3] without any conditions.
In this paper we generalise Z. Daróczy's result from [4], studying the functional eq. (1) in the case $p=1 / 2$ and $p \neq q$. Hence, by (2) we have $r \neq q$ and $r \neq \frac{1}{2}$ and

$$
\mu=\frac{r-q}{\frac{1}{2}-q}=2 \cdot \frac{r-q}{1-2 q} .
$$

This means we have to determine all the functions $f, g: I \rightarrow \mathbb{R}_{+}(I \subset \mathbb{R}$ nonvoid open interval) and the constants $(q, r) \in(0,1)^{2}$, such that

$$
\begin{align*}
& f\left(\frac{x+y}{2}\right)[r(1-q) g(y)-(1-r) q g(x)]= \tag{3}\\
& \quad=\frac{r-q}{1-2 q}[(1-q) f(x) g(y)-q f(y) g(x)]
\end{align*}
$$

holds for all $x, y \in I$.

2. Main result

Theorem 1. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $0<r<1$, $0<q<1, r, q \neq 1 / 2, r \neq q$. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$are solutions of the functional eq. (3) then the following cases are possible:

1) If $r \neq \frac{q^{2}}{q^{2}+(1-q)^{2}}$ then there exist constants $a, b \in \mathbb{R}_{+}$such that

$$
f(x)=a \quad \text { and } \quad g(x)=b \quad \text { for all } x \in I
$$

2) If $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$ then there exists an additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ and real $c_{1}, c_{2}>0$ such that

$$
g(x)=c_{1} e^{A(x)} \quad \text { and } \quad f(x)=c_{2} e^{2 A(x)} \quad \text { for all } x \in I .
$$

Conversely, the functions given in the above cases are solutions of eq. (3).
To prove Th. 1 we need the following lemmas.
Lemma 1. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $0<r<1$, $0<q<1, r \neq q, r, q \neq 1 / 2$. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$satisfy the functional eq. (3) then

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)[g(x)+g(y)]=[f(x) g(y)+f(y) g(x)] \tag{4}
\end{equation*}
$$

is true for all $x, y \in I$.
Proof. By interchanging x and y in (3) we have

$$
\begin{align*}
& f\left(\frac{x+y}{2}\right)[r(1-q) g(x)-(1-r) q g(y)]= \tag{5}\\
& =\frac{r-q}{1-2 q}[(1-q) f(y) g(x)-q f(x) g(y)]
\end{align*}
$$

for all $x, y \in I$.
We add eqs. (3) and (5), then we have

$$
\begin{aligned}
f\left(\frac{x+y}{2}\right)[g(x)+g(y)](r-q) & =\frac{r-q}{1-2 q}[f(x) g(y)+f(y) g(x)](1-2 q) \\
& \text { for all } x, y \in I .
\end{aligned}
$$

From this equation it follows (4). \diamond
Lemma 2. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $0<r<1$, $0<q<1, r \neq q, r, q \neq 1 / 2$. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$satisfy the functional eq. (3) then

$$
\begin{align*}
& f(x) g(y)\left\{q(1-q)(1-2 r) g(y)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(x)\right\}= \\
& =f(y) g(x)\left\{q(1-q)(1-2 r) g(x)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(y)\right\} \tag{6}
\end{align*}
$$

is true for all $x, y \in I$.

Proof. From (4) by (3) we obtain

$$
\begin{gathered}
\frac{f(x) g(y)+f(y) g(x)}{g(x)+g(y)}[r(1-q) g(y)-(1-r) q g(x)]= \\
\quad=\frac{r-q}{1-2 q}[(1-q) f(x) g(y)-q f(y) g(x)]
\end{gathered}
$$

for all $x, y \in I$. By short computation we obtain (6) for all $x, y \in I$. \diamond
Lemma 3. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $0<r<1$, $0<q<1, r \neq q, r, q \neq 1 / 2, r \neq \frac{q^{2}}{q^{2}+(1-q)^{2}}$. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$ satisfy the functional eq. (3) then the following propositions

$$
\begin{equation*}
q(1-q)(1-2 r) g(y)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(x) \neq 0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f(x) g(y)}{f(y) g(x)}=\frac{q(1-q)(1-2 r) g(x)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(y)}{q(1-q)(1-2 r) g(y)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(x)} \tag{8}
\end{equation*}
$$

are true for all $x, y \in I$.
Proof. If $x=y$, then the expression in (7) becomes:

$$
g(x)\left[q(1-q)(1-2 r)-r(1-2 q)+q^{2}(1-2 r)\right]=g(x)(q-r) \neq 0
$$

therefore assertion (7) is true.
If $x \neq y$ we assert that

$$
q(1-q)(1-2 r) g(y)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(x) \neq 0
$$

Contrary, we suppose that

$$
q(1-q)(1-2 r) g(y)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(x)=0
$$

and then by $r(1-2 q)-q^{2}(1-2 r) \neq 0$, which is equivalent to $r \neq$ $\neq \frac{q^{2}}{q^{2}+(1-q)^{2}}$, we have

$$
\frac{g(x)}{g(y)}=\frac{q(1-q)(1-2 r)}{r(1-2 q)-q^{2}(1-2 r)} .
$$

With the above assumption by $q(1-q)(1-2 r) \neq 0$, from (6) we have

$$
\frac{g(x)}{g(y)}=\frac{r(1-2 q)-q^{2}(1-2 r)}{q(1-q)(1-2 r)}
$$

From the previous two equations we have

$$
[q(1-q)(1-2 r)]^{2}=\left[r(1-2 q)-q^{2}(1-2 r)\right]^{2}
$$

i.e.

$$
(q-r)(1-2 q)[(1-r) q+(1-q) r]=0
$$

which is impossible. Hence, (7) is true for all $x, y \in I$. From (6) by (7) we have (8) for all $x, y \in I . \diamond$

Lemma 4. Let $I \subset \mathbb{R}$ be a nonvoid open interval and let $0<r<1$, $0<q<1, r, q \neq 1 / 2, r \neq q$ be fixed numbers such that $r \neq \frac{q^{2}}{q^{2}+(1-q)^{2}}$. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$with the property $f\left(y_{0}\right)=g\left(y_{0}\right)=1\left(y_{0} \in I\right)$ satisfy functional eq. (3), then

$$
\begin{equation*}
[g(x)-g(y)][1-g(x)][1-g(y)]=0 \tag{9}
\end{equation*}
$$

for all $x, y \in I$.
Proof. By Lemma 3 we know that (7) and (8) are true. From (8) with $y=y_{0} \in I$ we have

$$
f(x)=g(x) \frac{q(1-q)(1-2 r) g(x)-\left[r(1-2 q)-q^{2}(1-2 r)\right]}{q(1-q)(1-2 r)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(x)}
$$

for all $x \in I$. With the notations $\alpha:=q(1-q)(1-2 r) \neq 0$ and $\beta:=$ $:=r(1-2 q)-q^{2}(1-2 r) \neq 0$ the above equation becomes

$$
f(x)=g(x) \frac{\alpha g(x)-\beta}{\alpha-\beta g(x)} \quad \text { for all } x \in I
$$

We substitute this form of f in eq. (8) and we obtain

$$
\frac{g(x) \frac{\alpha g(x)-\beta}{\alpha-\beta g(x)} g(y)}{g(y) \frac{\alpha g(y)-\beta}{\alpha-\beta g(y)} g(x)}=\frac{\alpha g(x)-\beta g(y)}{\alpha g(y)-\beta g(x)}
$$

for all $x, y \in I$, i.e.
$[\alpha g(x)-\beta][\alpha-\beta g(y)][\alpha g(y)-\beta g(x)]=[\alpha g(y)-\beta][\alpha-\beta g(x)][\alpha g(x)-\beta g(y)]$ for all $x, y \in I$. From this equation with the notation

$$
F(x, y):=[\alpha g(x)-\beta][\alpha-\beta g(y)][\alpha g(y)-\beta g(x)]
$$

we have $F(x, y)=F(y, x)$ for all $x, y \in I$. From this equation with an easy computation and with the notation $A:=\alpha \beta^{2}+\alpha^{2} \beta$ it follows

$$
A g(x)-A g(y)+A g^{2}(x) g(y)-A g(x) g^{2}(y)+A g^{2}(y)-A g^{2}(x)=0
$$

for all $x, y \in I$. We can easily observe that

$$
A=\alpha \beta^{2}+\alpha^{2} \beta=\alpha \beta(\alpha+\beta) \neq 0
$$

for $\alpha \beta \neq 0$ and $\alpha+\beta=(1-2 q)[(1-r) q+(1-q) r] \neq 0$. Hence

$$
[g(x)-g(y)][1+g(x) g(y)-g(x)-g(y)]=0
$$

But this is (9) for all $x, y \in I . \diamond$
Proof of Th. 1. (i) First we suppose that the functions $f, g: I \rightarrow \mathbb{R}_{+}$ are solutions of the functional eq. (3) (where $0<r<1,0<q<1$, $r, q \neq 1 / 2, r \neq q), r \neq \frac{q^{2}}{q^{2}+(1-q)^{2}}$ and $f\left(y_{0}\right)=g\left(y_{0}\right)=1$ for $y_{0} \in I$. We assert, that in this case $f(x)=g(x)=1$ for all $x, y \in I$. Contrary, we suppose that there exists $y_{1} \in I\left(y_{1} \neq y_{0}\right)$, such that

$$
g\left(y_{1}\right)=c \neq 1 \quad \text { and } \quad c>0
$$

With the substitution $y=y_{1}$ in (9) we have

$$
\begin{equation*}
[g(x)-c][1-g(x)]=0 \tag{10}
\end{equation*}
$$

for all $x \in I$. We define

$$
E:=\{x \mid x \in I, g(x)=1\} \neq \emptyset
$$

and

$$
E^{*}:=\{x \mid x \in I, g(x)=c\} \neq \emptyset .
$$

By eq. (10) any $x \in I$ is in E or in E^{*}, i.e. $E \cap E^{*}=\emptyset$ and $I=E \cup E^{*}$. By Lemma 3

$$
f(x)=g(x) \frac{\alpha g(x)-\beta}{\alpha-\beta g(x)}=\left\{\begin{array}{cl}
1 & \text { if } x \in E \tag{11}\\
c \frac{\alpha c-\beta}{\alpha-\beta c} & \text { if } x \in E^{*} .
\end{array}\right.
$$

If $x \in E$ and $y \in E^{*}$ then by eq. (4) we have

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x) c+f(y)}{c+1}=\frac{c+c \frac{\alpha c-\beta}{\alpha-c \beta}}{c+1} .
$$

Now, $\frac{x+y}{2} \in E$ or $\frac{x+y}{2} \in E^{*}$. In the first case we have

$$
\frac{c+c \frac{\alpha c-\beta}{\alpha-c \beta}}{c+1}=1
$$

or in the second case

$$
\frac{c+c \frac{\alpha c-\beta}{\alpha-c \beta}}{c+1}=c \frac{\alpha c-\beta}{\alpha-c \beta} .
$$

In both cases we obtain $c^{2}=1$, i.e. $c=1$, which is a contradiction.
Then $g(x)=1$ for all $x \in I$ and by (11) it follows $f(x)=1$ for all $x \in I$.
(ii) If the pair $(f, g)\left(f, g: I \rightarrow \mathbb{R}_{+}\right)$is a solution of (3) then the pair $\left(\frac{f}{f\left(y_{0}\right)}, \frac{g}{g\left(y_{0}\right)}\right)\left(y_{0} \in I\right)$ is a solution of (3) too, and $\frac{f\left(y_{0}\right)}{f\left(y_{0}\right)}=1, \frac{g\left(y_{0}\right)}{g\left(y_{0}\right)}=1$. By (i) we have $\frac{f(x)}{f\left(y_{0}\right)}=1, \frac{g(x)}{g\left(y_{0}\right)}=1$ for all $x \in I$. With $f\left(y_{0}\right):=a>0$ and $g\left(y_{0}\right):=b>0$ we obtain the assertion of Th. 1 for the case $r \neq \frac{q^{2}}{q^{2}+(1-q)^{2}}$.

In the case $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$, by Lemmas 1 and 2 , and with the notations of Lemma 4 (6) becomes

$$
f(x) g(y) \alpha g(y)=f(y) g(x) \alpha g(x) \quad \text { for all } x, y \in I .
$$

Hence

$$
\begin{equation*}
f(x)=c g^{2}(x), c>0, \quad \text { for all } x \in I . \tag{12}
\end{equation*}
$$

Replacing this form of f in (4) we have

$$
g^{2}\left(\frac{x+y}{2}\right)=g(x) g(y) \quad \text { for all } x, y \in I
$$

consequently, by [10], [11] there exist $A: \mathbb{R} \rightarrow \mathbb{R}$ additive function and real $c_{1}>0$ such that $g(x)=c_{1} e^{A(x)}$ for all $x \in I$, and by (12), $f(x)=$ $=c_{2} e^{2 A(x)}, c_{2}>0$ for all $x \in I$ and we obtain the assertion of Th. 1.

3. Application

Returning to the generalized problem we need the following definition.
Definition 1. Let $\varphi, \psi \in \mathcal{C \mathcal { M }}(J)$. If there exist $a \neq 0$ and b such that

$$
\psi(x)=a \varphi(x)+b \quad \text { if } x \in J
$$

then we say that φ is equivalent to ψ on J and denote it by $\varphi(x) \sim \psi(x)$ if $x \in J$ or in short $\varphi \sim \psi$ on J.

It is well known that if $0<p<1$ and $\varphi, \psi \in \mathcal{C M}(J)$, then $A_{\varphi}(x, y ; p)=A_{\psi}(x, y ; p)$ for all $x, y \in J$ if and only if $\varphi \sim \psi$ on J.

We define the following sets:

$$
\begin{aligned}
& T_{+}(J):=\left\{t \in \mathbb{R} \mid J+t \subset \mathbb{R}_{+}\right\} \\
& T_{-}(J):=\left\{t \in \mathbb{R} \mid-J+t \subset \mathbb{R}_{+}\right\}
\end{aligned}
$$

With the help of these notations, set

$$
\begin{aligned}
\gamma_{t}^{+}(x) & :=\sqrt{x+t} \text { if } t \in T_{+}(J)(x \in J) \\
\gamma_{t}^{-}(x) & :=\sqrt{-x+t} \text { if } t \in T_{-}(J)(x \in J)
\end{aligned}
$$

Theorem 2. Let $J \subset \mathbb{R}$ be a nonvoid open interval and $0<r<1$, $0<q<1, r, q \neq \frac{1}{2}, r \neq q$. If $\varphi, \psi \in \mathcal{C} \mathcal{M}(J)$ solve the functional equation

$$
\begin{align*}
& \frac{2(r-q)}{1-2 q} \varphi^{-1}\left(\frac{\varphi(u)+\varphi(v)}{2}\right)+ \\
& \quad+\left(1-\frac{2(r-q)}{1-2 q}\right) \psi^{-1}(q \psi(u)+(1-q) \psi(v))=r u+(1-r) v \tag{13}
\end{align*}
$$

for all $u, v \in J$ and φ, ψ are differentiable on J and $\varphi^{\prime}(u)>0, \psi^{\prime}(u)>0$ for all $u \in J$ then $\varphi \sim$ id and $\psi \sim i d$ on J, furthermore, in the case $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$ the following cases are also possible:

$$
\varphi \sim \log \gamma_{t}^{+}, \psi \sim \gamma_{t}^{+} \quad \text { if } t \in T_{+}(J)
$$

or

$$
\varphi \sim \log \gamma_{t}^{-}, \psi \sim \gamma_{t}^{-} \quad \text { if } t \in T_{-}(J)
$$

Proof. It is enough to solve the functional eq. (13) up to the equivalence of the functions φ and ψ. With the notations $f:=\varphi^{\prime} \circ \varphi^{-1}, g:=\psi^{\prime} \circ \varphi^{-1}$, $I:=\varphi(J)$ we get that eq. (3) holds. Due to the definition of f, we obtain the differential equation for the function φ :

$$
\begin{equation*}
\varphi^{\prime}(x)=f(\varphi(x)) \quad x \in J \tag{14}
\end{equation*}
$$

By Th. 1, the case $r \neq \frac{q^{2}}{q^{2}+(1-q)^{2}}$ gives the constant solutions, from which follows that $\varphi \sim i d, \psi \sim i d$. If $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$ then

$$
\begin{equation*}
f(x)=c_{2} e^{2 A(x)} \text { and } g(x)=c_{1} e^{A(x)} \text { for all } x \in I \tag{15}
\end{equation*}
$$

where $c_{1}, c_{2}>0$ and $A: \mathbb{R} \rightarrow \mathbb{R}$ is an additive function. Since $\frac{1}{f}$ is a derivative, f has a continuity point and therefore in (15) by [11] $A(x)=$ $=c x, x \in \mathbb{R}, c \in \mathbb{R}$.

In the case $c=0 \varphi \sim i d$ and $\psi \sim i d$.
In the case $c \neq 0$ from (14) we have

$$
\varphi^{\prime}(u)=c_{2} e^{2 c \varphi(u)} \quad \text { for all } u \in J
$$

from which we deduce that either there exists $t \in T_{+}(J)$ such that $\varphi \sim \log \gamma_{t}^{+}$on J or there exists $t \in T_{-}(J)$ such that $\varphi \sim \log \gamma_{t}^{-}$on J.

Due to the definition of g, by (15) we obtain that

$$
\psi^{\prime}(u)=e^{c \varphi(u)}>0 \quad \text { for all } u \in J
$$

We know that $\varphi^{\prime}(u)=c_{2} e^{2 c \varphi(u)}>0$, hence $\varphi^{\prime}(u)=\psi^{\prime}(u)^{2}, u \in J$, from which we get that either there exists $t \in T_{+}(J)$ such that $\psi \sim \gamma_{t}^{+}$on J or there exists $t \in T_{-}(J)$ such that $\psi \sim \gamma_{t}^{-}$on $J . \diamond$
Remark 1. Let $J:=(-\infty, 0)$. Then $T_{+}(J)=\emptyset$ and $T_{-}(J) \neq \emptyset$, for example $1 \in T_{-}(J)$. If the conditions of Th. 2 hold and $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$, then

$$
\varphi(u) \sim \log \sqrt{-u+1} \sim \log (-u+1)
$$

and

$$
\psi(u) \sim \sqrt{-u+1} \quad(u \in J)
$$

are solutions of the functional eq. (13). Indeed, because of

$$
\varphi^{-1}\left(\frac{\varphi(u)+\varphi(v)}{2}\right)=-\sqrt{(-u+1)(-v+1)}+1
$$

and

$$
\psi^{-1}(q \psi(u)+(1-q) \psi(v))=-(q \sqrt{-u+1}+(1-q) \sqrt{-v+1})^{2}+1
$$

$u, v \in(-\infty, 0)$, we have

$$
\begin{array}{r}
\mu[-\sqrt{(-u+1)(-v+1)}+1]+(1-\mu)\left[-q^{2}(-u+1)-(1-q)^{2}(-v+1)-\right. \\
-2 q(1-q) \sqrt{(-u+1)(-v+1)}+1]=r u+(1-r) v
\end{array}
$$

which is equivalent to

$$
\begin{array}{r}
\sqrt{(-u+1)(-v+1)}[-\mu-2 q(1-q)(1-\mu)]+\mu+(1-\mu) q^{2} u- \\
-(1-\mu) q^{2}+(1-\mu)(1-q)^{2} v-(1-q)^{2}(1-\mu)+1-\mu= \\
=r u+(1-r) v
\end{array}
$$

By $\mu=2 \cdot \frac{r-q}{1-2 q}$ and $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$ we get $(1-\mu) q^{2}=r$ and $(1-\mu)(1-q)^{2}=$ $=1-r$ and the above equation becomes

$$
r u-r+(1-r) v-(1-r)+1=r u+(1-r) v
$$

i.e. φ, ψ solve the functional eq. (13).

References

[1] ACZÉL, J.: Lectures on Functional Equations and Their Applications, Mathematics in Science and Engineering 19, Academic Press, New York-London, 1966.
[2] BURAI, P.: A Matkowski-Sutô type equation, Publ. Math. Debrecen 70/1-2 (2007), 233-247.
[3] DARÓCZY, Z.: On a class of means of two variables, Publ. Math. Debrecen $5 \mathbf{5}$ (1999), 177-197.
[4] DARÓCZY, Z.: On a family of functional equations with one parameter, Ann. Univ. Eötvös Sect. Comp. (submitted).
[5] DARÓCZY, Z. and PÁLES, ZS.: Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (1-2) (2002), 157-218.
[6] DARÓCZY, Z. and PÁLES, ZS.: On functional equations involving means, Publ. Math. Debrecen 62 (3-4) (2003), 363-377. Dedicated to Professor Lajos Tamssy on the occasion of his 80 th birthday.
[7] HARDY, G. H., LITTLEWOOD, J. E. and PÓLYA, G.: Inequalities, Cambridge University Press, Cambridge, 1934 (first edition), 1952 (second edition).
[8] JARCZYK, J.: Invariance of weighted quasi-arithmetic means with continuous generators, Publ. Math. Debrecen 71 (2007).
[9] JARCZYK, J. and MATKOWSKI, J.: Invariance in the class of weighted quasiarithmetic means, Ann. Polon. Math. 88 (1) (2006), 39-51.
[10] KUCZMA, M.: An Introduction to the Theory of Functional Equations And Inequalities, PWN - Polish Scientific Publisher, 1985.
[11] LAJKÓ, K.: Applications of extensions of additive functions, Aequationes Math. 11 (1974), 68-76.
[12] MATKOWSKI, J.: Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107.

[^0]: E-mail addresses: daroczy@math.klte.hu, jdascal@math.klte.hu
 This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK-68040.

