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Abstract: The notion of b-convergence is presented for studying preuniform
convergence spaces in the sense of Preuß (1993) and set-convergence spaces
introduced by Wyler in 1989 from a common point of view.

The well-known supertopologies as defined by Doitchinov in 1964 and also
the filtermerotopies in the sense of Katétov (1965) can be integrated as well.
Even the grill-defined presupernear operators, introduced by the author (1999)
are contained in this new broader concept.

Moreover, we discuss all the properties for describing categories in the realm
of Convenient Topology, especially the properties of being cartesian closed or
extensional.

1. Introduction

In this paper we present a new type of convergence, which gener-
alizes the “classical” ones of set-convergence in the sense of Wyler [11]
and of preuniform convergence in the sense of Preuß [9] by bringing them
both together.
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Thus, a comprehensive theory of convergence space is being estab-
lished, which enables us to simultaneously express generalized “topolog-
ical” and “uniform” aspects.

Hence the branches of Convenient Topology and of non-symmetric
Convenient Topology are both involved and can be discussed in connec-
tion with generalized Cauchy spaces or filter spaces, respectively [6].

As a basic concept we consider uniform filters converging to bounded
subsets, thus defining by suitable axioms the so-called b-convergences.
Morphisms between the corresponding spaces are then defined in an ob-
vious way, i.e., they are bounded maps which preserve uniform filters
and so-called b-continuous functions. The resulting category b-CONV

is “topological” in the sense that it is fibre-small, initially complete and
moreover has the terminal separator property. So in general, subspaces
and products, or quotients and sums as well are simultaneously formed
by supplying the corresponding sets with the initial (respectively final)
b-convergence with respect to the given data (see e.g., [9]). Moreover,
we show that pointed b-convergence leads us to a strong topological uni-
verse in which the constructs TOP and UNIF can both be embedded
in particularly nice fashion.

2. Basic concepts

As usual, PX denotes the power set of a set X, and we use BX ⊆
⊆ PX to denote a collection of bounded subsets of X, also known as
B-sets. Moreover, FIL(X × X) denotes the set of all uniform filters
on X.

2.1 Definition. We call a pair (BX , τ) consisting of a B-set BX and
a function τ : BX −→ P (FIL(X × X)) a b-convergence space and τ a
b-convergence (on BX), if the following axioms are satisfied:
(bC1) B′ ⊆ B ∈ BX implies B′ ∈ BX ;
(bC2) ∅ ∈ BX ;
(bC3) x ∈ X implies {x} ∈ BX ;
(bC4) x ∈ X implies ẋ × ẋ ∈ τ({x});
(bC5) τ(∅) = {P (X × X)};
(bC6) B ∈ BX , U ∈ τ(B) and U ⊆ V ∈ FIL(X × X) imply V ∈ τ(B).
(Here ẋ denotes the filter generated by the set {x}.) In general, for filters
F and G their cross product is defined by

F × G := { T ⊆ X | ∃F ∈ F ∃G ∈ G. T ⊇ F × G }.
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If U ∈ τ(B) for some B ∈ BX , we say the uniform filter U b-converges
to B.

Given two b-convergence spaces (BX , τX) and (BY , τY ), a function
f : X −→ Y is called b-continuous iff it is bounded, which means
(c1) { f [B] | B ∈ BX } ⊆ BY ,
and in addition we have that f preserves uniform filters in the sense that
(c2) B ∈ BX and U ∈ τX(B) imply (f × f)(U) ∈ τY (f [B]), where

(f × f)(U) := { V ⊆ Y × Y | (f × f)−1[V ] ∈ U }.

Moreover, we denote the corresponding category by b-CONV, and men-
tion here its interesting property of being topological (see Th. 4.1).

2.2 Examples. (i) Consider a set-convergence space (X, MX , q), where
X is a set, MX is a B-set q ⊆ FIL(X) × MX relates filters on X with
bounded sets subject to the following conditions (O. Wyler):
(SC1) Ȧ q A for any A ∈ MX , where Ȧ := {B ⊆ X | B ⊇ A};
(SC2) F ∈ FIL(X) implies F q ∅ iff F = PX;
(SC3) A ∈ MX , F1 q A and F1 ⊆ F2 ∈ FIL(X) imply F2 q A.
These data induce a function τq from MX into P (FIL(X×X)) by setting
for each A ∈ MX

τq(A) := {U ∈ FIL(X × X) | ∃F ∈ FIL(X). F q A and Ȧ × F ⊆ U}.

(ii) A special case arises for a surrounding system (neighborhood
system) (MX , Θ) on a set X, where MX is a B-set and Θ : MX −→
→ FIL(X) is a function into the set of all filters on X (including the
zero-filter PX) satisfying the following properties [3]:
(SS1) Θ(∅) = PX;
(SS2) A ∈ MX and U ∈ Θ(A) imply U ⊇ A.
Then in analogy we may set for each A ∈ MX :

τΘ(A) := {U ∈ FIL(X) | Ȧ × Θ(A) ⊆ U }.

(iii) Let (X, JX) be a preuniform convergence space, where JX ⊆
⊆ FIL(X × X) satisfies the following two conditions (Preuß):
(PUC1) x ∈ X implies ẋ × ẋ ∈ JX ;
(PUC2) U1 ∈ JX and U1 ⊆ U2 ∈ FIL(X × X) imply U2 ∈ JX .
In this case we consider PX as a B-set and define a function from PX
into P (FIL(X×X)) by setting τX(B) := JX for each nonempty B ⊆ X,
and τX(∅) := {P (X × X)}.

(iv) At last, consider a presupernear space (BX , N), where BX is a
B-set (on a set X) and N : BX −→ P (P (P (X))) is a function satisfying
the following conditions [7]:
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(SN1) N1 ≪ N2 ∈ N(B) implies N1 ∈ N(B);
(SN2) N(∅) = {∅} and BX /∈ N(B) for each B ∈ BX ;
(SN3) x ∈ X implies {{x}} ∈ N({x}).
Moreover, let (BX , N) be grill-defined, which means that in addition we
have
(G) for each N ∈ N(B) there exists a grill G ∈ GRL(X) with N ⊆ G∈

∈ N(B).
Recall that G ⊆ PX is called a grill on the set X (G. Choquet), provided
that
(G1) ∅ /∈ G;
(G2) G1 ∪ G2 ∈ G iff G1 ∈ G or G2 ∈ G.
Then we set for each B ∈ BX :

τN (B) :=
{

U ∈ FIL(X × X) | ∃G ∈ GRL(X).

G ∈ N(B) and sec G × sec G ⊆ U
}

.

Recall that sec G := { T ⊆ X | ∀G ∈ G. G ∩ T 6= ∅ }.

3. Categorical concepts

Sets of bounded subsets of a set X are described axiomatically by
the postulates (bc1) through (bc3) (see also Def. 2.1).

Having B-sets BX and BY , respectively, a function f : X −→ Y is
called bounded, if it preserves bounded sets (see again Def. 2.1).

The category BOUND with pairs (X, BX) consisting of a set X
and a corresponding B-set BX as objects and bounded maps as mor-
phisms is a topological universe, which means it is cartesian closed and
extensional and hence has universal one-point extensions. If no confusion
is possible, we consider the B-sets BX as objects of BOUND.

We recall the defining conditions for a concrete category C to be
called topological :
(CT1) “Existence of initial structures”: For any set X, any family (Xi, Ti)I

of C-objects indexed by a class I, and any family (fi : X −→ Xi)I of maps
indexed by I, there exists a unique C-structure T on X that is initial
with respect to (X, fi, (Xi, Ti), I). I.e., for any C-object (Y, S) a function
g : Y −→ X is a C-morphism from (Y, S) to (X, T ) iff for every i ∈ I the
composite map fi ◦ g : Y −→ Xi is a C-morphism from (Y, S) to (Xi, Ti).
(CT2) “Fibre-smallness”: For any set X the C-fibre, i.e., the class of all
C-structures on X, is a set.
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(CT3) “Terminal separator property”: For any set X with cardinality 1
there exists precisely one C-structure.
Moreover, a topological category (construct) is cartesian closed (i.e., has
natural function space structures), provided that for any pair (A, B) of
C-objects the set Mor(A, B) of all C-morphisms from A to B can be
equipped with the structure of a C-object, denoted by Pow(A, B) and
called power-object or natural function space, such that the following are
satisfied:
(1) The evaluation map e : A ×Pow(A, B)−→B defined by e(a, f) :=

:= f(a) for each pair (a, f) ∈ A ×Pow(A, B) is a C-morphism;
(2) for each C-object C and each C-morphism f : A×C −→ B the map

f̂ : C −→ Pow(A, B) defined by f̂(a)(c) := f(a, c) is a C-morphism.
For a topological category C with universal one-point extensions the
last expression means that every C-object A can be embedded via the
addition of a single point ∞ into an object A∗ := A∪{∞} such that the
following holds:
• For every C-morphism f : U −→ A from a subspace U of a C-object B

into A the unique function f ∗ : B −→ A∗ defined by

f ∗(b) :=

{

f(b), if b ∈ U,

∞ otherwise

is a C-morphism.
For basic literature concerning these definitions the reader is re-

ferred to the book of Preuß [9].

4. Convenient properties in the realm of b-CONV

The aim of Convenient Topology (see [9]) consists in the study
of “strong topological universes”, in which “convergence” structures are
available. Furthermore, such a strong topological universe should be
easily described by means of suitable axioms and should not be too large.

Thus, the construct PUCONV of preuniform convergence spaces
in the sense of Preuss is a good candidate for this purpose in Convenient
Topology.

As already pointed out there also exist convergence structures (e.g.,
set-convergences, supertopologies and grill-defined presupernear oper-
ators), which cannot be subsumed by the above-mentioned construct
PUCONV. This motivated our broader concept of b-convergence.
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Now we will examine whether b-CONV or some of its interest-
ing subcategories satisfies the proposed axioms for being a topological
universe, or strong topological universe, respectively.

4.1 Theorem. b-CONV is a topological category.

Proof. For a B-set B ∈ BX and a class I let (BXi , τi)I be a family of
b-convergence spaces and (fi : X −→ Xi)I a family of bounded maps
from BX to BXi . We set

τin(B) =

{

{P (X × X)}, if B = ∅;
{

U∈FIL(X×X) | ∀i∈I. (fi×fi)(Ui) ∈ τi(fi[B])
}

, if B 6= ∅.

Then τin is the initial b-convergence on BX with respect to the given
data.

To (bc4): For x ∈ X we have (fi × fi)(ẋ × ẋ) = ˙{(fi(x), fi(x))} ∈
∈ τi({fi(x)}). All the remaining axioms are easy to verify. By definition,
the functions fi are b-continuous. Now let (BY , Γ) be a b-convergence
space and g : Y −→ X be a map such that fi ◦ g is b-continuous from
(BY , Γ) to (BXi, τi) for every i ∈ I. Consider U ∈ Γ(B) and B ∈ BY \{∅}.
Then we have (fi × fi)((g × g)(U)) = ((fi ◦ g) × (fi ◦ g)(U)) ∈ τi(fi[B])
for each i ∈ I. Hence, (g × g)(U) ∈ τin(g[B]) follows, which shows that f
is b-continuous from (BY , Γ) to (BX , τin).

The other two axioms of being a topological category are obviously
satisfied. ♦

4.2 Definition. A b-convergence τ on BX and the corresponding pair
(BX , τ) are called isoform, provided
(if) ∅ 6= B2 ⊆ B1 ∈ BX implies τ(B2) ⊆ τ(B1).

4.3 Remark. Isotone set-convergence spaces (X, MX , q), where q satis-
fies in addition
(SC4) A2 ⊆ A1 ∈ MX and F q A2 imply F q A1,
lead us to isoform b-convergences τq. Grill-defined pseudosupernear op-
erators N determine isoform b-convergences τN as well, where N satisfies
axioms (SN1) through (SN4).

ib-CONV denotes the full subcategory of b-CONV spanned by
the isoform b-convergences.

4.4 Remark. Cartesian closedness of topological constructs implies that
quotient maps are finitely productive, but not necessarily productive (i.e.,
not closed under the construction of arbitrary products). We will call a
topological construct satisfying this latter property strong.
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4.5 Lemma. Let X be a set, (BXi, τi)I be a family of isoform b-conver-
gence spaces and (fi : Xi −→ X)I be a family of maps. Then we set

τ(B) :=











{P (X × X)}, if B = ∅;
{

U ∈ FIL(X × X) | ∃i ∈ I∃Ui ∈

∈ τi(f
−1
i [B]). (fi×fi)(Ui) ⊆ U

}

∪
{

ẋ×ẋ | x ∈ X
}

, if B 6= ∅.

Consequently τX is the final ib-CONV-structure on BX with respect to
the given data.

Proof. This is evident. ♦

4.6 Remark. If (fi : Xi −→ X)I is an epi-sink in Set (i.e., X =
=

⋃
{

fi[Xi] | i ∈ I
}

), then for every B ∈ BX \ {∅} we have

τfin(B) =
{

U ∈ FIL(X×X) | ∃i ∈ I ∃Ui ∈ τi(f
−1
i [B]). (fi×fi)(Ui) ⊆ U

}

.

4.7 Theorem. ib-CONV is a strong topological construct.

Proof. Let ((BXi, τXi
)

fi

−→ (BYi, τYi
))I be a non-empty family of quotient

maps in ib-CONV indexed by a set I, and consider the corresponding
product diagram in ib-CONV

(BX , τX)
∏

fi //

pxi

��

(BY , τY )

pYi

��
(BXi, τXi

)
fi

// (BYi, τYi
)

,

where (BX , τX) :=
∏

i∈I(B
Xi, τXi

) and (BY , τY ) :=
∏

i∈I(B
Yi, τYi

).
Since all fi are surjective,

∏

fi is surjective as well. For each i ∈ I,
and every Bi ∈ BYi \ {∅} we have

τYi
(Bi) := {U ∈ FIL(Yi × Yi) | ∃Ui ∈ τXi

(f−1
i [Bi]). (fi × fi)(U) ⊆ U }

because fi is a quotient map. For every B ∈ BY \ {∅} define

τ ′

Y (B) :={V∈FIL(Y ×Y ) | ∃W∈τX((
∏

fi)
−1[B]).(

∏

fi×
∏

fi)(W)⊆V}

which implies
τ ′

Y (B) = τY (B) := {U ∈ FIL(Y × Y ) | (pYi
× pYi

)(U) ∈ τYi
(pi[B])}.

This means that
∏

fi is a quotient map. ♦

4.8 Theorem. ib-CONV is extensional.

Proof. For an isoform b-convergence space (BX , τ) we put X∗ := X ∪
∪ {∞} and B∗ := BX ∪ {{∞}}, and we define a b-convergence τ ∗ on B∗

by setting:
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τ ∗(B) =











{P (X∗ × X∗)}, if B = ∅;

{∞̇ × ∞̇}, if B = {∞};

{U∗∈FIL(X∗×X∗) | ∃U∈τ(B). U∗⊇ Ū}, if B ∈ BX \ {∅}

with Ū := { Ū | U ∈ U } and Ū := U ∪ (X∗ × {∞}) ∪ ({∞} × X∗).
To (bc4): x ∈ X∗ implies x = ∞ or x ∈ X. In the first case

ẋ× ẋ = ∞̇×∞̇ ∈ τ ∗({∞}) = τ ∗({x}). In the second case choose ẋ× ẋ ∈
∈ τ({x}), hence ẋ × ẋ ⊆ ẋ × ẋ follows, which shows ẋ × ẋ ∈ τ ∗({x}).

All the other axioms for being an isoform b-convergence are trivially
satisfied.

(BX , τ) is a subspace of (B∗, τ ∗), because BX = {B∩X | B ∈ B∗ }
and τ is initial with respect to the inclusion i : X −→ X∗. The latter
follows since each U ∈ τ(B) is the trace of U with respect to X. Hence
we obtain τ ∗/BX = τ .

Now, let (BY , τY ) be an isoform b-convergence space, and
f : (BZ , τZ)−→ (BX , τX) be a b-continuous function from a subspace
(BZ , τZ) of (BY , τY ). We have to show that f ∗ : (BY , τY )−→ (B∗, τ ∗)
is again b-continuous. Consider, without restriction, B ∈ BY \ {∅} and
U ∈ τY (B), hence UZ := {U ∩ (Z × Z) | U ∈ U } ∈ τZ(B ∩ Z) follows.
Since by hypothesis f is b-continuous, we claim (f × f)(UZ) ∈ τ(f [B ∩
∩ Z]). Consequently we get (f × f)(UZ) ∈ f [B], since τ is isoform.
But (f × f)(UZ) ⊆ (f ∗ × f ∗)(U) implies (f ∗ × f ∗)(U) ∈ τ ∗(f [B]), which
concludes the proof. ♦

4.9 Remark. As pointed out earlier, each preuniform convergence space
(X, JX) induces a corresponding b-convergence space (PX, τX) (see also
Ex. 2.2(iii)).

Now let us call a b-convergence space (BX , τ) saturated, if
(Sat) X ∈ BX .
Conversely, given a saturated b-convergence space (BX , Γ), we define the
underlying preuniform convergence as follows:

LΓ := Γ(X)

Moreover, we note that the b-convergence τX is equiform, which means
the following:
(e) B, B′ ∈ BX \ {∅} implies Γ(B) = Γ(B′).

4.10 Definition. We call a saturated and equiform b-convergence space
preuniform.

4.11 Theorem. The category PUCONV with preuniform conver-
gence spaces as objects and uniformly continuous maps between them
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as morphisms is isomorphic to the category pub-CONV of preuniform
b-convergence spaces and b-continuous functions.

Proof. This is immediately clear. ♦

4.12 Remark. Special cases of preuniform convergences are the so-called
principal ones; i.e., a preuniform convergence space (X, JX) is called a
principal preuniform convergence space, provided there is a filter U on
X × X such that JX := [U], where

[U] := {V ∈ FIL(X × X) | V ⊇ U}.

Now it is easy to verify how diagonal filters, especially semiuniformities,
quasiuniformities or uniformities, can be described by means of their
corresponding preuniform b-convergences, namely as the pointed ones.

4.13 Definition. A b-convergence τ on BX and the corresponding pair
(BX , τ) are called pointed, provided
(p) B ∈ BX \ {∅} implies τ(B) =

⋃

{ τ({x}) | x ∈ B }.

4.14 Remark. Hence, pointed b-convergences are of interest when
studying spaces dealing with “uniform aspects”. Moreover, we note that
pointed b-convergence spaces are necessarily isoform.

The considerations above allow us to consider further specializa-
tions, for instance by setting BX := {∅} ∪ { {x} | x ∈ X }. So in case of
having a b-convergence in BX , this leads us to a corresponding “general-
ized” convergence relation, and vice versa, so that the category GCONV

of generalized convergence spaces and related maps can be considered as
such an isomorphic one [9] with respect to Ex. 2.2(i), defining topolog-
ical spaces in special cases. Moreover, we note that the corresponding
b-convergence is necessarily pointed.

4.15 Theorem. The category pb-CONV, whose objects are the pointed
b-convergence spaces, is bicoreflective in ib-CONV.

Proof. Given an isoform b-convergence space (BX , τ), for each B ∈ BX

we set

τp(B) :=

{

{P (X × X)}, if B = ∅;

{U ∈ FIL(X × X) | ∃x ∈ B. U ∈ τ({x})} otherwise.

Hence (BX , τ p) is a pointed b-convergence space. Evidently, the axioms
(bC1) through (bC6) are satisfied. Now consider B ∈ BX \ {∅} and U ∈
∈ τp(B). Then we have U ∈ τ({x}) for some x ∈ B, hence U ∈ τ p({x}),
which shows U ∈

⋃

{ τ p({x}) | x ∈ B }.
Conversely, U ∈

⋃

{ τ p({x}) | x ∈ B } implies U ∈ τ p({x′}) for
some x′ ∈ B. Therefore we obtain U ∈ τ({x}), which shows U ∈ τ p(B).
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Moreover, the identity map 1X is b-continuous on (BX , τ p), i.e., U ∈
∈ τp(B), and without restriction B 6= ∅ implies U ∈ τ({x}) for some
x ∈ B. Since τ is isoform, U ∈ τ(B) results, which concludes this
verification.

Now let (BY, Γ) be a pointed b-convergence space and f : (BY , Γ) →
→ (BX , τ) a b-continuous function. We have to show that f : (BY , Γ) →
→ (BX , τ p) is again b-continuous. Without restriction let ∅ 6= B ∈
∈ BY . Then U ∈ Γ(B) implies the existence of some y ∈ B such that
U ∈ Γ({y}), since Γ is pointed. Hence (f × f)(U) ∈ τ p({f(y)}) by
hypothesis. Consequently, we get (f × f)(U) ∈ τ({f(y)}) ⊆ τ(f [B]). ♦

4.16 Remark. Since pb-CONV is bicoreflective in ib-CONV (see
Th. 4.15), it is again a topological category. Thus quotients and sums in
pb-CONV are formed as in b-CONV, whereas subspaces and products
arise from the corresponding structures in ib-CONV by applying the
corresponding bicoreflection.

4.17 Corollary. For an isoform b-convergence space (BX , τ) the b-
convergence τ ∗ is pointed iff τ is pointed.

Proof. B ∈ B∗ \ {∅} implies B ∈ BX or B = {∞}. In the latter case
τ ∗(B) = τ ∗({∞}) = {∞̇ × ∞̇} =

⋃

{ τ ∗({x}) | x ∈ {∞} = B }. In
the first case consider U∗ ∈ τ ∗(B), hence there exists U ∈ τ(B) with
U∗ ⊇ Ū. Because τ is pointed, U ∈ τ({x}) follows, which shows that
U∗ ∈ τ ∗({x}). Conversely, let τ ∗ be pointed. B ∈ BX \ {∅} and U ∈
∈ τ(B) imply Ū ∈ τ ∗(B), hence by hypothesis Ū ∈ τ ∗({x}) follows. Now
choose V ∈ τ({x}) with Ū ⊇ V. Then V ⊆ U, because V ∈ V implies
V = U ∪ (X∗ × {∞}) ∪ ({∞} × X∗) for some U ∈ U, which shows that
U ∈ τ({x}).

4.18 Theorem. pb-CONV is extensional.

Proof. Use the results obtained above.

In the case of non-symmetric Convenient Topology, we will fur-
ther check whether the category pb-CONV can serve as a topological
universe.

4.19 Theorem. For two pb-convergence spaces (BX , τX) and (BY , τY )
consider the set [BX , BY ]pb of b-continuous functions f : X −→ Y from
(BX , τX) to (BY , τY ). We define a b-convergence on the corresponding
B-set BY X

(see also the beginning of Sec. 3) by setting for each B∗ ∈
∈ BY X

\ {∅}:
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τ(B∗) :=
{

U∗ ∈ FIL([BX , BY ]pb×[BX, BY ]pb) | ∀B∈B\{∅} ∀U∈τX(B).

U∗(U) ∈ τY (B∗(B))
}

where U∗(U) denotes the filter generated by the set {U∗(U) | U∗ ∈ U∗ ∧
∧ U ∈ U }, with

U∗(U) := { (f1(x1), f2(x2)) | (f1, f2) ∈ U∗ ∧ (x1, x2) ∈ U }

and B∗(B) :=
{

f(b) | f ∈ B∗ ∧ b ∈ B
}

. Further we set

τ(∅) :=
{

P ([BX , BY ]pb × [BX , BY ]pb)
}

.

Then τ is the natural function space structure on [BX , BY ]pb in pb-

CONV.

Proof. By construction it only remains to prove the axioms (bc4), (bc6)
and (pb), respectively.

To (bc4): We have ḟ × ḟ ∈ τ({f}), since by hypothesis ḟ × ḟ(U) =
= (f × f)(U) ∈ τY ({f}(B)) = τY (f [B]).

To (bc6): The inclusion U∗(U) ⊆ V∗(U) is valid for every U∗, V∗ ∈
∈ FIL([BX , BY ]b× [BX , BY ]b) with U∗ ⊆ V∗ and each U ∈ τX(B) where
B ∈ BX .

To (pb): For B∗ ∈ BY X

\ {∅} consider U∗ ∈ τ(B∗) and choose f ∈
∈ B∗. Then B ∈ BX \ {∅} and U ∈ τX(B) imply U ∈ τX({x}) for some
x ∈ B, since τX is pointed. By hypothesis U∗(U) ∈ τY (B∗({x}) follows,
hence U∗(U) ∈ τY ({f(x)}) = τY ({f}({x})), because τY is pointed as well,
which yields U∗ ∈ τ({f}).

The evaluation map

e : (BX , τX) × ([BX , BY ]pb, τ)−→ (BY , τY )

is b-continuous, since the following equation
(e × e)(U × U∗) = U∗(U)

holds for each U ∈ τX(B) and U∗ ∈ τ(B∗), where B ∈ BX \ {∅} and
B∗ ∈ BY X

\ {∅}.
Moreover, finite products in pb-CONV can be described as follows:

(τX × τY )(B) :=
{

U ∈ FIL(X × X, Y × Y ) | ∃UX ∈ τX(pX [B])

∃UY ∈ τY (pY [B]).

U ⊇ UX × UY

}

where B 6= ∅ and pX , pY denote the corresponding projections.
Now, in fact, let U ∈ (τX × τ)(B) for some B ∈ BX×Y X

\ {∅} hence
U ∈ (τX × τ)({x, f}) for some (x, f) ∈ B, since τX × τ is pointed.
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U ⊇ UX × U∗ for some UX ∈ τX(pX [{(x, f)}]) and U∗ ∈
∈ τ(pY X [{(x, f)}]), hence (e × e)(UX × U∗) = U∗(UX) ∈ τY ({f}{x})
by definition of τ .

Consequently, we obtain
τY ({f}{x}) = τY ({f(x)}) = τY ({e(x, f)}) ⊆ τY (e[B])

since τY in particular is isoform.
Now, let (BZ , τZ) be a pointed b-convergence space and let f :

: (BX , τX) × (BZ , τZ)−→ (BY , τY ) be a b-continuous function. Then the
map f̂ : (BZ , τZ)−→ ([BX , BY ]pb, τ) defined by f̂(z)(x) := f(x, z) for
every x ∈ X, z ∈ Z, is again b-continuous (see (2) in Sec. 3).

Suppose V ∈ τZ(B̂) for some B̂ ∈ BZ \ {∅}. Then B̂ ∈ τZ(z) for
some z ∈ B̂. We aim to show that (f̂× f̂)(V) ∈ τ({f̂(z)}) holds, because
this implies (f̂ × f̂)(V) ∈ τ(f̂ [B̂]), since τ in particular is isoform.

So let B ∈ BX \ {∅} and U ∈ τX(B), hence U ∈ τX({x}) for some
x ∈ B. Consequently (f̂ × f̂)(V)(U) = (f × f)(U× V) ∈ τY (f [{(x, z)}])
follows, which shows that (f̂ × f̂)(V) ∈ τ({f̂(z)}({x}) holds, which im-
plies (f̂ × f̂)(V) ∈ τ({f̂(z)}). This concludes the proof. ♦

4.20 Corollary. pb-CONV is cartesian closed.

4.21 Theorem. pb-CONV is a topological universe.

Proof. Taking into account Rem. 4.16, Th. 4.19 and Th. 4.18, the claim
easily follows.

b-CONV

G-PSN SETCONV PUCONV

GCONV

PROX

STOP UNIF

TOP

OO

II
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

66nnnnnnn

OO OO ``BBBB
>>||||

OO>>||||
OO

``BBBBBBBBBBBB

OO>>||||||||||||

Figure 1. Relationships of the categories mentioned in this paper
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4.22 Remark. Since pb-CONV is bicoreflective in ib-CONV (see
Th. 4.15) and closed under formation of products in ib-CONV, pb-

CONV is again strong.

4.23 Theorem. pb-CONV is a strong topological universe.
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