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Abstract: Real linear spaces equipped with core, directional, Klee and finite
topologies are examined by cardinal functions such as density, cellularity, ex-
tent, character, weight and tightness. There are also stated the cardinality of
the family of open and regularly open sets. Moreover, it is shown that there
exists an open set G in the directional topology such that its interior in the
finite topology is empty and the complement of G in every finite dimensional
subspace is nowhere dense in the Euclidean topology.

1. Introduction and notation

We continue the research on four topologies undertaken in [7] and [8].
All these topologies are defined in real linear spaces. In this paper a lin-
ear space is meant as a real linear space of dimension at least 1. Usually
it is denoted by X and its dimension (i.e., the cardinality of its Hamel
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base) by dimX.
Topologies we investigate are denoted by τ0(X), τ1(X), τ2(X) and

τ3(X), or shortly by τ0, τ1, τ2 and τ3 if it is clear which a space X
is taken into consideration. Such sets as the interior, the closure and
the boundary of a set A in the topology τi, i = 0, 1, 2, 3, are denoted
by IntiA, CliA, FriA, resp. Analogous convention concerns, e.g., open
sets, compact sets, boundary sets, so we talk, e.g., about i-open sets,
i-compact sets, i-boundary sets with i ∈ {0, 1, 2, 3}. We put the index j
if the property at hand holds true for every one of three topologies τ1, τ2
and τ3. If the property holds also for the topology τ0, we put the general
index j into parentheses, so we have, e.g., (j)-open sets.

The topology τ0 has been introduced by Klee and Kakutani in [9]
and they named it a finite topology. It is defined as the strongest topol-
ogy such that in any finite dimensional space it induces the Euclidean
topology. Lelong in [17] showed that this topology is also the strongest
of all topologies defined on X such that for every y ∈ X the function fy,
where fy(x, r) = x + ry, is continuous on X × R, where R denotes the
real line equipped with Euclidean topology (in the next we always take
R with this topology). In [17] there are discussed generalizations of such
topologies, namely the topologies in linear spaces over fields satisfying
special conditions (the real space is a particular case of these spaces).
These topologies are used to make insight into subharmonic functions in
linear spaces and into so-called ϕ-topologies which are determined by a
family ϕ of functions.

Probably the most known topology among four topologies discussed
in this paper is the topology τ1, in [10] Klee called it a core topology. It
is the strongest topology such that it induces the Euclidean topology
on any line. The topology τ1 may be defined in various ways and we
later give some of them. This topology was investigated in [10], [11]
and [12], as well as in [14], [6], [15], [19] and in [13]. Moreover, in [13]
there is presented its application in optimization. Generalizations of
the core topology are given, e.g., in [20], [21], [22], [3], [4], [5] and [18].
These generalizations are mostly obtained in two ways, or the Euclidean
topology is not induced on all lines, or there is induced a topology which
is stronger than the Euclidean one. The combination of these both ways
is also dealt with. An interesting property of the core topology is that it
is the strongest topology in a real space such that the addition and the
multiplication are separately continuous. Moreover, the topology τ1 has
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this property that any directionally continuous function is continuous in
this topology (in this paper a function is called directionally continuous
if it is defined on X, assumes values in R, and its restriction to any line
is continuous in the Euclidean topology).

The topology determined by the family of all directionally contin-
uous functions (i.e., the weakest topology such that any directionally
continuous function is continuous in this topology) in [7] is called a di-

rectional topology. We denote it by τ2. In [7, p. 60] it is shown that if
dimX ≥ 2, then τ2 is essentially weaker then the core topology.

The topology τ3, in [7] called a Klee topology, has been first defined
in [12] for finite dimensional spaces. In [7] there is given its extension to
arbitrary real linear spaces, and this generalization is made via the topol-
ogy τ0. The definition of this topology will be given later. In [7] there
is proved that in spaces of dimension at least 2 the Klee topology is es-
sentially weaker than the directional topology. Roughly saying, the Klee
topology and the core topology approximate the directional topology.
We hope that the exploration of these topologies lets more completely
recognise the nature of the space of directionally continuous functions.

There are already known some properties of these topologies, e.g.,
their relation to the separation axioms [12], [6], [8], the structure of the
(j)-compact sets [19], [8], the structure of (j)-connected components of
open sets [8], the Baire property of 1-open sets [6]. There is also solved the
problem of the classification to sequential spaces and Frechet spaces [8].

The standard research of any topology includes the determination
of values of basic cardinal functions. In this paper we deal with following
cardinal functions (their names are followed by their denotations): the
density – d, the cellularity, or Souslin number – c, the hereditary cellu-
larity – hc, character – χ, the pseudocharacter – ψ, the weight – w, the
π-character – π-χ, the π-weight – π-w, the number of open sets (i.e., the
cardinality of collection of all open sets) – o, the number of regular open
sets – ro (in [2] a regular set is called an open domain), the extent – e,
the tightness – t. Some particular statements concerning the weight and
the density of topologies τ0 and τ1 are stated in [12] and [6]. Here we
complete them by results for topologies τ2 and τ3, and related to the di-
mension of space at hand. By fi(X) we denote the value of the cardinal
function f for the topological space (X, τi). If f1(X) = f2(X) = f3(X),
then, analogously as above, we shortly write fj(X). If f0(X) = fj(X),
we write f(j)(X).
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Before we will give the definition of the Klee topology we establish
some terminology and denotations used in this paper.

The sets of natural, rational, real and nonnegative numbers are
denoted by N,Q,R and R+, respectively. The cardinality of N is denoted
by ℵ0, and that of R by c. ℵ0 denotes also the initial number of this
cardinality. Analogous convention concerns c. Other ordinal numbers
are denoted by Greek letters.

The zero element of X is written as 0. The closed line segment
between different points a, b∈X is designated as 〈a, b〉= {λa+(1−λ)b :
: 0 ≤ λ ≤ 1}, analogous denotations are used for (semi-)open intervals,
e.g. 〈a, b) = 〈a, b〉 \ {b}, (a, b) = 〈a, b〉 \ {a, b}. For any sets S ⊂ R and
A,B ⊂ X and for any s ∈ S and x ∈ X we write SA = {sa : s ∈ S, a ∈
∈ A}, sA = {s}A, A + B = {a + b : a ∈ A, b ∈ B}, x + B = {x} + B.
For x ∈ X, r ∈ R, and for any family B of subsets in X we set x+ B =
= {x+B : B ∈ B}, rB = {rB : b ∈ B}.

We say that subspaces L and M of X are complementary each
to another in X if L + M = X and L ∩ M = {0}. Then we write
codimL = dimM .

A cone generated by the set A ⊂ X and with its vertex at the point
y ∈ X is the set Con (A, y) = {y + rx : r ≥ 0, x ∈ A}. If y = 0, then
we put ConA = Con (A, 0).

We write
∑

t∈T

at when almost all summing elements at are equal to 0.

The linear space spanned by the set A ⊂ X is defined to be the set

LinA =

{

∑

t∈T

αtut : αt ∈ R, ut ∈ A

}

.

The family of all functions defined on a set A and assuming values
in a set B is denoted by BA. The restriction of the function f to the
set A contained in the domain of f is denoted by f |A, and f−1(B) =
= {a : f(a) ∈ B} is the inverse-image of the function f assuming values
in the set B. The superposition f ◦ g of functions f and g is defined
by f ◦ g(x) = f (g(x)). A linear map f such that f ◦ f = f is called a
projection. If ℘ is a projection in X, ℘(X) = L and ℘−1(0) = M , we say
that the projection ℘ maps onto L and parallelly to M .

Sequences are denoted as (xn), (yn) etc. We write (xn) ⊂ A if
xn ∈ A for all n ∈ N.
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If fk’s, (k = 1, 2, . . . , n) are real functions then sup{fk : k =
= 1, 2, . . . , n} is the function ϕ defined by formula ϕ(x) = sup{fk(x) :
: k = 1, 2, . . . , n}.

The Euclidean norm of an element x ∈ Rn is denoted by ‖x‖, and
K(x, r) stands for the open ball centered at x and of radius r. ρA(x) is the
distance of the point x to the set A, i.e., ρA(x) = inf {‖x− a‖ : a ∈ A},
and ρ(A,B) = inf {‖x− a‖ : a ∈ A, b ∈ B} is the distance between sets
A and B, where A,B ⊂ Rn.

Let A be any subset in X. The core of A (with respect to X)
denoted by CorXA, or shortly CorA, is defined to be the subset of A
such that a ∈ CorA if and only if for every x ∈ X \ {a} there exists
an element y in the segment (a, x) such that 〈a, y〉 ⊂ A. Following [6]
we call a set A a core set if A = CorA. The family of all core sets is a
topology, and it is nothing else than the core topology.

The definition of the topology τ3 will be here given in terms of a
Klee pair. A pair (U, F ) of subsets U, F ⊂ X is called a Klee pair for a
point x ∈ X if

1◦ U is 0-open in X,
2◦ F ⊂ U ,
3◦ {x} ∪ F is 0-closed in X,
4◦ x ∈ Cor ({x} ∪ F ).

The Klee topology in X is the topology, the base of which is the family
consisted of all open sets in τ0(X) and all sets of the form {x}∪U , where
x ∈ X \ U , U is open in τ0(X) and there exists a subset F of X such
that (U, F ) is the Klee pair for x.

Topological notions are as they are defined in [2], however we allow
some exceptions. They affect, e.g., the notions of a neighbourhood. By
the neighbourhood of a point x we mean a set A such that x belongs to
its interior.

The family B of open sets in a topology is called a π-base for this
topology if for every open set G there exists a set B ∈ B such that B ⊂
⊂ G. If we also demand G to include the point x, then B is called a
π-base for the topology at the point x.

If L ⊂ Y and Y is a space equipped with the topology η, then the
topology induced in L by the topology η in Y is denoted by η|L. As in
[16, p. 270], for a set A ⊂ Y and an ordinal number α the derived set of
an order α is denoted by A(α). First ordinal number α such that the set
A(α) is perfect is called the rank of A and denoted by δ(A).
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From [7] and [8] let us here recall following facts:
Fact 1.1. The inclusions τ0 ⊂ τ3 ⊂ τ2 ⊂ τ1 take place in any X and

they turn into equalities only if dimX = 1.
Fact 1.2. If B is a Hamel base of X and

K =

{

x =
∑

b∈B

αbb : |αb| <
1

3

}

,

then for every b ∈ B the set Ub = b+K is an 0-open neighbourhood of b,
and Ub1 ∩ Ub2 = ∅ for b1 6= b2.

2. Density, cellularity and extent

Lemma 2.1. Let B be a Hamel base of X. B is 0-closed set and every

its element is 0-isolated of B.

Proof. For every finite dimension subspace L of X the set L ∩ B is
finite, so it is 0-closed. Therefore B is 0-closed. By Fact 1.2, the family
{K + b : b ∈ B} consists of 0-open and pairwise disjoint sets. Hence every
b ∈ B is the 0-isolated point of B. ♦

Theorem 2.1. There hold the equalities

d(j)(X) = c(j)(X) = sup{ℵ0, dimX}.

Proof. According to Cor. 1 in [6, p. 244], the space (X, τ1) is separable if
dimX ≤ ℵ0. Hence (X, τ(j)) is separable if dimX ≤ ℵ0. In the next let
dimX > ℵ0. Let {bt : t ∈ T} be a Hamel base of X and let S(X) be the
set of elements

∑

t∈T

αtbt, where for all t ∈ T the coefficients αt are rational

numbers. We will show that S(X) is 1-dense. Let x ∈ X \{0}. Therefore
there exists a finite set Tx ⊂ T such that x ∈ L = Lin{bt : t ∈ Tx}.
Hence x ∈ Cl1 (S(X) ∩ L) = L. Since L is 1-close, so L ⊂ Cl1 (S(X))
and, finally, x ∈ Cl1 (S(X)). It says that S(X) is 1-dense, in consequence
it is (j)-dense. This proves that d(j)(X) ≤ sup{ℵ0, dimX}.

Now we are going to find an inequality involving c(j)(X) and
sup{ℵ0, dimX}. In this aim let’s notice that in Rn there exists a count-
able family of open (and therefore (j)-open) and pairwise disjoint sets,
so c(j)(X) ≥ ℵ0. By Fact 1.2 there exits a family F of 0-open and pair-
wise disjoint sets such that cardF = dimX. It implies that c(j)(X) ≥
≥ sup{ℵ0, dimX}.

The relation c(j)(X) ≤ d(j)(X) given in [2, p. 86] completes the
proof. ♦
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Theorem 2.2. There hold hc0(X) = e0(X) = sup {ℵ0, dimX}.

Proof. It’s clear that e0(X) ≥ ℵ0 (it’s enough to see it for Nx, where
x 6= 0). Taking into account Fact 1.2 we have e0(X) ≥ sup (ℵ0, dimX).

We will show that hc0(X) ≤ sup (ℵ0, dimX). First we consider
the case dimX ≥ ℵ0. Let B = {bt : t ∈ T} be a Hamel base of X, and
T be the family of all finite subsets of T . Obviously, card T = cardT .
Let L = {Lin {bt : t ∈ S} : S ∈ T }. Let’s suppose that there exists a
set A ⊂ X such that cardA > dimX and every its element is isolated.
Because cardA > dimX = card T , so there exists L0 ∈ L such that
card (A ∩ L0) = cardA > ℵ0.

It is easy to state that hc0 (Rn) = ℵ0 for every n ∈ N. Indeed, if
this equality would not hold then there should exist an uncountable set
C ⊂ Rn such that every its point is isolated and r(x) = ρC\{x}(x) > 0 for
each x ∈ C. Taking Cn =

{

x : r(x) > 1
n

}

, n ∈ N, we see that there exists

n0 ∈ N such that cardCn0 = cardC. Hence the open balls K
(

x1,
1

2n0

)

and K
(

x2,
1

2n0

)

are disjoint for different x1, x2 ∈ Cn0 . Therefore there

exists the uncountable family of balls which are disjoint each with other.
In Rn it is impossible. This contradiction proves that hc0 (Rn) ≤ ℵ0.

In consequence, there does not exist a set A, the existence of which
was assumed above. This way it is proved that hc0(X) ≤ dimX if
dimX ≥ ℵ0. In conclusion, we have hc0(X) ≤ sup (ℵ0, dimX) and, in
view of the inequality e0(X) ≤ hc0(X), it proves the thesis. ♦

Theorem 2.3. For every space of dimension at least 2 there holds

ej(X) = cardX.

Proof. It’s obvious that in R2 any circle is j-closed and it is composed
of j-isolated points only. Hence ej(X) ≥ c. Let B = {bt : t ∈ T} be
a Hamel base of the space X. Lemma 2.1 states that the base B is 0-
closed in X and consisting exclusively of 0-isolated elements. Now, by
Fact 1.1, B is (j)-closed. Because of cardX = sup{c, dimX}, the proof
is finished. ♦

The inequality hcj(X) ≥ ej(X) and Th. 2.3 imply

Corollary 2.1. For every space X there holds hcj(X) = ej(X) =
= cardX.

Theorem 2.4. For every X there holds ro(j)(X) = sup{c, 2dimX}.

Proof. Let a set D be a (j)-dense in X and cardD = d(j)(X). Since
Cl(j)G = Cl(j)(D ∩ G) for every (j)-open set G, so ro(j)(X) ≤ 2d(j)(X) =



268 L. Jankowski and A. Marlewski

= 2sup{ℵ0,dimX} = sup{c, 2dimX}.
Since the topology τ0|X is Euclidean for X if dimX < ℵ0, so

ro0(X) = c. By Fact 1.1, it follows that ro(j)(X) ≥ c.
In the next dimX ≥ ℵ0 and let B be a Hamel base of X. First we

notice that the set K defined in Fact 1.2 is 0-regularly open. Therefore
for every set B0 ⊂ B the set

⋃

b∈B0

(b + K) is 0-regularly open. In conse-

quence, ro0(X) ≥ 2dimX and it implies that ro(j)(X) ≥ 2dimX . Therefore
ro(j)(X) ≥ sup

{

c, 2dimX
}

and this completes the proof. ♦

3. Character, weight

Theorem 3.1. For every space X there holds ψ(j)(X) = ℵ0.

Proof. It’s obvious that ψ(j)(x) = ψ(j)(0) for every x ∈ X. Let B be a
Hamel base of the space X. Then, for K defined as in Fact 1.2, we have
∞
⋂

n=1

1
n
K = {0}. It implies that ψ0(X) = ℵ0. The equality ψj(X) = ℵ0

follows from Fact 1.1. ♦

From Thms. 2.1 and 2.4 it follows

Corollary 3.1. For every X and for i = 0, 2, 3 there holds

wi(X) ≤ sup
{

c, 2dimX
}

.

Proof. By [7] τ0 is hereditary normal. By [8] τ2 and τ3 are totally regular.
Hence all these topologies are regular, so for i = 0, 2, 3 the family of all
i-regular open sets is the base of the topology τi. Therefore, by Th. 2.4,
we have wi(X) ≤ sup{c, 2dimX}. ♦

Now we will deal with the character and π-character of topological
spaces (X, τi), where i = 0, 1, 2, 3.

Since any translation, i.e. the transformation fy : X → X defined
by the formula fy(x) = x + y, where y ∈ X, is the homeomorphism
mapping the space

(

X, τ(j)
)

onto itself, so the family B is a (π-)base for
the topology τ(j) at the point 0 iff for each x ∈ X the family x + B is a
(π-)base for the topology τ(j) at the point x. Therefore (π-)character of
the space is equal to (π-)character at 0. Thanks to this property we will
deal with (π-)character at 0 only and in the next we will not mention it.
Lemma 3.1. Let L and M be complementary subspaces, ℘ be a projec-

tion onto L and parallel to M . Then ℘(G) is (j)-open in L for every

(j)-open set G.
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Proof. Let x ∈ M . Then G ∩ (x+ L) ∈ τ(j)(x+ L) and (x+ L) ∩M =
= {x}. Consequently, ℘(G ∩ (x + L)) = (G ∩ (x + L)) − x ∈ τ(j)(L).
Hence ℘(G) =

⋃

x∈M

℘(G ∩ (x+ L)) ∈ τ(j)(L). ♦

Fact 3.1. Let f be one of following cardinal functions χ(j), π-χ(j), w(j),

π-w(j). Then, for any subspace L of X, there holds f(L) ≤ f(X).

Proof. Since τ(j)|L = τ(j)(L), so for any subspace L of X there holds
f(L) ≤ f(X) if f = χ(j) or f = ω(j). In the next we deal with f = π-χ(j)

or f = π-ω(j) only.
In this proof we say that a family B is an appropriate base if it is

π-base for the topology τ(j) at the point 0 in case f = π-χ(j), and it is
π-base for the topology τ(j) in case f = π-ω(j).

Suppose that f(L) > f(X) for a subspace L of X. Then there
exists an appropriate base B for X such that cardB < f(L). Let ℘ be
a projection onto L and parallel to M . Therefore {℘(B) : B ∈ B} is
not an appropriate base for L. By Lemma 3.1 the set ℘(B) ∈ τ(j)(L)
for every B ∈ B, and B is not an appropriate base for L. Hence there
exists a (j)-open set G or (j)-neighbourhood G of 0, respectively, such
that ℘(B) \ G 6= ∅ for every B ∈ B. Hence B \ (G + M) 6= ∅ for every
B ∈ B. Taking into account that G + M ∈ τ(j) we conclude that B is
not an appropriate base. This contradiction proves the validity of the
inequality f(L) ≤ f(X). ♦

Lemma 3.2. The inequality π-χ(j)(X) > dimX holds true for every

space X.

Proof. The lemma is obvious in case when X is finite dimensional.
Therefore in the next we deal with X such that dimX ≥ ℵ0.

Suppose that π-χi(X) ≤ dimX for an index i ∈ {0, 1, 2, 3} and for
some space X. Then there exists π-base for the topology τi at 0; let this
π-base be {Vα : α < β}, where β ≤ dimX. We inductively define the set
B = {bα : α < β} such that b1 ∈ V1 \ {0} and bα ∈ Vα \ Lin {bγ : γ < α}
for 1 < α < β.

The set B is the Hamel base of the subspace L = LinB of X. Let
M = {0} in case L = X, and M be the complementary subspace to L in
X otherwise. Now, for any rα > 0 such that rαbα ∈ Bα, we denote

K =

{

∑

α<β

sαbα : |sα| < rα

}

+M.

It’s clear that K is 0-open. Hence K is (j)-open. Since Vα \K 6= ∅ for
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α < β, so {Vα : α < β} is not a π-base for the topology τi at 0, This
contradiction closes the proof. ♦

From Lemma 3.2 we immediately have

Corollary 3.2. The inequality χ(j)(X) > dimX holds for every space X.

Corollary 3.3. If dimX ≥ c, then w(j) = χ(j).

Proof. Let B be a base for the topology τ(j) at the point 0. Then
∑

x∈X

(x+B) is a base for the topology τ(j). Therefore w(j) ≤ χ(j) · cardX.

Since χ(j) > dimX ≥ c and, in accordance with the assumption, we have
cardX = dimX, so w(j) ≤ χ(j). It, in view of the obvious inequality
χ(j) ≤ w(j), gives the equality w(j) = χ(j). ♦

Corollary 3.4. For every space X there holds the equality π-χ(j)(X) =
= π-w(j)(X).

Proof. From Th. 2.1 we have d(j)(X) = sup{ℵ0, dimX}. In view of
the inequality π-w(j)(X) ≤ (π-χ(j)(X)) · d(j)(X) from Lemma 3.2 we
get π-w(j)(X) ≤ π-χ(j)(X). This, together with the obvious inequality
π-χ(j)(X) ≤ π-w(j)(X), gives the desired equality. ♦

Theorem 3.2. If dimX ≥ 2, then sup{c, dimX} < π-χ1(X) ≤ χ1(X) ≤
2sup{c,dimX}.

Proof. Let L be a subspace of X and dimL = 2. Let’s suppose that
B is a π-base for the topology τ1 at 0 such that cardB ≤ c. Then, by
Lemma 1 [6, p. 241] there exists a set M such that 0 /∈ M , cardM = c

and M ∩ B 6= ∅ for every B ∈ B and each line in X has no more than 2
points laying in M . Therefore G = X \M is 1-open and B \ G 6= ∅ for
every b ∈ B. In consequence, B is not a π-base for the topology τ1 at 0.
This contradiction implies that π-χ1(X) > c.

By Lemma 3.2 we have π-χ1(X) > dimX. This proves the left
inequality. It also completes the proof because π-χ1(X) ≤ χ1(X) and
χ1(X) ≤ 2card X . ♦

Corollary 3.5. For any space X there hold the equalities π-χ1(X) =
= π-w1(X) and χ1(X) = w1(X).

Proof. The first of above equalities is stated in Cor. 3.4.
The second equality is obvious in case dimX = 1, because τ1(X) is

the Euclidean topology and, consequently, π-χ1(X) = χ1(X) = w1(X) =
= π-w1(X) = ℵ0. If dimX ≥ 2, then by Th. 3.4 we have cardX <
< π-χ1(X). By the obvious inequality w1(X) ≤ cardX · χ1(X) we get
χ1(X) ≤ w1(X) ≤ χ1(X), so w1(X) = χ1(X). ♦
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As in [1, p. 115], the family D ⊂ NN is called a dominating family

if for each f ∈ NN there exists a function g ∈ D such that f(n) ≤ g(n)
for all but finitely many n ∈ N. If this inequality holds true for all
n ∈ N, then let us call the family D a strongly dominating family. As
in [1, p. 115], the minimal cardinality of a dominating family is denoted
by d. In [1, p. 119] it is shown that the cardinality of strongly dominating
family is also equal to d.
Lemma 3.3. Let {bn :n∈N} be a Hamel base of X. Let U be a 0-open
neighbourhood of the point 0. Then there exists the sequence (εn) of pos-

itive numbers such that V =
{

x =
∑

n∈N

αnbn : |αn| < εn for n ∈ N
}

⊂ U .

Proof. It is obvious that there exists ε1 > 0 such that 〈−ε1b1, ε1b1〉 ⊂ U∩
∩Rb1. Now we suppose that there exist positive εk, where k = 1, 2, . . . , n,

such that Vn =
{

x =
n
∑

k=1

αkbk : |αk| ≤ εk for k = 1, 2, . . . , n
}

⊂ U . We

will show that there exists εn+1 > 0 such that

Vn+1 = Vn + 〈−εn+1bn+1, εn+1bn+1〉 ⊂ U .

In the Euclidean topology in Ln+1 = Lin {bk : k = 1, 2, . . . , n + 1} the
set Vn is compact, Ln+1 \ U is closed and Vn ∩ (Ln+1 \ U) = ∅. Hence
r = ρ (Vn, Ln+1 \ V ) > 0. Taking εn+1 < r we have Vn+1 ⊂ U . By
induction, there exists the sequence (εn) of positive numbers such that

V =
{

x =
∑

n∈N

αnbn : |αn| ≤ εn for n ∈ N
}

⊂ U and it makes the proof

complete. ♦

Corollary 3.6. Let {bn : n ∈ N} be a Hamel base of the space X and

let G be a non-empty 0-open set. Then there exist m ∈ N, u(n) ∈ Q for

n = 1, 2, . . . , m and f ∈ NN such that
m

∑

n=1

u(n)bn +

{

∑

n∈N

αnbn : |αn| <
1

f(n)

}

⊂ G.

Proof. Since the set
{

∑

n∈N

αnbn : αn ∈ Q
}

is 0-dense, so there exist

m ∈ N and u(n) ∈ Q for n = 1, 2, . . . , m such that u =
m
∑

n=1

u(n)bn ∈ G.

From Lemma 3.3 there exists a sequence (εn) of positive numbers such

that
{

∑

n∈N

αnbn : |αn| < εn

}

⊂ G − u. Taking a function f ∈ NN such

that f(n) > 1
εn

and it easily implies the validity of the corollary. ♦

In particular, we have
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Corollary 3.7. If 0 ∈ G and G is 0-open set, then there exists f ∈ NN

such that
{

∑

n∈N

αnbn : |αn| <
1

f(n)

}

⊂ G.

Lemma 3.4. Let {bn : n ∈ N} be a Hamel base of X. For every f ∈ NN

we define the set Kf =
{

∑

n∈N

αnbn : |αn| <
1

f(n)

}

. Let V be a π-base

for the topology τ0 at 0. For every V ∈ V there are defined nV ∈ N,

uV ∈ QnV and fV ∈ NN such that GV =
nV
∑

n=1

u
(n)
V bn + KfV

⊂ V , where

u
(n)
V denotes the n-th coordinate of uV . Then the family {fV : V ∈ V}

contains a dominating family in NN.

Proof. Suppose that {fV : V ∈ V} does not contain a dominating family
in NN. Then there exists a function g ∈ NN such that for every V ∈ V
there exists kV ∈ N such that g(kV ) > fV (kV ) and kV > nV . It implies
that GV \Kg 6= ∅ for every V ∈ V. Since Kg is 0-open and contains 0, so
V is not a π-base for τ0 at 0. This contradiction shows that {fV : V ∈ V}
contains a dominating family in NN. ♦

Theorem 3.3. (1) If X is finite dimensional, then χ0(X) = π-χ0(X) =
= π-w0(X) = w0(X) = ℵ0.

(2) If dimX=ℵ0, then χ0(X)=π-χ0(X)=π-w0(X)=w0(X)= d.

(3) If dimX > ℵ0, then dimX < π-w0(X) = π-χ0(X) ≤ χ0(X) ≤
≤ w0(X) ≤ 2dimX and d ≤ π-w0(X) = π-χ0(X) ≤ χ0(X) ≤ w0(X).

Proof. (1) holds true because τ0(X) is Euclidean.
(2). Let {bn : n ∈ N} be a Hamel base of X and let B be π-base

for topology τ0. Let Um,u,f =
m
∑

n=1

u(n)bn +
{

∑

n∈N

αnbn : |αn| <
1

f(n)

}

, where

m ∈ N, u ∈ Qm, u(n) is the n-th coordinate of u and f ∈ NN. By Cor. 3.6
for each V ∈ B there exist mV ∈ N, uV ∈ QmV and fV ∈ NN such that
UmV ,uV ,fV

⊂ V . On behalf of Lemma 3.4 we have card {fV : V ∈ B} ≥ d.
Since mV ∈ N and uV ∈ QmV , so we easily conclude that cardB ≥ d,
hence π-w0(X) ≥ d. By Cor. 3.4 we have π-w0(X) = π-χ0(X) ≥ d.

Now let F be a strongly dominating family inNN such that cardF=d.

We put Vf =
{

∑

n∈N

αnbn : |αn| <
1

f(n)

}

for f ∈ F . Cor. 3.7 implies that

{Vf : f ∈ F} is a base for the topology τ0 at 0. Hence the family
{x + Vf : f ∈ F , x ∈ X} is the base for the topology τ0. Denote Ln =
= Lin {bk : k = 1, 2, . . . , n}, Mn = Lin {bk : k > n}, and for given
x ∈ X \ {0} let nx denote a natural number such that x ∈ Lnx

. Let’s
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take x =
∑

n∈N

αnbn ∈ X \ {0}, where an ∈ R. Then there exist rk, sk ∈ Q,

where k = 1, 2, . . . , nx, such that rk < αk < sk and Ux,f =
nx
∑

k=1

(rk, sk)bk ⊂

⊂ (x+ Vf) ∩ Lnx
. Therefore

(∗) x ∈ Ux,f + (Vf ∩Mnx
) ⊂ x+ Vf .

It’s clear that Ux,f + (Vf ∩Mnx
) ∈ τ0.

Let B0 = {Vf : f ∈ F} and

Bn =

{

n
∑

k=1

(rk, sk)bk + (Vf ∩Mn) : rk, sk ∈ Q, rk < sk, f ∈ F

}

for n ∈ N. It’s obvious that Bn ⊂ τ0 and cardBn = ℵ0 ·d = d for n ∈ N∪

∪ {0}. From the inclusion (∗) it follows that B =
∞
⋃

n=0

Bn is the base for

the topology τ0. Obviously, cardB = d and, consequently, w0(X) ≤ d.
Since π-χ0(X) ≤ χ0(X) ≤ w0(X), so π-χ0(X) = χ0(X) = w0(X) =

= d. The equality π-w0(X) = π-χ0(X) is stated in Cor. 3.4.
(3). The inequality dimX < π-χ0(X) is stated in Lemma 3.2.

The inequality χ0(X) ≤ 2dimX follows from Cor. 3.1. The inequality
π-χ0(X) ≥ d follows from the part (2) and Fact 3.1. On the behalf of
Cor. 3.4 and the obvious inequality π-χ0(X) ≤ χ0(X) ≤ w0(X) we see
the desired inequalities are satisfied. It closes the proof. ♦

Theorem 3.4. For every space X there hold the equalities π-χ3(X) =
= π-w3(X) = π-w0(X) = π-χ0(X).

Proof. Int 0(G) 6= ∅ for every nonempty set G ∈ τ3. Therefore, if B is
a π-base for the topology τ0, then it is also a π-base for τ3. It proves
that π-w3(X) ≤ π-w0(X). On the other side, if B is a π-base for the
topology τ3, then for every G ∈ τ3 there exists a set B ∈ B such that
B ⊂ G. Consequently, Int0B ⊂G and {Int0B : B ∈ B} is a π-base for
the topology τ0 and π-w0(X)≤π-w3(X). Therefore π-w0(X)=π-w3(X).

Applying Cor. 3.4 we get the equalities π-χ0(X) = π-w0(X) =
= π-w3(X) = π-χ3(X) and it makes the proof complete. ♦

In aim to determine the values of the character of the Klee topol-
ogy and the directional topology, and the value of π-character of τ2 we
introduce the notion of the isolated direction.

Definition 3.1. Let G be an j-open set and let x ∈ G. A semiline,
denoted by P , is called an isolated direction of the set G for the point x
if there are satisfied following conditions:
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1◦ the semiline P has its origin at x,

2◦ there exist a j-component U of G \ {x} and a point y ∈ P \ {x}
such that the segment (x, y〉 ⊂ U ,

3◦ there does not exist an element z ∈ U \ P̂ such that 〈x, z〉 ⊂ U ,
where P̂ is the line containing the semiline P .

Obviously, the set G \ {x} is j-open if G is j-open. Since every
two different j-components of G \ {x} are disjoint, so for the point x
the cardinality of all isolated directions is not greater than the cellularity
cj(X). So, by Th. 2.1, we immediately get

Corollary 3.8. In every j-open set there exist at most sup{ℵ0, dimX}
isolated directions.

Fact 3.2. For every semiline P ⊂ X there exists a 3-open set G such

that P is its isolated direction and Int0G = G\{x}, where x is the origin

point of P .

Proof. Let L be a subspace of X such that card (P ∩ L) ≤ 1 and
codimL = 1. Let {bt : t ∈ T} be a Hamel base of L. First we will show
that there exists a 3-open set satisfying the requirements concerning the
semiline P − x.

Let y ∈ (P − x) \ L and F =
{

αy +
∑

t∈T

αtbt :
∑

t∈T

α2
t = α4, α > 0

}

.

For every finite dimensional space M containing y the set (F ∪{0})∩M
is 0-closed. Hence F ∪ {0} is 0-closed and G1 \ {0} ⊂ Int0G1, where
G1 = X \ F . Since 0 ∈ Cl0F , so Int0G1 = G1 \ {0}.

Let E =
⋃

z∈F

(0, z〉 and L− = {αy + u : α ≤ 0, u ∈ L}. It is easy to

see the set H = (P − y) ∪ 1
2
E ∪ L− is 0-closed, H \ {0} ⊂ Int0G1 and

0 ∈ CorH . It says that the sets Int0G1 and H \ {0} form the Klee pair
for the point 0. In consequence, G1 is 3-open.

Moreover, if dimM = 2, then (F ∪ {0}) ∩M is composed of parts
of two parabolas. Every one of them is tangent to the semiline P − x
at the point 0. These parts lay on different sides of the line Ry. Hence
P − x is the isolated direction for the set G1 at the point 0. Since the
translation fx, where fx(v) = x + v, is a homeomorphism from (X, τ0)
onto the same space, so G1 + x is the set G mentioned in the thesis. ♦

Lemma 3.5. If 2 ≤ dimX ≤ ℵ0, P denotes the family of all semilines

in X beginning at the point 0, GP , where P ∈ P, denotes a 3-open set

such that P is its isolated direction at 0, then cardB ≥ c, where B is
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a family of 1-neighbourhoods of the point 0 such that for every P ∈ P
there exists B ∈ B and B ⊂ GP .

Proof. It’s clear that if B∈B and B⊂GP then P is the isolated direction
for Int1B. Since cardP=c and for every B ∈ B, the set Int1B may have
at most countable many isolated directions at 0, so cardB≥c. ♦

In virtue of the inclusions τ3 ⊂ τ2 ⊂ τ1, from Lemma 3.5 it imme-
diately follows

Corollary 3.9. If dimX ≥ 2 and B is a base for the topology τi at 0,
where i = 2, 3, then cardB ≥ c.

Theorem 3.5. For every space X there holds w3(X) = χ3(X). More-

over, (1) if dimX ≥ 2 and 2dim X ≤ c, then χ3(X) = c,

(2) if 2dimX > c, then dimX < χ3(X) and c ≤ χ3(X) ≤ 2dimX.

Proof. First we consider Case (1). By Cor. 3.9 we have χ3(X) ≥ c. By
Cor. 3.1 we have χ3(X) ≤ 2dimX ≤ c. Therefore (1) holds true.

The first inequality in (2) follows from Cor. 3.2. The left part of
the second inequality is implied by (1) and Fact 3.1, the right one follows
from Cor. 3.1.

Since χ3(X) ≥ sup{c, dimX} = cardX and w3(X) ≤ cardX ·
· χ3(X), so w3(X) ≤ χ3(X). By the obvious inequality w3(X) ≥ χ3(X)
we get the equality w3(X) = χ3(X). ♦

Lemma 3.6. Let L be a subspace of X, codimL = 1, b ∈ X \ L. Let f
be a directionally continuous function on L such that f(L) ⊂ 〈0, 1〉. Let

b1 ∈ L\ {0}, L′ = Lin {b, b1} and F = {αb+α1b1 : |α1| = α2, α > 0, α1 ∈
∈ R}. Then for a ∈ f−1(〈0, 1)) there exists a directionally continuous

function fa in L such that fa|L = f , fa(X) ⊂ 〈0, 1〉 and (X \ L) ∩
∩ f−1

a (1) = a+ F .

Proof. Since every translation, i.e., the function py : X → X defined for
every y ∈ X by the formula py(X) = x+ y, is a homeomorphism of the
space (X, τ2) onto itself, so without the loss of generality we can work
with a = 0. Let B = {bt : t ∈ T} be a Hamel base of the space L and let

1 ∈ T . Let’s denote ‖y‖ =
√

∑

t∈T

α2
t for y =

∑

t∈T

αtbt, where αt ∈ R, and

F1 = {αb+ y : α2 = ‖y‖, y ∈ L, α > 0}. It’s clear that F1 ∩ L
′ = F and

F1 ∪ {0} are 0-closed.
Now we define the function f1 on the set H = {αb + y : α2 ≥

≥ ‖y‖, y ∈ L, α > 0}. Accordingly to [7, p. 57], the space (X, τ0) is
hereditary normal. Since R+b\{0} and F are disjoint 0-closed sets in H ,
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so there exists in H a function 0-continuous, i.e., continuous in τ0, such
that f1(H) ⊂ 〈f(0), 1〉, f1(x) = 1 for x ∈ F1 and f1(x) = f(0) for x ∈ R+

+b\ {0}. We extend f1 to the set −R+b+L by the formula f1(αb+ y) =
= f(y), where α < 0. At last we extend it to the set (R+b+ L) \ (H ∪L)
by the formula f1(αb+ y) = β + (1 − β)f(y), where β = α‖y‖−1/2. One
can check that f1|P \ {0} is continuous if P is an arbitrary line in X
and P is equipped with the Euclidean topology. We will show that the
function f |P is also continuous on every line in X. The continuity is
obvious if P ⊂ L or P = Rb. If 0 ∈ P 6= Rb and P ∩ L = {0}, then
there exist α0 > 0 and z ∈ L \ {0} such that 〈0, α0b + z〉 ⊂ P ∩X \H .
In consequence, there exist a point y0 ∈ L \ {0} and a positive number θ
such that αb+ y ∈ P+ iff α = θ‖y‖ and y = ‖y‖y0, where y0 ∈ P+, P+ is
the semiline beginning at 0 and contained in the line P .

It is easy to check that lim
r→0+

f1(r(θb + y0)) = f(0). Therefore the

restriction f1|P is continuous. Hence f1 is directionally continuous.
In the space −R+b + L we define the function f1 by the formula

f2(αb + y) = exp(α), where α ≤ 0 and y ∈ L. For any x ∈ L′ we put
f2(x) = 1. For y ∈ Lin (B\{b1}) we set f2(αb+α1b1+y) = exp(−α‖y‖1),

where α > 0, α1 ∈ R and ‖y‖1 =
√

∑

t∈T\{1}

α2
t for y =

∑

t∈T\{1}

αtbt, where

αt ∈ R. The function f2 is 0-continuous in X and f−1
2 (1) = L ∪ L′.

The function f0 = f1f2 is directionally continuous. Moreover,
f0|L = f , f−1

0 (1) = f−1(1) ∪ F . It makes the proof complete. ♦

Lemma 3.7. Let {bt : t ∈ T} be a Hamel base of X, T – the family of all

finite subsets of T , the empty set excluded and let LS = Lin {bt : t ∈ S},
where S ∈ T . Then there exists a set A such that

(1) A∩LS is dense in the Euclidean topology in LS for every S ∈ T ,

(2) card (A ∩ LS) = ℵ0,

(3) if x, y∈A, x 6= y and x=
∑

t∈T

αtbt, y=
∑

t∈T

βtbt, where αt, βt∈R,

then for every t ∈ T the equality αt = βt implies αt = βt = 0.

Proof. Let Tn = {S ∈ T : cardS = n} and L′
S =

⋃

{LS′ : S ′  S},
where n ∈ N and S ∈ T . We inductively define the sets An, n ∈ N, such
that An ⊂ An+1 and for every n ∈ N there hold the conditions (1)–(3)
with A and T replaced by An and Tn, resp.

It’s obvious that for every S ∈ T1 there exists a set AS ⊂ LS which
is countable and dense in the Euclidean topology in LS. Hence it is clear
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that the set A1 =
⋃

S∈T1

AS fulfills the conditions (1)–(3) with A and T

replaced by A1 and T1, resp.
Now let’s suppose that (1)–(3) are satisfied with A and T replaced

by An and Tn, resp. Let’s take a set S ∈ Tn+1. For a set Z ⊂ LS we
define the set DS(Z) = Z+

⋃

s∈S

LS\{s}. It’s clear that if cardZ ≤ ℵ0 then

LS \DS(Z) is dense in LS in the Euclidean topology.
Let {Bn : n ∈ N} be a base of the Euclidean topology in LS.

Now we can inductively define the sequence (aS,n) ⊂ LS \ L′
S such that

aS,1 ∈ B1∩ (LS \DS(An ∩LS)) and aS,n+1 ∈ Bn+1∩ (LS \DS((An ∩LS)∪
∪ {a1, a2, . . . , an})). We apply this procedure for every S ∈ Tn+1. It’s
obvious that the set An+1 = An ∪ {aS,k : S ∈ Tn+1, k ∈ N} satisfies the
conditions (1)–(3) with A and T replaced by An+1 and Tn+1, resp.

This way we constructed the family {An : n ∈ N} of sets satisfying

appropriately conditions (1)–(3). In consequence, the set A =
∞
⋃

n=1

An

fulfills (1)–(3) and it closes the proof. ♦

Lemma 3.8. Let {bα : 1 ≤ α < γ} be a Hamel base of the space

X, where γ is the initial ordinal number for dimX ≥ ℵ0. Let’s denote

Lβ = Lin {bα : 1 ≤ α < β} for β < γ and Mα = Lin {b1, bα+1} for

1 ≤ α < γ. Let cα ∈ Mα \ Rb1 for every α such that 1 ≤ α ≤ γ. If A is

the set investigated in Lemma 3.7, then there exists a bijection µ : {α :
: 1 ≤ α < γ} → A \Rb1 for which there exists a directionally continuous

function f satisfying following conditions:

(1) f(X) ⊂ 〈0, 1〉,
(2) f−1(1) =

⋃

1≤α<γ

Fα, where Fα = aα + {rcα + sb1 : r2 = |s|, r > 0,

s ∈ R} and aα = µ(α).

Proof. Immediately from the definition of set A it follows that
card (A \ Rb1) = dimX.

Let ν be a bijection from {α : 1 ≤ α < γ} onto A \Rb1. Instead of ν(α)
we write a′α. We introduce I = {a′α : 1 ≤ α < γ}. We will construct a
transfinite sequence {aα : 1 ≤ α < γ} such that

(a) for every a ∈ A \ Rb1 there exists α < γ such that aα = a,
(b) a1, a2 ∈ L3 ∩ (A \ Rb1),
(c) aα ∈ Lα+1 ∩ (A \ Rb1), if 3 ≤ α < γ.

The condition (b) is fulfilled when a1, a2 are two first elements in the set
I ∩ L3. Let’s suppose that we already have aα with α ≤ β, 2 ≤ β < γ,
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satisfying (b) and (c). Since (A ∩ Lβ+1) \
⋃

δ<β

Lδ+1 6= ∅, so I \ {aα : 1 ≤

≤ α < β} 6= ∅ and we denote its first element belonging to Lβ+1 by aβ.
It’s clear that for every a′ ∈ I there exists α such that 1 ≤ α < γ and
a′ = aα. Therefore there exists a transfinite sequence {aα : 1 ≤ α < γ}
satisfying conditions (a)–(c).

Now, for every β, where 3 ≤ β ≤ γ, we define on Lβ a directionally
continuous function fβ such that

(α) fβ(Lβ) ⊂ 〈0, 1〉,

(β) fβ |Lα = fα for 3 ≤ α < β < γ,

(γ) f−1
β+1(1) \ Lβ = ∅ if β is a limit number and ℵ0 ≤ β < γ,

(δ) f−1
β+2(1) = Fβ for 2 ≤ β < γ, where Fβ is the set mentioned

in the thesis,

(ε) f−1
β (1) ∩ (A \ Rb1) = ∅ if 3 ≤ β < γ.

We set f3 = 0. Let’s suppose that for any β where 4 ≤ β < γ, and for
every ordinal number δ, where 3 ≤ δ < β, there is defined a directionally
continuous function fδ fulfilling the conditions (α)–(ε). Now, we define
a directionally continuous functions fβ satisfying (α)–(ε).

If β is a limit number, we put fβ(x) = fδ(x) for x ∈ Lδ. It’s clear
that fβ is directionally continuous and fulfills (α) and (β), so it fulfills
all conditions (α)–(ε).

If β = ϕ+ 1 and ϕ is a limit number, we construct the function gϕ

on Lβ such that gϕ(rbϕ + y) = fϕ(y), where y ∈ Lϕ. Moreover, we take
the function hϕ on Lβ such that hϕ(rbϕ + y) = exp(−r2), where y ∈ Lϕ.
It’s clear that both functions, gϕ and hϕ, are directionally continuous
on Lβ. Hence their product fβ = gϕhϕ is the directionally continuous
function. It’s easy to verity that fβ fulfills conditions (α)–(ε).

Now let β = ϕ + 2, where ϕ is an ordinal number (not necessarily
a limit one). From the condition (c) it follows that aϕ ∈ Lϕ+1 ⊂ Lβ .
It’s clear that now we can apply Lemma 3.6 with X, L, f , b, b1 and
a substituted by Lβ , Lϕ+1, fϕ+1, cϕ, b1 and aϕ, respectively. By this
Lemma there exists in Lβ a directionally continued function fβ satisfying
conditions (α), (β) and (δ). At last we will show that the condition (ε)
holds. Let aϕ =

∑

1≤α≤ϕ

θαbα, where θα ∈ R. Since aϕ ∈ A \ Rb1, so

there exists α0 such that 1 < α0 ≤ ϕ and θα0 6= 0. Let’s suppose that
there exists an element a ∈ (aϕ +Mϕ) ∩ (A \ Rb1) and a 6= aϕ Then
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a =
∑

1≤α≤ϕ+1

θ′αbα and θ′α = θα if 1 < α ≤ ϕ. Therefore θ′α0
= θα0 and

it is contradictory to the condition (3) in Lemma 3.7. Consequently,
(aϕ +Mϕ) ∩ (A \ Rb1) = {aϕ}. Taking into account that Fϕ ⊂ aϕ +Mϕ

and aϕ /∈ Fϕ we have that Fϕ ∩ (A \ Rb1) = ∅. It implies that f−1
β (1) ∩

∩ (A \ Lϕ+1) = ∅. Since the function fϕ+1 satisfies the condition (ε), so
fβ does it, too.

This way, by the transfinite induction, we proved that on X there
exists a directionally continued function f fulfilling the condition (1) and
such that f |Lα = fα for every 3 ≤ α < γ.

Since f3 = 0 and functions fα satisfy conditions (α)-(ε) for 3 ≤ α <
< γ, so f satisfies the condition (2). ♦

Corollary 3.10. If X is infinite dimensional, then there exists a 2-open
set G such that for any finite dimensional space L and every x ∈ X the

set (x+ L) \G is nowhere dense in the Euclidean topology in x+ L and

Int0G = ∅.

Proof. We keep denotations used in the proof of Lemma 3.8 and we
put G = f−1(〈0, 1)). From the condition (2) in Lemma 3.8 it follows
that each line P in X has at most 3 common points with the set f−1(1).
Hence P ∩ f−1(1) is nowhere dense in the Euclidean topology in P .

If 2 ≤ dimL < ℵ0, then for every x ∈ X there exist at most finitely
many ordinal numbers α1, α2, . . . , αn such that (x + L) ∩ Fαk

6= ∅ and
1 ≤ αk < γ for k = 1, 2, . . . , n. Therefore (x + L) ∩ f−1(1) is nowhere
dense in the Euclidean topology in x+ L.

From the definition of the set A it follows that A \ Rb1 is 0-dense
in X. Since for every a ∈ A\Rb1 there exists a two-dimensional subspace
L of X such that a is the accumulation point of the set f−1(1)∩ (a+L),
so A\Rb1 ⊂ Cl0(X\G). Since A\Rb1 is 0-dense in X, so Cl0(X\G) = X.
Hence Int0G = ∅. ♦

Theorem 3.6. For any space X there hold the equalities χ2(X) = ω2(X)
and π-χ2(X) = π-ω2(X), as well as

(1) χ2(X) = π-χ2(X) = ℵ0 if dimX = 1,

(2) π-χ2(X) = ℵ0 if dimX < ℵ0,

(3) χ2(X) = c if dimX ≥ 2 and 2dim X ≤ c,

(4) π-χ2(X) = c if dimX ≥ ℵ0 and 2dimX = c,

(5) χ2(X) ≥ π-χ2(X) ≥ c if 2dimX > c,

(6) dimX < π-χ2(X) ≤ χ2(X) ≤ 2dimX if dimX > c.
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Proof. First we deal with points (1)–(6).
(1) is obvious.
(2). Since (X, τ2) is regular for arbitrary X, so for every 2-open set

G and every x ∈ G there exists a 2-open set G′ such that x ∈ G′ and
Cl2G

′ ⊂ G. From Cor. 2 in [6, p. 245] it follows that there exists an open
set U in the Euclidean topology in X such that x ∈ Cl0U and U ⊂ Cl2G

′.
Therefore each base for the Euclidean topology in X is a π-base for the
topology τ2 at 0. Hence π-χ0(X) = ℵ0.

(3). From Cor. 3.9 it follows that χ2(X) ≥ c if dimX ≥ 2. If
2dimX ≤ c, then from Cor. 3.1 it follows that χ2(X) ≤ c. In consequence,
if dimX ≥ 2 and 2dimX ≤ c, then χ2(X) = c.

(4). Let {bn : n ∈ N} be a Hamel base of the space X and let A be
the set as in Lemma 3.7. Taking into account the definition of A it is easy
to state that there exists a sequence (an) ⊂ X such that {an : n ∈ N} =
= A\Rb1, a1 ∈ L2 and an ∈ Ln for n ≥ 2, where Ln = Lin {b1, b2, . . . , bn}.
Let cn,θ = θb1 + bn+2, where n ∈ N and θ ∈ R. Since the assumptions
of Lemma 3.8 are fulfilled, so for every θ ∈ R there exists a directionally
continuous function fθ defined in this Lemma for the sequences (an) and
(cn), where cn = cn,θ and n ∈ N. It’s easy to see that the semiline an +
+R+cn,θ is the isolated direction of the set f−1

θ (〈0, 1))∩Mn in the space
(Mn, τ2|Mn) where Mn = an + Lin {b1, bn+2}.

Let B be a π-base for the topology τ2(X) at 0. We will show that
for every B ∈ B the set ΘB = {θ ∈ R : B ⊂ Gθ}, where Gθ = f−1

θ (〈0, 1)),
is at most countable. Arguing as in part (2) we conclude that for every
Ln there exists a set U ⊂ B which is open in the Euclidean topology
in Ln. Since (A \ Rb1) ∩ U = ∅ for n = 1, so in the next we deal with
n ≥ 2. Therefore, for B ⊂ Gθ, and every a ∈ (A \ Rb1) ∩ U there exists
na ∈ N such that the semiline a + R+cna,θ is the isolated direction of
the set B ∩Mna

for the point a in the topology τ2|Mn2 . Let Θ∗
B denote

the set of all real θ such that a + R+cna,θ is the isolated direction of the
set B ∩Mna

for every point a ∈ U ∩ (A \ Rb1) in the topology τ2|Mna
.

Since B ∩Mna
has at most countable many isolated directions for every

point a, so card Θ∗
B ≤ ℵ0. Taking into account that ΘB ⊂ Θ∗

B we have
card ΘB ≤ ℵ0. Since card {Gθ : θ ∈ R} = c, so cardB ≥ c. Therefore
π-χ2(X) ≥ c.

If dimX ≥ ℵ0, then by Fact 3.1 it follows that π-χ2(x) ≥ c. If
2dimX ≤ c, so from (3) it follows that π-χ2(x) ≤ c. It proves (4).

(5) is the consequence of (4) and Fact 3.1.
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(6). The left inequality is stated in Cor. 3.2, the right one is implied
by Cor. 3.1 because 2dim X > c.

As points (1)–(6) are proved, we notice that the equality π-χ2(X) =
= π-w2(X) is stated by Cor. 3.4. The equality χ2(X) = w2(X) is obvious
if dimX = 1. If dimX > 1, from (2)–(6) we have χ2(X) ≥ cardX. Since
w2(X) ≤ χ2(X) · cardX = χ2(X), so w2(X) = χ2(X). ♦

Theorem 3.7. o0(X) = ro0(X) = sup{c, 2dimX}.

Proof. Since T0(X) is Euclidean topology if dimX < ℵ0, so o0(X) = c.
In the next we deal with X such that dimX ≥ ℵ0. Let B be a

base for the topology τ0 such that cardB = w0(X) and {bt : t ∈ T} be
a Hamel base of X. Let’s denote the family of all finite subsets of T
by T , and LS = Lin {bt : t ∈ S} for every S ∈ T . We take G ∈ τ0
and G ⊂ B such that

⋃

G = G. For arbitrary S ∈ T we can choose
a countable subfamily GS ⊂ G such that LS ∩

⋃

GS = LS ∩ G. Let
G′ =

⋃

S∈T

GS. Therefore
⋃

G′ = G. Since card T = dimX, so cardG ′ =

= dimX. Hence o0(X) ≤ w0(X)dim X . Accordingly with Th. 3.3 we have
o0(X) ≤ (dimX)dimX = 2dimX .

Since o0(X) ≥ ro0(X) so, by Th. 2.4, o0(X) ≥ 2dimX . From both
above inequalities we have o0(X) = 2dimX .

Reassuming, o0(X) = sup{c, 2dimX} forX of arbitrary dimension. ♦

Theorem 3.8. oj(X) = c if dimX = 1, and oj(X) = 2sup{c,dimX}

otherwise.

Proof. In case dimX = 1 the thesis is obvious. Investigating the case

dimX ≥ 2 we put S =
{

∑

t∈T

αtbt :
∑

t∈T

α2
t = 1 and αt ∈ R

}

, where {bt :

: t ∈ T} is a Hamel base of X. Obviously, S is 0-closed. Taking x ∈ S
we see that the set Gx = {x}∪ (X \S) is 3-open. Since cardS = cardX,
so o3(X) ≥ 2card X . At the same time o3(X) ≤ 2card X , hence o3(X) =
= 2sup{c,dimX}. Taking into account that τ3 ⊂ τ2 ⊂ τ1 and oj(X) ≤ 2card X

we get the thesis. ♦

4. Tightness

It’s obvious that there holds

Fact 4.1. For every X and every x ∈ X we have t(j)(x,X) = t(j)(0, X),
where ti(x,X) denotes the i-tightness of a point x in the topological space

(X, τi).
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Since the tightness of the sequential space is equal ℵ0 (see [2, p. 87])
and both τ0 and τ1 are sequential (it is proved in [8]), so there holds

Theorem 4.1. t0(X) = t1(X) = ℵ0.

We will show that the analogous result takes place for the Klee
topology. Before stating this result we give

Lemma 4.1. Let U ∈ τ0(X), x /∈ U and V = U ∪{x}. If V ∩L ∈ τ3(L)
for every finite dimensional subspace L of infinite dimensional space X
then V ∈ τ3(X).

Proof. Without the loss of generality we can work with x = 0. Let
L be an arbitrary finite dimensional subspace of X. Since V ∩ L ∈
∈ τ3|L, so there exists in Euclidean topology a closed set FL ⊂ L such
that (U ∩ L, FL \ {0}) is the Klee pair for the point 0. Let F ∗

L = {y ∈
∈ FL : 〈0, y〉 ⊂ FL}. For arbitrary sequence (zn) ⊂ F ∗

L, which is conver-
gent in the Euclidean topology to z0, the segment 〈0, z0〉 is contained in

Cl
∞
⋃

n=1

〈0, zn〉 ⊂ FL. It shows that z0 ∈ F ∗
L, so F ∗

L ∪ {0} is 0-closed.

Applying the transfinite induction we will show that there exists a
0-closed set F such that 0 ∈ CorF and F \ {0} ⊂ U .

In this aim let γ be an initial number for dimX and let {bα : 1 ≤
≤ α < γ} be a Hamel base of X. Let Xβ = Lin {bα : 1 ≤ α < β}, where
1 < β ≤ γ. We go to show that for every β such that 1 < β ≤ γ there
exists a 0-closed set Fβ satisfying three following conditions:

(1) Fβ \ {0} ⊂ Xβ ∩ U ,

(2) 0 ∈ CorXβ
Fβ,

(3) Fβ2 ∩Xβ1 = Fβ1 if β1 < β2 < γ.

For β = 2 we have Xβ = Rb1 and, obviously, there exists a set F1

satisfying conditions (1) and (2). Now let’s assume that for any β > 2
and for all β ′ < β there exist 0-closed sets Fβ′ which satisfy the conditions
(1)–(3). In the next we consider two cases: β is a limit number or it is
not.

If β is a limit number, we put Fβ =
⋃

β′<β

Fβ′ . It’s clear that Fβ

satisfies conditions (1) and (3). Moreover, Fβ is 0-closed and in aim to
prove it we take an arbitrary finite dimensional subspace L ⊂ Xβ . Then
there exists β0 < β such that L ⊂ Xβ0 . Hence L ∩ Fβ0 is 0-closed. In
virtue of the equalities L ∩ Fβ = L ∩ Xβ0 ∩ Fβ = L ∩ Fβ0 we see that
L ∩ Fβ is 0-closed. Since L was chosen arbitrarily, so Fβ is 0-closed.

For every y ∈ Xβ there exists β0 < β such that y ∈ Xβ0. By (2),
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0 ∈ CorXβ0
(Fβ ∩Xβ0) and, furthermore, there exists z ∈ Xβ such that

(0, z) ⊂ (0, y) ∩ Fβ . It implies that 0 ∈ CorXβ
Fβ . Hence Fβ satisfies

(1)–(3) in the case when β is a limit number.
Now we deal with the case when β is not a limit number. Let

β = β0 + 1.
First we will show that there exists a 0-closed set E satisfying con-

ditions (1)–(2) with Fβ = E. The existence of such a set is obvious if
β < ℵ0. In the opposite situation, β ≥ ℵ0, we have card β0 = cardβ. We
take an automorphism h of the space X such that

h({bα : α < β0}) = {bα : α ≤ β0}.

Then the set U ′ = h−1(U) is 0-open and (U ′ ∪ {0}) ∩ L ∈ τ3|L for
every finite dimensional L. By the inductive assumption, in Xβ0 there
exist 0-closed sets F ′

α, where 2 ≤ α ≤ β0, such that conditions (1)–(3)
are satisfied with U ′ instead of U and F ′

α replacing F ′
β. Therefore E =

= h
(

F ′
β0

)

is 0-closed in Xβ and, in consequence, it satisfies conditions
(1)–(2), where Fβ is replaced by E. We define

H =

{

x =
∑

β′<β

rβbβ : ∀
β′<β0

|rβ0| ≥ r2
β′

}

.

Since for every finite subset P ⊂ {β ′ : β ′ ≤ β} the intersection
Lin {bβ′ : β ′ ∈ P} ∩ H is closed in the Euclidean topology, so H is 0-
closed. It’s obvious that H ∩ Xβ0 = {0} and for every y ∈ Xβ \ Xβ0

there exists z such that (0, z) ⊂ (0, y) ∩H . The set Fβ = (E ∩H) ∪ Fβ0

is 0-closed and satisfies conditions (1)–(3). In this way we inductively
proved that there exists a 0-closed set F = Fγ such that 0 ∈ CorF and
F \ {0} ⊂ U . It means that (U, F \ {0}) is a Klee pair for the point 0.
This way we proved that V is 3-open. ♦

Let’s notice that Lemma 4.1 does not hold for an arbitrary V such
that V ∩L ∈ τ3(L) for every finite dimensional L ⊂ X. This is shown in
following

Example 4.1. Let {bn : n ∈ N} be a Hamel base of X. For m ∈
∈ N \ {1} we introduce Lm = Lin {b1, bm}, Xm = Lin {bn : n ≤ m},

F ∗
m = {r1b1 +rmbm : r2

m ≤ |r1| ≤ 4r2
m}, Fm = F ∗

m + 1
m
b1, G = X \

∞
⋃

m=2

Fm,

H = G∪
{

1
n+1

b1 : n ∈ N
}

and Gm = (Xm∩H)\
{

1
n+1

b1 : n = 1, 2, . . . , m−

− 1
}

. It is clear that Gm is open in Xm in the Euclidean topology. We
will show that H ∩Xm ∈ τ3(Xm). To do it we put J∗

k =
(

Rbk ∪
{

r1b1 +
+ rkbk : |r1| ≥ 5r2

k

})

+ Lin
{

bn : n = 2, 3, . . . , m and n 6= k
}

. It is easy to
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see that J∗
k is closed in the Euclidean topology in Xm and 0 ∈ CorXm

J∗
k

for every k = 2, 3, . . . , m. For k = 2, 3, . . . , m we put Jk =
(

J∗
k + 1

k
b1

)

∩
∩ Bk, where Bk denotes the closed ball in Xm with the center at 1

k
b1

and the radius 1
(k+1)2

. Now, we notice that Jk is closed in the Euclidean

topology and 1
k
b1 ∈ CorXm

Jk. Moreover, Jk \
{

1
k
b1

}

⊂ Gm ⊂ H ∩ Xm.
Since Gm ∈ τ0(Xm) and 1

k
b1 ∈ CorXm

Jk, so
(

Gm, Jk \
{

1
k
b1

})

is a Klee
pair for the point 1

k
b1 in the space Xm. It implies that H ∩Xm ∈ τ3|Xm.

In consequence, the set H ∩ L, where L is a finite dimensional space, is
3-open in L.

At last we show that H /∈ τ3. In this aim we notice that Int0H ⊂
⊂ G. Therefore

{

1
n+1

b1 : n ∈ N
}

∩ Int0H = ∅. Hence 0 /∈ CorG and,
consequently, 0 /∈ Int3H and it states that H /∈ τ3.

Now we can give the announced result which is analogous to Th. 4.1.

Theorem 4.2. t3(X) = ℵ0.

Proof. From Fact 4.1 it is enough to consider t3(0, X).
Let A ⊂ X \ {0}, 0 ∈ Cl3A and B = Cl0A. Since Cl3A ⊂ B, so

0 ∈ B.
Let’s consider the case when there exists x ∈ X \ {0} such that

there exists a sequence (xn) ⊂ B ∩Rx convergent to 0. Then, by Th. 4.1
and Fact 4.1, there exist countable sets An ⊂ A for n ∈ N such that

xn ∈ Cl0An. It implies that 0 ∈ Cl0

( ∞
⋃

n=1

An

)

and, consequently, there

does not exist an 0-open set G and an element z ∈ G \ {0} such that

G ∩
∞
⋃

n=1

An = ∅ and (0, z) ⊂ G ∩Rx. Therefore t3(0, A) = ℵ0.

In the next we investigate the case when for every x ∈ X \{0} there
exists rx > 0 such that (rxx, 0) ⊂ (X \ B) ∩ Rx. This investigation is
made below in two parts: I) if dimX < ℵ0 and II) if dimX ≥ ℵ0.

Part I (dimX < ℵ0). In this part the closure, the interior, the
convergence etc. are in the Euclidean topology, if any other topology is
not indicated. In the same manner we write, e.g., ClA and IntA instead
of Cl0A and Int0A, resp. Moreover, in this part of this proof we denote
x̂ = x

‖x‖
for x ∈ X \ {0}.

Let’s denote K = K(0, 1), K̄ = ClK and S = K̄\K. For a set H ⊂
⊂ X such that 0 ∈ Cor (H ∪ {0}) we define the function ωH : S → (0, 1〉
as follows: for every x ∈ S the segment (0, ωH(x)x) is a component of
IntRx(H ∩ (0, 1)x).

Now, for a certain ordinal number β we construct the families
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{Cα
n : n ∈ N, 1 ≤ α ≤ β}, {Dα : 1 ≤ α ≤ β} and {Eα : 1 ≤ α ≤

≤ β}, of sets such that

(a) C1
1 = D1 = S,

(b) Dα and Cα
n are non-empty sets, for α < β and every n ∈ N,

(c) Cα
n = Cl

{

x ∈ Cα
1 : ωX\B(x) ≤ 1

n

}

,

(d) Dα+1 =
∞
⋂

n=1

Cα
n ,

(e) Dα =
⋂

α′<α

Cα′

1 if α is a limit number,

(f) Dα = Cα
1 ∪ Eα, where the set Cα is perfect and the set Eα is

countable,

(g) for every α < β the set Cα+1
1 is boundary in the space (Cα

1 , τ),
where τ denotes the Euclidean topology in Cα

1 , except for the case
when α + 1 = β and the condition (h2) holds,

(h) there holds true one of following conditions

1) cardDβ ≤ ℵ0,

2) Int
Cβ′

1
Cβ

1 6= ∅ for β ′ + 1 = β,

3) Cβ
n = ∅ for any n ∈ N.

In the next the set Cα
1 is denoted by Cα.

Let’s assume that for an ordinal number α ≤ β and for every α′ < α
there are already constructed sets Cα′

, Dα′

, Eα′

, and Cα′

n with n ∈ N
satisfying conditions (a)–(g).

Now, according to (d) and (e), we construct the setDα. If cardDα ≤
≤ ℵ0 then α = β and we put Cα = Cα

n = ∅ for n ∈ N. In the opposite
case, since Dα is closed, so by Cantor–Bendixson Theorem [2, p. 84] we
have the decomposition Dα = Cα ∪Eα, where Cα is perfect in the space
(Dα, τ0|D

α) and cardEα ≤ ℵ0. If α = α1 + 1 and IntCα1Cα 6= ∅ then
α = β. If Cα is boundary in Cα1 or α is a limit number then the sets
Cα

n are constructed by (c). If there exists m ∈ N such that Cα
n = ∅ for

all n > m then we have α = β. But if Cα
n 6= ∅ for every n ∈ N then the

sets Cα, Dα and Cα
n are already constructed and α < β. This way we

inductively constructed the families of sets satisfying conditions (a)–(h)
for a certain ordinal number β.

Since every Cα is closed and there holds the implication α1 < α2 <
< β ⇒ Cα2 ⊂ Cα1 , so card {Cα : α < β} ≤ ℵ0 and this way card β ≤ ℵ0.

Now our proceeding is depending on which case of (h1)–(h3) takes
place.
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In case (h2), i.e., when IntCβ′Cβ 6= ∅ for β ′ + 1 = β, we take a set
U open in τ0|C

β′

and such that ClU ⊂ Cβ , and we take a subset W ⊂ U
such that cardW = ℵ0 and ClW = ClU .

Since Cβ ⊂
∞
⋂

n=1

Cβ′

n , so W ⊂ U ⊂ Cβ′

n for every n ∈ N. In conse-

quence, for every w ∈W there exists a sequence
(

z
(w)
n

)

⊂ (B ∩ConU) \

\ {0} such that z
(w)
n → 0 and ẑ

(w)
n → w. Let’s denote Z =

{

z
(w)
n : n ∈

∈ N, w ∈ W
}

. Since Z ⊂ B, so for every z ∈ Z there exists a sequence
(

x
(z)
n

)

⊂ A such that x
(z)
n → z. Now we define the set A∗ =

{

x
(z)
n : n ∈

∈ N, z ∈ Z
}

. Let’s assume that there exists a closed set F such that
0 ∈ CorF and F \ {0} ⊂ X \ClA∗. For every m ∈ N the set Fm =

{

y ∈
∈ ClU : 1

m
≤ ωF (y)

}

is closed because for every convergent sequence
(yn) ⊂ Fm, where m ∈ N, the segments

〈

1
m
yn, 0

〉

⊂ F ∩ 1
m
K̄ and it

implies that
〈

1
m
y0, 0

〉

⊂ Cl
∞
⋃

n=1

〈

1
m
yn, 0

〉

, so the segment
〈

1
m
y0, 0

〉

⊂ F ∩

∩ 1
m
K̄, where y0 denotes the limit of (yn). Since ClU is a Baire set of

the 2nd category in Cβ′

i.e., it is not a countable sum of nowhere dense

sets and
∞
⋃

n=1

Fn = ClU , so there exists n0 ∈ N such that IntCβ′Fn0 6= ∅.

Let V ∈ τ0|C
β′

and V ⊂ Fn0 . Since V ∩W 6= ∅, so 1
n
K ∩ConV ∩ Z 6= ∅

for every n ∈ N. Since 1
n
K ∩ConV ⊂ F for every n > n0, so F ∩Z 6= ∅.

Therefore (F \ {0}) ∩ ClA∗ 6= ∅, so there does not exists a closed set
F such that 0 ∈ CorF and (F \ {0}) ⊂ X \ ClA∗. It means that the
sets F \ {0} and X \ClA∗ do not form a Klee pair for 0. It follows that
there does not exist a 3-neighbourhood of 0 disjoint with the set A∗. It
implies that 0 ∈ Cl3A

∗. Reassuming, we proved for a set A there exists
its countable subset A∗ such that 0 ∈ Cl3A

∗.
Now we consider cases (h1) and (h3). First we define a function ϕ :

: S →
(

0, 2
3
〉 . The definition of ϕ will be separately given on non-empty

sets Eα and Cα
n \ Cα

n+1 for n ∈ N and α ≤ β.
Let δ(α) denote the rank of the set Dα. It is easy to see that

Eα =
⋃

0≤δ<δ(α)

Eα
δ , where Eα

δ = (Dα)(δ) \ (Dα)(δ+1) and (Dα)(γ) denotes

the derived set of the order γ of the set Dα. Taking into account that
Cα = (Dα)δ(α) we define the family

D =
{

(Dα)(δ) : α ≤ β and 0 ≤ δ ≤ δ(α)
}

∪
{

Cα
n : α ≤ β and n ∈ N\{1}

}

.

It’s easy to see that D is well-ordered by the inclusion ⊃. Obviously,
ρG1(x) ≤ ρG2(x) if G2 ⊂ G1 and ρG(x) > 0 if x /∈ G, where G1, G2,
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G ∈ D. For α ≤ β we define

ϕ(x) =

{

1
3
ρT (x)ωX\B(x) if T = (Dα)(δ+1) and x ∈ Eα

δ ,
1
5n
ρT (x) if T = Cα

n+1 and x ∈ Cα
n \ Cα

n+1.

As the function ϕ on the sphere S is defined, we will show that the set
F =

⋃

x∈S

〈

0, ϕ(x)x
〉

is closed. Let’s denote F ∗ = {ϕ(x)x : x ∈ S} and let’s

take the sequence (xn) ⊂ F ∗ convergent to a point x0.
If x0 = 0 then it’s obvious that x0 ∈ F . We will prove that x0 ∈ F

also when x0 6= 0. In this aim we denote by G1 the first set in the family
D such that x̂0 /∈ G1.

We will show that G =
⋂

{G′ ∈ D : G1 ⊂ G′} ∈ D. First let’s
notice that G1 6= Dα for α < β. Let’s suppose that it does not take
place. Then x̂0 ∈ Cα′

n for every α′ < α and n ∈ N. From conditions (d)
and (e) we have that x̂0 ∈ Dα, and it contradicts that G1 = Dα. If G1 =
= (Dα)(δ) for some α < β and 1 ≤ δ ≤ δ(α) then δ is not a limit number
(and one can check it as above), so δ = γ + 1 and G = (Dα)(γ). If G1 =
= Cα

n for some α < β and n ∈ N then or G = Cα
n−1 either G = (Dα)(δ(α))

depending on n is greater than or equal to 1, respectively.
The above constructed set G is the last set in D such that x̂0 ∈ G.
It is enough to examine two cases:
(i) x̂n /∈ G for all n ∈ N,
(ii) x̂n ∈ G for all n ∈ N.
In Case (i), by definition of the function ϕ and from the equality

‖xn‖ = ϕ (x̂n), we have ||xn|| < ̺G (x̂n). Taking into account that x̂0 ∈ G
we have ||xn|| → 0, so x0 = 0. It is in the contrary with the assumption
x0 6= 0, so Case (i) takes no place.

Now we consider Case (ii). Since the set G1 is closed, so if the
sequence (x̂n) ⊂ G is convergent to x̂0 then x̂n ∈ G \ G1 for all but
finitely many natural n. There are two possibilities: either x̂0 ∈ Eα

δ

or x̂0 ∈ Cα
m \ Cα

m+1 for any m ∈ N, where α ≤ β and 0 ≤ δ < δ(α).
Since Eα

δ is composed of isolated points, so if x̂0 ∈ Eα
δ , then x̂n = x̂0

for all but finitely many n ∈ N. Hence xn = x0 for all but finitely many
n ∈ N and, furthermore, x0 ∈ F . If x̂0 ∈ Cα

m \ Cα
m+1 then x̂n ∈ Cα

m \
\ Cα

m+1 for almost all m ∈ N. Since the function ρCα
m+1

is continuous, so
ρCα

m+1
(x̂n) → ρCα

m+1
(x̂0). From the definition of the function ϕ it fol-

lows that ϕ (x̂n) → ϕ (x̂0). Hence, since (xn) ⊂ F ∗, i.e., xn = ϕ(x̂n)x̂n

for every n ∈ N, and x̂n → x̂0, so the sequence (xn) converges to
x̂0 = ϕ(x̂0)x̂0 ∈ F ∗. This way we proved that x0 ∈ F if x̂0 ∈ Eα

δ
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(0 ≤ δ < δ(α) and α ≤ β) and also if x̂0 ∈ Cα
n \ Cα

n+1 (n ∈ N, α ≤
≤ β). In view of the equality

(∗)
⋃

1≤α≤β

⋃

0≤δ<δ(α)

Eα
δ ∪

⋃

1≤α≤β

∞
⋃

n=1

(

Cα
n \ Cα

n+1

)

= S

we have x0 ∈ F . This way we proved that F is closed. Now we prove
that F \ {0} ⊂ X \ B. If x ∈ Cα

n \ Cα
n+1, where 1 ≤ α ≤ β and n ∈ N,

then ωX\B(x) ≥ 1
n+1

. Therefore (0, ϕ(x)x) ⊂
(

0, 2
5n
x
)

⊂
(

0, ωX\B(x)x
)

and, consequently, (0, x〉 ∩ F ⊂ X \B. If x ∈ Eα
δ , where 1 ≤ α ≤ β and

0 ≤ δ < δ(α), then (0, ϕ(x)x) ⊂
(

0, ωX\B(x)x
)

and, as above (0, x〉 ∩
∩ F ⊂ X \ B. This way, in view of (∗), we have F \ {0} ⊂ X \ B.
From 0 ∈ CorF it follows that (X \ B,F \ {0}) is a Klee pair for the
point 0. Hence there exists a 3-neighbourhood of 0 disjoint with B \ {0}
and therefore so it is disjoint with A. Consequently, 0 /∈ Cl3A and it
contradicts the assumption that 0 ∈ Cl3A.

This statement completes the proof of Part I because we showed
that if 0 ∈ Cl3A then there exists a countable subset of A such that its
3-closure contains 0.

Part II (dimX ≥ ℵ0). Since 0 ∈ Cl3 (B \ {0}), so, by Lemma 4.1,
it follows that there exists a finite dimensional space L such that 0 ∈
∈ Cl3 ((B \ {0}) ∩ L).

Let B1 ⊂ L be a countable and 0-dense set in B ∩ L. Since B =
= Cl0A, so, by Th. 4.1, for every x ∈ B1 there exists a countable set
Ax ⊂ A such that x ∈ Cl0Ax. We put A0 =

⋃

x∈B1

Ax. Then B ∩ L =

= Cl0B1 ⊂ Cl0A0. Let’s assume that there exists V1 ∈ τ0 such that

(∗∗) V = {0} ∪ V1 ∈ τ3
and V1 ∩ A0 = ∅. Then V1 ∩ Cl0A0 = ∅, so V1 ∩ ((B ∩ L) \ {0}) =
= ∅ and, consequently, V ∩ ((B ∩ L) \ {0}) = ∅. It implies that 0 /∈
Cl3 ((B ∩ L) \ {0}). This way we obtained the contradiction. Therefore
V ∩ A0 6= ∅ for an arbitrary set V of the form (∗∗), where V1 ∈ τ0.
Since every 3-neighbourhood G of the point 0 contains the set V of the
form (∗∗), so G ∩ A0 6= ∅. In consequence, 0 ∈ Cl3A0 and therefore
t3(0, A) = ℵ0. ♦

What concerns the tightness of the directional topology, we obvi-
ously have ℵ0 ≤ t2(X) ≤ sup{c, dimX}. It could be interesting to get
the answer to the following

Question 4.1. Is it possible to determine more precisely the value t2(X)?
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topology, Zesz. Nauk. Polit.  Lódź., Matematyka 27 (1995), 129–138.

[22] WAGNER-BOJAKOWSKA, E. and WILCZYŃSKI, W.: Separation axioms for
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