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1. Introduction

Let G be a finite abelian group written multiplicatively with iden-
tity element e. Let A1, . . . , An be subsets of G. If the product A1 · · ·An

is direct and is equal to G, then we say that G is factored into subsets
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A1, . . . , An. We also express this fact saying that the equation G =
= A1 · · ·An is a factorization of G. Clearly, G = A1 · · ·An is a factoriza-
tion of G if and only if each element g of G is uniquely expressible in the
form

g = a1 · · ·an, a1 ∈ A1, . . . , an ∈ An.

The set of elements e, a, a2, . . . , am−1 of G is called a cyclic subset of G.
In order to solve a long standing geometric conjecture of H. Minkowski
in 1941 G. Hajós proved that if G = A1 · · ·An is a factorization of G,
where each Ai is a cyclic subset and each |Ai| is a prime number, then at
least one of the factors A1, . . . , An is a subgroup of G. His proof based
on a zero divisor investigation in the group ring of G. L. Rédei was
looking for a purely group theoretical proof which does not rely on group
rings. Subsequently he developed a technique of substituting factors in
a factorization and in 1965 using this technique he proved the following
generalization of Hajós’ theorem. If G = A1 · · ·An is a factorization of
a finite abelian group G such that |Ai| is a prime and e ∈ Ai for all i,
1 ≤ i ≤ n, then at least one of the factors A1, . . . , An is a subgroup of G.
Rédei’s technique of substitutions uses characters of G. We will give a
character free proof for Rédei’s theorem. The basic strategy, as in Rédei’s
original argument, is based on substitutions. The main achievement is
the realization that the necessary substitution results can be established
without resorting on characters. We drew on many ideas scattered widely
in the literature. We will attribute the sources at appropriate places.

2. Replacement results

Let G = AB be a factorization of G. Then each g ∈ G is uniquely
expressible in the form g = ab, a ∈ A, b ∈ B. We call a the A-component
of g and we denote it by g|A. Similarly, we call b the B-component of
g and we denote it by a|B. The components of g are meaningful only
relative to the factorization G = AB.

Lemma 1. Let G = AB be a factorization of G and let A = {a1, . . . , an}.
For each g ∈ G the elements (ga1)|A, . . . , (gan)|A form a permutation of
a1, . . . , an.

Proof. Clearly, (gai)|A ∈ A. So we will show that (gai)|A = (gaj)|A
implies ai = aj . From

gai = (gai)|A(gai)|B, gaj = (gaj)|A(gaj)|B
we get



A character free proof for Rédei’s theorem 3

g = (gai)|A(gai)|Ba−1
i , g = (gaj)|A(gaj)|Ba−1

j .

Then (gai)|Ba−1
i = (gaj)|Ba−1

j and aj(gai)|B = ai(gaj)|B. Now as ai, aj ∈
∈ A and (gai)|B, (gaj)|B ∈ B it follows that ai = aj . ♦

Lemma 2. If G = AB is a factorization of G, then G = A−1B is a
factorization of G.

Proof. We will show that the product A−1B is direct. Choose a1, a2 ∈ A,
b1, b2 ∈ B and assume that a−1

1 b1 = a−1
2 b2. From this we get a2b1 = a1b2

which in turn implies a1 = a2 and b1 = b2. ♦

Lemma 3. Let G = AB be a factorization of G and let q be a prime
such that q 6

∣

∣ |A|. Then G = AqB is a factorization of G.

Proof. Choose a ∈ A, g ∈ G and define T to be the set of all q tuples
(x1, x2, . . . , xq), x1, x2, . . . , xq ∈ A

for which (gx1x2 · · ·xq)|A = a. First note that |T | = |A|q−1. For choose
x1, x2, ..., xq−1 in A arbitrarily, then by Lemma 1, [(gx1x2 · · ·xq−1)xq]|A =a
has a unique solution for xq. Next note that if (x1, x2, . . . , xq) ∈ T , then
(x2, . . . , xq, x1) ∈ T . We define a graph Γ. The vertices of Γ are the
elements of T and we draw an arrow from the node (x1, x2, . . . , xq) to
the node (x2, . . . , xq, x1). The graph Γ is a union of disjoint cycles. The
cycles are of length 1 or of length q. When x1 = x2 = · · · = xq, then the
node (x1, x2, . . . , xq) is on a cycle of length 1. When x1, x2, . . . , xq are
not all equal, then the node (x1, x2, . . . , xq) is on a cycle of length q. As
q 6

∣

∣|A| there must be a cycle of length 1 in Γ. In other words there is an
x1 ∈ A such that (gxq

1)|A = a. In addition x1 is uniquely determined by
a and g. As the last step of the proof we claim that the product AqB is
direct. Suppose that aq

1b1 = aq
2b2, a1, a2 ∈ A, b1, b2 ∈ B. Then aq

1b
−1
2 =

= a2b
−1
1 . There are a ∈ A, b ∈ B such that aq

1b
−1
2 = aqb−1

1 = ab. From
the equation b−1aq

1 = ab2 we get that (b−1aq
1)|A = a. From the equation

b−1aq
2 = ab1 we get (b−1aq

2)|A = a. From (b−1aq
1)|A = (b−1aq

2)|A = a we get
a1 = a2 which in turn implies b1 = b2. ♦

Lemma 4. Let G = AB be a factorization of G and let k be an integer
relatively prime to |A|. Then G = AkB is a factorization of G.

Proof. The k = −1, 0, 1 cases do not require any proof so we assume that
k ≤ −2 or k ≥ 2. If k is positive, then k is a product of positive primes
and we can apply Lemma 3 several times starting with the factorization
G = AB. If k is negative, then −k is positive and we can use a similar
procedure starting with the factorization G = A−1B. ♦
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Lemma 5. Let G = AB be a factorization such that e ∈ A, |A| =
= p is a prime. Then G = A′B is a factorization of G, where A′ =
= {e, a, a2, . . . , ap−1}, a ∈ A \ {e}.

Proof. By Lemma 4, G = AtB is a factorization of G whenever p 6
∣

∣ t.
Let A = {e, a1, a2, . . . , ap−1}. The fact that G = AtB is a factorization
is equivalent to that the sets

eB, at
1B, at

2B, . . . , at
p−1B

form a partition of G. Similarly, the fact that G = A′B is a factorization
is equivalent to that the sets

eB, akB, a2
kB, . . . , ap−1

k B

form a partition of G. Here A′ = {e, ak, a
2
k, . . . , a

p−1
k }. Since G is finite

it is enough to show that ai
kB ∩ aj

kB = ∅ for each i, j, 0 ≤ i < j ≤ p− 1.
Assume the contrary that ai

kB ∩ aj
kB 6= ∅. Multiplying by a−i

k we get
eB ∩ aj−i

k B 6= ∅. Set t = j − i. Clearly, 1 ≤ t ≤ p − 1 and so t is
prime to p. Now eB ∩ at

kB 6= ∅ contradicts the fact that G = AtB is a
factorization of G. ♦

Lemma 6. Let G = AB be a factorization of G such that |A| = p is
a prime, e ∈ A. Further assume that A contains only (p, q)-elements.
A = {e, a1b1, a2b2, . . . , ap−1bp−1}, |ai| = p, |bi| = 1 or |bi| = q for each i,
1 ≤ i ≤ p − 1, |b1| = q. Then G = A′B is a factorization of G, where
A′ = {e, a1, a

2
1, . . . , a

p−2
1 , ap−1

1 b1}. (A′ differs from the subgroup 〈a1〉 in
one element.)

Proof. By Lemma 4, G = AqB is a factorization of G. Clearly, aq
1 ∈ Aq.

There is an integer s such that (aq
1)

s = a1 as the congruence qs ≡ 1
(mod p) is solvable for s. As s is prime to p by Lemma 4, G = AqsB is a
factorization of G. From the factorization G = AqsB we get by Lemma
5 that G = A1B is a factorization of G, where A1 = {e, a1, a

2
1, . . . , a

p−1
1 }.

The factorization G = A1B means that the sets

eB, a1B, a2
1B, . . . , ap−1

1 B

form a partition of G. The factorization G = A′B means that the sets

eB, a1B, a2
1B, . . . , ap−2

1 B, ap−1
1 b1B

form a partition of G. Since G is finite it is enough to show that the
sets above are pair-wise disjoint. Namely, ai

1B ∩ aj
1B = ∅ for each i, j,

0 ≤ i < j ≤ p− 2, ai
1B ∩ ap−1

1 b1B = ∅ for each i, 0 ≤ i ≤ p− 2. The first
set of equation holds. Suppose on the contrary that ai

1B ∩ ap−1
1 b1B 6= ∅

for some i. Multiplying by a−i
1 we get eB ∩ ap−i−1

1 b1B 6= ∅. There is a t
such that (ap−i−1

1 )b1 = at
1b

t
1 as the system of congruences
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p − i − 1 ≡ t (mod p)
1 ≡ t (mod q)

is solvable for t. We get now a contradiction considering the factorization
G = AtB. ♦

The result in Lemma 4 first was proved by L. Rédei in [5] using
characters. The proof we presented is from A. D. Sands [6]. Lemma 5 is
from L. Fuchs [1] and Lemma 6 is from S. Szabó [8].

3. Hajós’ theorem for finite abelian p-groups

Lemma 7. Let A be a subset of a finite abelian p-group G such that
∣

∣〈A〉
∣

∣ = p|A| and
∣

∣〈B〉
∣

∣ ≥ p|B| holds for each B ⊂ A. Then for each a ∈ A
there is an s(a) such that s(a) is a power of p and

〈A〉 =
∏

a∈A

{

e, as(a), a2s(a), . . . , a(p−1)s(a)
}

is a factorization of 〈A〉 and at least one of the factors is a subgroup
of 〈A〉.

Proof. First consider the case when |A| = 1. Now A = {a} and the
order of a is p. So 〈A〉 = {e, a, a2, . . . , ap−1}. This shows that we can
choose s(1) to be 1. Let h(A) =

∏

a∈A |a| be the height of the subset A.
Clearly h(A) ≥ p|A| and equation holds only when |a| = p for each a ∈ A.
In this case 〈A〉 is a direct product of |A| copies of cyclic groups of order
p and the consequence of the lemma holds. We start an induction on
n = |A| and for a given value of n we start an induction on the height
h(A). If for each subset B of A with B 6= ∅, B 6= A,

∣

∣〈B〉
∣

∣ > p|B| holds,
then replace one element of A by its p-th power to get the set A′. The
conditions of the lemma hold for A′ and h(A′) < h(A). Note that 〈A′〉 =
= 〈A〉. By induction on h(A) we get that the lemma holds for 〈A〉. If
there is a subset B of A with B 6= ∅, B 6= A such that

∣

∣〈B〉
∣

∣ = p|B|,
then B satisfies the conditions of the lemma and |B| < |A|. Now by the
inductive assumption on |A|, 〈B〉 has a factorization

〈B〉 =
∏

b∈B

{

e, bs(b), b2s(b), . . . , b(p−1)s(b)
}

,

where s(b) is a power of p and at least one of the factors is a subgroup
of 〈B〉. Consider the factor group G′ = 〈A〉/〈B〉 and the subset A′ =
= {a〈B〉 : a ∈ A \ B} of G′. We can verify that

∣

∣〈A′〉
∣

∣ = p|A
′| and

∣

∣〈B′〉
∣

∣ ≥ p|B
′| hold for all B′ ⊂ A′. By induction on |A| there is a
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factorization of 〈A′〉 described in the lemma. Using the factorization of
〈B〉 and the factorization of G′ = 〈A〉/〈B〉 we can construct the desired
factorization of 〈A〉. ♦

Lemma 8. Let G = A1 · · ·An be a factorization of a finite abelian p-
group G, where Ai = {e, ai, a

2
i , . . . , a

p−1
i }. Then at least one of the factors

A1, . . . , An is a subgroup of G.

Proof. Suppose that

(1) G = A1 · · ·An

is a factorization of the finite abelian p-group G and Ai ={e,ai,a
2
i , ..., a

p−1
i }

are cyclic subsets of G. Set A = {a1, . . . , an}. Note that Lemma 7 is
applicable to A. So for each i, 1 ≤ i ≤ n there is a power of p, say s(i)
and a subset

A′
i = {e, as(i)

i , a
2s(i)
i , . . . , a

(p−1)s(i)
i }

such that G = A′
1 · · ·A

′
n is a factorization of G and at least one of the

factors A′
1, . . . , A

′
n is a subgroup of G. If s(1) = · · · = s(n), then A1 =

= A′
1, . . . , An = A′

n and so one of the factors A1, . . . , An is a subgroup
of G. So for the rest of the proof we may assume that s(i) 6= 1 for some
i, 1 ≤ i ≤ n. In addition we may assume that s(1) 6= 1, . . . , s(m) 6= 1,
s(m + 1) = · · · = s(n) = 1 and m ≥ 1 since this is only a matter of
rearranging the factors. Since s(m + 1) = · · · = s(n) = 1 we have that

G = A′
1 · · ·A

′
mAm+1 · · ·An

is a factorization of G. Consequently, the element a1 · · ·am of G can be
represented in the form

a1 · · ·am = a
s(1)t(1)
1 · · ·as(m)t(m)

m a
t(m+1)
m+1 · · ·at(n)

n ,

where 0 ≤ t(i) ≤ p − 1. So

(2) e = a
s(1)t(1)−1
1 · · ·as(m)t(m)−1

m a
t(m+1)
m+1 · · ·at(n)

n .

As s(i) is a power of p, it follows that s(i)t(i)−1 is relatively prime to p.
By Lemma 4 the factor Ai can be replaced by the factor

A∗
i =

{

e, a
s(i)t(i)−1
i , a

2[s(i)t(i)−1]
i , . . . , a

(p−1)[s(i)t(i)−1]
i

}

in the factorization (1) to get the factorization

G = A∗
1 · · ·A

∗
mAm+1 · · ·An.

Equation (2) violates this factorization unless m = 0. This completes
the proof. ♦

Lemma 7 is from L. Rédei [5]. He used it to simplify the proof of
Hajós’ theorem.
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4. Rédei’s theorem for groups of type (p, p)

Let X be a subset of the affine plane [GF(p)]2. We say that X
determines a direction if there are two points in X that span a line in
this direction.

Lemma 9. Let X be a subset of the affine plane [GF(p)]2 such that
|X| = p is a prime and X is not a straight line. Then X determines at
least (p + 3)/2 directions on the plane.

Proof. If X determines all p + 1 directions on the plane, then p + 1 ≥
≥ (p + 3)/2 holds. So we may assume that X does not determine all
directions. Consequently we may introduce a coordinate system in such
a way that the direction of the second coordinate axis is not determined
by X. Hence X can be represented in the form

X =
{

(k, bk) : k ∈ GF(p)
}

,

where b0, . . . , bp−1 ∈ GF(p). (GF(p) is isomorphic to the field of integers
modulo p. We identify GF(p) with this field using 0, 1, . . . , p − 1 as ele-
ments of the field.) Let U be the collection of directions determined by X.
It is convenient to record any direction with the slope of a representative
straight line.

U =

{

bk − bm

k − m
: k, m ∈ GF(p), k 6= m

}

.

In order to prove that |U | ≥ (p + 3)/2 we assume the contrary that
|U | < (p + 3)/2 and derive a contradiction. Consider the polynomials

Fj =
∑

k∈GF(p)

(bk − kx)j

in GF(p)[x] for 0 ≤ j ≤ p − 2. From

(3)
∑

k∈GF(p)

kj = 0 if and only if j = 0 or (p − 1) 6 |j

it follows that degFj ≤ j − 1 for j 6= 0. If x 6∈ U , then the elements bk −
− kx are all distinct as k varies over GF(p). So x 6∈ U implies Fj(x) = 0.
Since degFj ≤ j − 1 it follows that if j − 1 < p− |U |, then Fj is the zero
polynomial. In particular Fj is the zero polynomial when j ≤ (p − 1)/2.
Using the fact that every function from GF(p) to GF(p) is a polynomial
of degree less than or equal to p − 1 we can represent bk in the form

bk = cmkm + · · ·+ c2k
2 + c1k + c0,

where cm 6= 0. If m ≤ 1, then X is a straight line. So we may assume
that 2 ≤ m ≤ p − 1. (As a consequence we have assumed that p ≥ 3.)
Divide p − 1 by m with remainder.
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p − 1 = ma + b, a ≥ 1, 0 ≤ b ≤ m − 1.

Note that a + b ≤ (p − 1)/2 as m ≥ 2. So Fa+b is the zero polynomial.
On the other hand we will show that Fa+b is not the zero polynomial.
Let us compute the coefficient of (−x)b in Fa+b.

0 =
∑

k

(

a + b

b

)

ba
kk

b =

(

a + b

b

)

∑

k

(ca
mkam+b +

p−2
∑

j=b

djk
j)

with some dj ∈ GF(p). Using (3) we get that this coefficient is
(

a + b

b

)

ca
m

∑

k

kp−1 = −

(

a + b

b

)

ca
m 6= 0.

This completes the proof. ♦

Lemma 10. If G = AB is a factorization of the group G of type (p, p)
such that e ∈ A ∩ B, |A| = |B| = p, then A or B is a subgroup of G.

Proof. Let u, v be basis elements of G. The correspondence uivj →
→ (i, j) assigns points of the affine plane [GF(p)]2 to the elements of G.
Subgroups of order p correspond to straight lines of the plane passing
through the point (0, 0). The p+1 subgroups of order p of G correspond
to the p+1 directions available on the plane. Suppose that the elements
a1, a2 ∈ G correspond to the points p1, p2 ∈ [GF(p)]2. Then the direction
determined by the points p1, p2 corresponds to the subgroup 〈a1a

−1
2 〉 of G.

Briefly, we will talk about the direction determined by a1, a2. Next we will
show that if G = AB is a factorization, then the directions determined
by the elements of A are distinct from the directions determined by the
elements of B. Assume that there are a1, a2 ∈ A, b1, b2 ∈ B a1 6= a2,
b1 6= b2 and 〈a1a

−1
2 〉 = 〈b1b

−1
2 〉. Multiplying the factorization G = AB

by a−1
2 b−1

2 we get the factorization G = (Aa−1
2 )(Bb−1

2 ). From this by
Lemma 5 we get the factorization G = 〈a1a

−1
2 〉〈b1b

−1
2 〉. But this is a

contradiction as 〈a1a
−1
2 〉 = 〈b1b

−1
2 〉. Since A and B determine distinct

directions it follows that either A or B determines at most (p + 1)/2
directions. By the previous result A or B is a subgroup of G. ♦

The result in Lemma 9 first was proved by L. Rédei in [4] as an
application of his results on lacunary polynomials. The presented proof
of Lemma 9 is from L. Lovász and A. Schrijver [3].
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5. Rédei’s theorem for finite abelian p-groups

Lemma 11. Rédei’s theorem holds for any finite abelian p-group.

Proof. Let G be an abelian group of order pn and let G = A1 · · ·An be
a factorization of G, where |A1|= · · ·= |An|= p and e ∈ A1, . . . , e∈An.
We want to show that at least one of the factors A1, . . . , An is a sub-
group of G. The n = 1 case is trivial. We may assume that n ≥ 2.
By Lemma 5 every factor Ai can be replaced by a cyclic subset. If Ai

contains an element of order at least p2, then Ai can be replaced by a
non-subgroup cyclic subset. If each factor has an element of order at
least p2, then we can construct a factorization of G consisting of non-
subgroup cyclic subsets. By Lemma 8 it is not possible. So there is
a factor, say A1, whose nonidentity elements all have order p. Using
this observation we can settle the n = 2 case. Indeed, Lemma 10 takes
care of the case when G is of type (p, p). When G is of type (p2), then
the p − 1 elements of G of order p together with e form a subgroup
of G and A1 is equal to this subgroup. We assume that n ≥ 3 and
start an induction on n. By Lemma 5 the factor A1 can be replaced
by a subgroup H in the factorization G = A1A2 · · ·An to get the fac-
torization G = HA2 · · ·An. Considering the factor group G/H we have
the factorization G/H = (A2H)/H · · · (AnH)/H . By the inductive as-
sumption there is a permutation B1, . . . , Bn of the factors H, A2, . . . , An

such that B1, B1B2, . . . , B1B2 · · ·Bn is a ascending chain of subgroups
of G and B1 = H . For notational convenience we assume that B2 =
= A2, . . . , Bn = An since this is only a matter of reindexing the factors
A2, . . . , An in the factorization G = A1A2 · · ·An. Consider the subgroup
K = HA2 · · ·An−1. Clearly, each of the factors H, A2, . . . , An−1 is a sub-
set of K. If A1 ⊂ K, then K = A1A2 · · ·An−1 is a factorization of K.
By the inductive assumption at least one of the factors A1, . . . , An−1 is a
subgroup of K and so is a subgroup of G. For the remaining part of the
proof we may assume that A1 6⊂ K. Then replace the factor A1 in the
factorization G = A1A2 · · ·An by a subgroup L generated by an element
of A1 \ K. Since L 6⊂ K, we have K ∩ L = {e}. Considering the factor
group G/L from the factorization G = LA2 · · ·An by the inductive as-
sumption it follows that there is a permutation C1, . . . , Cn of the factors
L, A2, . . . , An such that C1, C1C2, . . . , C1C2 · · ·Cn is an ascending chain
of subgroups of G and C1 = L. There is an index j such that C2 = Aj

and so LAj is a subgroup of G. If j 6= n, then K∩LAj = Aj is a subgroup
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of G. Therefore for the remaining part of the proof we may assume that
LAn is a subgroup of G. Consider K ∩ LAn. If K ∩ LAn = {e}, then
G contains the direct product of the subgroups K and LAn. This would
imply |G| ≥ pn+1 but we know that |G| = pn. Thus |K ∩LAn| is p2 or p.
If |K ∩ LAn| = p2, then LAn ⊂ K. This gives L ⊂ K which is not the
case. Hence |K ∩ LAn| = p. We distinguish two cases depending on the
type of LAn. Suppose that LAn is of type (p2), that is, LAn is cyclic.
Then K∩LAn is the unique subgroup of order p of LAn, namely L. Since
L 6⊂ K this case is ruled out. Since LAn is not cyclic, the nonidentity
elements of An have order p. Consequently An can be replaced by a
subgroup M in the factorization G = A1 · · ·An to get the factorization
G = A1 · · ·An−1M . Similarly An can be replaced by M in the factor-
ization G = HA2 · · ·An to get the factorization G = HA2 · · ·An−1M .
Note that G = KM is also a factorization of G which implies that K ∩
∩ M = {e}. Considering the factor group G/M from the factorization
G = A1 · · ·An−1M it follows that there is a permutation D1, . . . , Dn of
the factors A1, . . . , An−1, M such that D1, D1D2, . . . , D1D2 · · ·Dn is an
ascending chain of subgroups of G and M = D1. There is an index j,
1 ≤ j ≤ n − 1 such that D2 = Aj . Hence MAj is a subgroup of G. If
j 6= 1, then Aj ⊂ K. As K ∩ M = {e}, we have that K ∩ MAj = Aj

is a subgroup of G. If j = 1, the we have that N = MA1 is a subgroup
of G. We distinguish two cases depending on An ⊂ N or An 6⊂ N . If
An ⊂ N , then A1An ⊂ N . Therefore A1An forms a factorization of N .
By Lemma 10, A1 or An is a subgroup of N and hence A1 or An is a
subgroup of G. If An 6⊂ N , then the factor An can be replaced by a
subgroup T in G = A1 · · ·An to get the factorization G = A1 · · ·An−1T ,
where T ∩ N = {e}. Considering the factorization of the factor group
G/T we get that there is a subgroup of G of the form TAj, with some
j, 1 ≤ j ≤ n − 1. Let us watch K ∩ TAj = HA2 · · ·An−1 ∩ TAj. We
can argue as before. If K ∩ TAj = {e}, then G contains a subgroup
of order pn+1. If K ∩ TAj = TAj, then we get the contradiction that
T ⊂ K. Thus |K ∩ TAj | = p. If j 6= 1, then K ∩ TAj = Aj which
proves the lemma. If j = 1, then both TA1 and N = MA1 are subgroups
of G. Recalling that T ∩ N = {e} we conclude that TA1 ∩ N = A1 is a
subgroup of G. This completes the proof. ♦
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6. Periodic subsets

A subset A of a finite abelian group G is defined to be periodic
if there exists an element g of G \ {e} with gA = A. We refer to such
elements g as periods of A. All the periods of A together with the identity
element e form a subgroup of G. Consequently each periodic subset has
a period of prime order.

Lemma 12. A periodic subset of prime cardinality that contains the
identity element is a subgroup.

Proof. Let A be a periodic subset where e ∈ A and |A| = p is a prime.
Let g be a period of A of prime order r. Consider the permutation of
the elements of A defined by x → xg, x ∈ A. This permutation can be
decomposed into disjoint cycles of lengths r. Thus r|p and hence p = r.
So the permutation consists of only one cycle. Let a ∈ A be the image
of the identity element e, that is, let ge = a. Now the order of a is p and
A = {e, a, a2, . . . , ap−1}. ♦

Lemma 13. If A is a nonempty subset of a finite abelian group, e ∈ A
and

H =
⋂

a∈A

a−1A 6= {e},

then A is periodic.

Proof. Let A = {a1, . . . , as} and suppose that g ∈ H \ {e}. We will
show that g is a period of A. There are elements b1, . . . , bs ∈ A such that
g = b1a

−1
1 , . . . , g = bsa

−1
s . Since b1, . . . , bs are distinct elements they are

all the elements of A. Consequently,

gA = {ga1, . . . , gas} =

= {b1a
−1
1 a1, . . . , bsa

−1
s as} =

= {b1, . . . , bs} =

= A. ♦

7. Proof of Rédei’s theorem

Theorem 1. Let G = A1 · · ·An be a factorization of the finite abelian
group G such that e ∈ Ai and |Ai| is a prime for each i, 1 ≤ i ≤ n. Then
at least one of the factors A1, . . . , An is a subgroup of G.

Proof. The theorem holds for n = 1. We start an induction on n and
assume that n ≥ 2. If |G| is a power of 2, then by Lemma 8 at least one
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of the factors is a subgroup of G. So we may assume that |G| has a prime
factor p with p ≥ 3 and suppose that A1, . . . , At are all the factors among
A1, . . . , An with cardinality p. By Lemma 4 there is a factorization G =
= A′

1 · · ·A
′
tAt+1 · · ·An of G such that A′

i contains only p-elements for
each i, 1 ≤ i ≤ t. Now A′

1 · · ·A
′
t is a factorization of the p-component

of G. By Lemma 11 at least one of the factors A′
1, . . . , A

′
t is a subgroup

of the p-component of G and hence of G. Let A′
1 be this factor. If A1 is

a subgroup of G, then there is nothing to prove. So we may assume that
A1 contains not only p-elements. Again using Lemma 4, if necessary, we
may assume that A1 satisfies the conditions of Lemma 6. So there is a
factorization G = A1 · · ·An such that A1 is of the form

A1 = {e, x, x2, . . . , xp−2, xp−1y}.

Let H1 = 〈x〉. By Lemma 4 there is a factorization G = H1A2 · · ·An

of G. From this we have the factorization
G/H1 = (A2H1)/H1 · · · (AnH1)/H1

of the factor group G/H1. By the inductive assumption on n we get that
some factor (AiH1)/H1 is a subgroup of G/H1. We may assume that
i = 2 since this is only a matter of indexing the factors. We consider a
factor group again to get a new factorization. Continuing in this way we
conclude that there is a subgroup M of G such that

M = H1A2 · · ·An−1, G = MAn

are factorizations of M and G respectively. Let a ∈ An. From the
factorizations

G = A1A2 · · ·An,

G = H1A2 · · ·An,

G = MAn

multiplying by a−1 we have the factorizations

G = A1A2 · · ·An−1(a
−1An),

G = H1A2 · · ·An−1(a
−1An),

G = M(a−1
1 An).

If A1 ⊂ M , then M = A1A2 · · ·An−1 is a factorization of M . By the in-
ductive assumption at least one of the factors A1, . . . , An−1 is a subgroup
of M and so of G. If A1 6⊂ M , then by the factorization G = M(a−1An),
a−1An is a complete set of representatives modulo M . Hence there exists
an element ca of a−1An such that the coset caM contains the element
(xp−1y)−1, that is, for which xp−1yca ∈ M . Let



A character free proof for Rédei’s theorem 13

Ba = {xp−1yca} ∪
(

H1 \ {x
p−1y}

)

=

= {xp−1yca} ∪
(

A1 \ {x
p−1y}

)

.

Note that M = BaA2 · · ·An−1 is a factorization of M and each factor con-
tains the identity element e. Indeed, products coming from BaA2 · · ·An−1

occur among the product coming from A1A2 · · ·An−1(a
−1An) and these

are distinct since G = A1A2 · · ·An−1(a
−1An) is a factorization of G. From

the factorization M = BaA2 · · ·An−1 by the inductive assumption it fol-
lows that one of the factors Ba, A2, . . . , An−1 is a subgroup of M and so
of G. If it is not Ba we are done. Thus we may assume that Ba is a sub-
group of G. As p ≥ 3 it follows that Ba = H1. Therefore xp−1yca = xp−1,
that is, ca = y−1 and so y−1 ∈ a−1An. Thus the fixed element y−1 which
is not equal to e belongs to

⋂

a∈An

a−1An.

By Lemma 13, An is periodic. Then by Lemma 12, An is a subgroup
of G. This completes the proof. ♦
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