Mathematica Pannonica

19/2 (2008), 261-290

FOUR TOPOLOGIES EXAMINED BY SOME CARDINAL FUNCTIONS

Leszek Jankowski

Instytut Matematyki, Politechnika Poznańska, ul. Piotrowo 3a, 60965 Poznań, Poland

Adam Marlewski

Instytut Matematyki, Politechnika Poznańska, ul. Piotrowo 3a, 60965 Poznań, Poland

Received: October 2007
MSC 2000: 46 A 19, 54 A 10
Keywords: Topology in real linear spaces, core topology, directional topology, Klee topology, finite topology.

Abstract

Real linear spaces equipped with core, directional, Klee and finite topologies are examined by cardinal functions such as density, cellularity, extent, character, weight and tightness. There are also stated the cardinality of the family of open and regularly open sets. Moreover, it is shown that there exists an open set G in the directional topology such that its interior in the finite topology is empty and the complement of G in every finite dimensional subspace is nowhere dense in the Euclidean topology.

1. Introduction and notation

We continue the research on four topologies undertaken in [7] and [8]. All these topologies are defined in real linear spaces. In this paper a linear space is meant as a real linear space of dimension at least 1. Usually it is denoted by X and its dimension (i.e., the cardinality of its Hamel

[^0]base) by $\operatorname{dim} X$.
Topologies we investigate are denoted by $\tau_{0}(X), \tau_{1}(X), \tau_{2}(X)$ and $\tau_{3}(X)$, or shortly by $\tau_{0}, \tau_{1}, \tau_{2}$ and τ_{3} if it is clear which a space X is taken into consideration. Such sets as the interior, the closure and the boundary of a set A in the topology $\tau_{i}, i=0,1,2,3$, are denoted by $\operatorname{Int}_{i} A, \mathrm{Cl}_{i} A, \mathrm{Fr}_{i} A$, resp. Analogous convention concerns, e.g., open sets, compact sets, boundary sets, so we talk, e.g., about i-open sets, i-compact sets, i-boundary sets with $i \in\{0,1,2,3\}$. We put the index j if the property at hand holds true for every one of three topologies τ_{1}, τ_{2} and τ_{3}. If the property holds also for the topology τ_{0}, we put the general index j into parentheses, so we have, e.g., (j)-open sets.

The topology τ_{0} has been introduced by Klee and Kakutani in [9] and they named it a finite topology. It is defined as the strongest topology such that in any finite dimensional space it induces the Euclidean topology. Lelong in [17] showed that this topology is also the strongest of all topologies defined on X such that for every $y \in X$ the function f_{y}, where $f_{y}(x, r)=x+r y$, is continuous on $X \times \mathbb{R}$, where \mathbb{R} denotes the real line equipped with Euclidean topology (in the next we always take \mathbb{R} with this topology). In [17] there are discussed generalizations of such topologies, namely the topologies in linear spaces over fields satisfying special conditions (the real space is a particular case of these spaces). These topologies are used to make insight into subharmonic functions in linear spaces and into so-called φ-topologies which are determined by a family φ of functions.

Probably the most known topology among four topologies discussed in this paper is the topology τ_{1}, in [10] Klee called it a core topology. It is the strongest topology such that it induces the Euclidean topology on any line. The topology τ_{1} may be defined in various ways and we later give some of them. This topology was investigated in [10], [11] and [12], as well as in [14], [6], [15], [19] and in [13]. Moreover, in [13] there is presented its application in optimization. Generalizations of the core topology are given, e.g., in [20], [21], [22], [3], [4], [5] and [18]. These generalizations are mostly obtained in two ways, or the Euclidean topology is not induced on all lines, or there is induced a topology which is stronger than the Euclidean one. The combination of these both ways is also dealt with. An interesting property of the core topology is that it is the strongest topology in a real space such that the addition and the multiplication are separately continuous. Moreover, the topology τ_{1} has
this property that any directionally continuous function is continuous in this topology (in this paper a function is called directionally continuous if it is defined on X, assumes values in \mathbb{R}, and its restriction to any line is continuous in the Euclidean topology).

The topology determined by the family of all directionally continuous functions (i.e., the weakest topology such that any directionally continuous function is continuous in this topology) in [7] is called a directional topology. We denote it by τ_{2}. In $[7, \mathrm{p} .60]$ it is shown that if $\operatorname{dim} X \geq 2$, then τ_{2} is essentially weaker then the core topology.

The topology τ_{3}, in [7] called a Klee topology, has been first defined in [12] for finite dimensional spaces. In [7] there is given its extension to arbitrary real linear spaces, and this generalization is made via the topology τ_{0}. The definition of this topology will be given later. In [7] there is proved that in spaces of dimension at least 2 the Klee topology is essentially weaker than the directional topology. Roughly saying, the Klee topology and the core topology approximate the directional topology. We hope that the exploration of these topologies lets more completely recognise the nature of the space of directionally continuous functions.

There are already known some properties of these topologies, e.g., their relation to the separation axioms [12], [6], [8], the structure of the (j)-compact sets [19], [8], the structure of (j)-connected components of open sets [8], the Baire property of 1-open sets [6]. There is also solved the problem of the classification to sequential spaces and Frechet spaces [8].

The standard research of any topology includes the determination of values of basic cardinal functions. In this paper we deal with following cardinal functions (their names are followed by their denotations): the density $-d$, the cellularity, or Souslin number $-c$, the hereditary cellularity $-h c$, character $-\chi$, the pseudocharacter $-\psi$, the weight $-w$, the π-character $-\pi-\chi$, the π-weight $-\pi$ - w, the number of open sets (i.e., the cardinality of collection of all open sets) - o, the number of regular open sets - ro (in [2] a regular set is called an open domain), the extent - e, the tightness $-t$. Some particular statements concerning the weight and the density of topologies τ_{0} and τ_{1} are stated in [12] and [6]. Here we complete them by results for topologies τ_{2} and τ_{3}, and related to the dimension of space at hand. By $f_{i}(X)$ we denote the value of the cardinal function f for the topological space $\left(X, \tau_{i}\right)$. If $f_{1}(X)=f_{2}(X)=f_{3}(X)$, then, analogously as above, we shortly write $f_{j}(X)$. If $f_{0}(X)=f_{j}(X)$, we write $f_{(j)}(X)$.

Before we will give the definition of the Klee topology we establish some terminology and denotations used in this paper.

The sets of natural, rational, real and nonnegative numbers are denoted by $\mathbb{N}, \mathbb{Q}, \mathbb{R}$ and \mathbb{R}_{+}, respectively. The cardinality of \mathbb{N} is denoted by \aleph_{0}, and that of \mathbb{R} by \mathfrak{c}. \aleph_{0} denotes also the initial number of this cardinality. Analogous convention concerns \mathfrak{c}. Other ordinal numbers are denoted by Greek letters.

The zero element of X is written as 0 . The closed line segment between different points $a, b \in X$ is designated as $\langle a, b\rangle=\{\lambda a+(1-\lambda) b$: $: 0 \leq \lambda \leq 1\}$, analogous denotations are used for (semi-)open intervals, e.g. $\langle a, b)=\langle a, b\rangle \backslash\{b\},(a, b)=\langle a, b\rangle \backslash\{a, b\}$. For any sets $S \subset \mathbb{R}$ and $A, B \subset X$ and for any $s \in S$ and $x \in X$ we write $S A=\{s a: s \in S, a \in$ $\in A\}, s A=\{s\} A, A+B=\{a+b: a \in A, b \in B\}, x+B=\{x\}+B$. For $x \in X, r \in \mathbb{R}$, and for any family \mathcal{B} of subsets in X we set $x+\mathcal{B}=$ $=\{x+B: B \in \mathcal{B}\}, r \mathcal{B}=\{r B: b \in \mathcal{B}\}$.

We say that subspaces L and M of X are complementary each to another in X if $L+M=X$ and $L \cap M=\{0\}$. Then we write $\operatorname{codim} L=\operatorname{dim} M$.

A cone generated by the set $A \subset X$ and with its vertex at the point $y \in X$ is the set $\operatorname{Con}(A, y)=\{y+r x: r \geq 0, x \in A\}$. If $y=0$, then we put $\operatorname{Con} A=\operatorname{Con}(A, 0)$.

We write $\sum_{t \in T} a_{t}$ when almost all summing elements a_{t} are equal to 0 .
The linear space spanned by the set $A \subset X$ is defined to be the set

$$
\operatorname{Lin} A=\left\{\sum_{t \in T} \alpha_{t} u_{t}: \alpha_{t} \in \mathbb{R}, u_{t} \in A\right\}
$$

The family of all functions defined on a set A and assuming values in a set B is denoted by B^{A}. The restriction of the function f to the set A contained in the domain of f is denoted by $f \mid A$, and $f^{-1}(B)=$ $=\{a: f(a) \in B\}$ is the inverse-image of the function f assuming values in the set B. The superposition $f \circ g$ of functions f and g is defined by $f \circ g(x)=f(g(x))$. A linear map f such that $f \circ f=f$ is called a projection. If \wp is a projection in $X, \wp(X)=L$ and $\wp^{-1}(0)=M$, we say that the projection \wp maps onto L and parallelly to M.

Sequences are denoted as $\left(x_{n}\right),\left(y_{n}\right)$ etc. We write $\left(x_{n}\right) \subset A$ if $x_{n} \in A$ for all $n \in \mathbb{N}$.

If f_{k} 's, $(k=1,2, \ldots, n)$ are real functions then $\sup \left\{f_{k}: k=\right.$ $=1,2, \ldots, n\}$ is the function φ defined by formula $\varphi(x)=\sup \left\{f_{k}(x)\right.$: $: k=1,2, \ldots, n\}$.

The Euclidean norm of an element $x \in \mathbb{R}^{n}$ is denoted by $\|x\|$, and $K(x, r)$ stands for the open ball centered at x and of radius $r . \rho_{A}(x)$ is the distance of the point x to the set A, i.e., $\rho_{A}(x)=\inf \{\|x-a\|: a \in A\}$, and $\rho(A, B)=\inf \{\|x-a\|: a \in A, b \in B\}$ is the distance between sets A and B, where $A, B \subset \mathbb{R}^{n}$.

Let A be any subset in X. The core of A (with respect to X) denoted by $\operatorname{Cor}_{X} A$, or shortly $\operatorname{Cor} A$, is defined to be the subset of A such that $a \in \operatorname{Cor} A$ if and only if for every $x \in X \backslash\{a\}$ there exists an element y in the segment (a, x) such that $\langle a, y\rangle \subset A$. Following [6] we call a set A a core set if $A=\operatorname{Cor} A$. The family of all core sets is a topology, and it is nothing else than the core topology.

The definition of the topology τ_{3} will be here given in terms of a Klee pair. A pair (U, F) of subsets $U, F \subset X$ is called a Klee pair for a point $x \in X$ if
$1^{\circ} U$ is 0 -open in X,
$2^{\circ} F \subset U$,
$3^{\circ}\{x\} \cup F$ is 0 -closed in X,
$4^{\circ} x \in \operatorname{Cor}(\{x\} \cup F)$.
The Klee topology in X is the topology, the base of which is the family consisted of all open sets in $\tau_{0}(X)$ and all sets of the form $\{x\} \cup U$, where $x \in X \backslash U, U$ is open in $\tau_{0}(X)$ and there exists a subset F of X such that (U, F) is the Klee pair for x.

Topological notions are as they are defined in [2], however we allow some exceptions. They affect, e.g., the notions of a neighbourhood. By the neighbourhood of a point x we mean a set A such that x belongs to its interior.

The family \mathcal{B} of open sets in a topology is called a π-base for this topology if for every open set G there exists a set $B \in \mathcal{B}$ such that $B \subset$ $\subset G$. If we also demand G to include the point x, then \mathcal{B} is called a π-base for the topology at the point x.

If $L \subset Y$ and Y is a space equipped with the topology η, then the topology induced in L by the topology η in Y is denoted by $\eta \mid L$. As in [16, p. 270], for a set $A \subset Y$ and an ordinal number α the derived set of an order α is denoted by $A^{(\alpha)}$. First ordinal number α such that the set $A^{(\alpha)}$ is perfect is called the rank of A and denoted by $\delta(A)$.

From [7] and [8] let us here recall following facts:
Fact 1.1. The inclusions $\tau_{0} \subset \tau_{3} \subset \tau_{2} \subset \tau_{1}$ take place in any X and they turn into equalities only if $\operatorname{dim} X=1$.
Fact 1.2. If B is a Hamel base of X and

$$
K=\left\{x=\sum_{b \in B} \alpha_{b} b:\left|\alpha_{b}\right|<\frac{1}{3}\right\}
$$

then for every $b \in B$ the set $U_{b}=b+K$ is an 0-open neighbourhood of b, and $U_{b_{1}} \cap U_{b_{2}}=\emptyset$ for $b_{1} \neq b_{2}$.

2. Density, cellularity and extent

Lemma 2.1. Let B be a Hamel base of X. B is 0 -closed set and every its element is 0 -isolated of B.
Proof. For every finite dimension subspace L of X the set $L \cap B$ is finite, so it is 0 -closed. Therefore B is 0 -closed. By Fact 1.2, the family $\{K+b: b \in B\}$ consists of 0 -open and pairwise disjoint sets. Hence every $b \in B$ is the 0 -isolated point of $B . \diamond$
Theorem 2.1. There hold the equalities

$$
d_{(j)}(X)=c_{(j)}(X)=\sup \left\{\aleph_{0}, \operatorname{dim} X\right\}
$$

Proof. According to Cor. 1 in [6, p. 244], the space $\left(X, \tau_{1}\right)$ is separable if $\operatorname{dim} X \leq \aleph_{0}$. Hence $\left(X, \tau_{(j)}\right)$ is separable if $\operatorname{dim} X \leq \aleph_{0}$. In the next let $\operatorname{dim} X>\aleph_{0}$. Let $\left\{b_{t}: t \in T\right\}$ be a Hamel base of X and let $S(X)$ be the set of elements $\sum_{t \in T} \alpha_{t} b_{t}$, where for all $t \in T$ the coefficients α_{t} are rational numbers. We will show that $S(X)$ is 1-dense. Let $x \in X \backslash\{0\}$. Therefore there exists a finite set $T_{x} \subset \mathcal{T}$ such that $x \in L=\operatorname{Lin}\left\{b_{t}: t \in T_{x}\right\}$. Hence $x \in \mathrm{Cl}_{1}(S(X) \cap L)=L$. Since L is 1-close, so $L \subset \mathrm{Cl}_{1}(S(X))$ and, finally, $x \in \mathrm{Cl}_{1}(S(X))$. It says that $S(X)$ is 1-dense, in consequence it is (j)-dense. This proves that $d_{(j)}(X) \leq \sup \left\{\aleph_{0}, \operatorname{dim} X\right\}$.

Now we are going to find an inequality involving $c_{(j)}(X)$ and $\sup \left\{\aleph_{0}, \operatorname{dim} X\right\}$. In this aim let's notice that in \mathbb{R}^{n} there exists a countable family of open (and therefore (j)-open) and pairwise disjoint sets, so $c_{(j)}(X) \geq \aleph_{0}$. By Fact 1.2 there exits a family \mathcal{F} of 0 -open and pairwise disjoint sets such that $\operatorname{card} \mathcal{F}=\operatorname{dim} X$. It implies that $c_{(j)}(X) \geq$ $\geq \sup \left\{\aleph_{0}, \operatorname{dim} X\right\}$.

The relation $c_{(j)}(X) \leq d_{(j)}(X)$ given in [2, p. 86] completes the proof. \diamond

Theorem 2.2. There hold $h c_{0}(X)=e_{0}(X)=\sup \left\{\aleph_{0}, \operatorname{dim} X\right\}$.
Proof. It's clear that $e_{0}(X) \geq \aleph_{0}$ (it's enough to see it for $\mathbb{N} x$, where $x \neq 0)$. Taking into account Fact 1.2 we have $e_{0}(X) \geq \sup \left(\aleph_{0}, \operatorname{dim} X\right)$.

We will show that $h c_{0}(X) \leq \sup \left(\aleph_{0}, \operatorname{dim} X\right)$. First we consider the case $\operatorname{dim} X \geq \aleph_{0}$. Let $B=\left\{b_{t}: t \in T\right\}$ be a Hamel base of X, and \mathcal{T} be the family of all finite subsets of T. Obviously, $\operatorname{card} \mathcal{T}=\operatorname{card} T$. Let $\mathcal{L}=\left\{\operatorname{Lin}\left\{b_{t}: t \in S\right\}: S \in \mathcal{T}\right\}$. Let's suppose that there exists a set $A \subset X$ such that card $A>\operatorname{dim} X$ and every its element is isolated. Because $\operatorname{card} A>\operatorname{dim} X=\operatorname{card} \mathcal{T}$, so there exists $L_{0} \in \mathcal{L}$ such that $\operatorname{card}\left(A \cap L_{0}\right)=\operatorname{card} A>\aleph_{0}$.

It is easy to state that $h c_{0}\left(\mathbb{R}^{n}\right)=\aleph_{0}$ for every $n \in \mathbb{N}$. Indeed, if this equality would not hold then there should exist an uncountable set $C \subset \mathbb{R}^{n}$ such that every its point is isolated and $r(x)=\rho_{C \backslash\{x\}}(x)>0$ for each $x \in C$. Taking $C_{n}=\left\{x: r(x)>\frac{1}{n}\right\}, n \in \mathbb{N}$, we see that there exists $n_{0} \in \mathbb{N}$ such that $\operatorname{card} C_{n_{0}}=\operatorname{card} C$. Hence the open balls $K\left(x_{1}, \frac{1}{2 n_{0}}\right)$ and $K\left(x_{2}, \frac{1}{2 n_{0}}\right)$ are disjoint for different $x_{1}, x_{2} \in C_{n_{0}}$. Therefore there exists the uncountable family of balls which are disjoint each with other. In \mathbb{R}^{n} it is impossible. This contradiction proves that $h c_{0}\left(\mathbb{R}^{n}\right) \leq \aleph_{0}$.

In consequence, there does not exist a set A, the existence of which was assumed above. This way it is proved that $h c_{0}(X) \leq \operatorname{dim} X$ if $\operatorname{dim} X \geq \aleph_{0}$. In conclusion, we have $h c_{0}(X) \leq \sup \left(\aleph_{0}, \operatorname{dim} X\right)$ and, in view of the inequality $e_{0}(X) \leq h c_{0}(X)$, it proves the thesis. \diamond
Theorem 2.3. For every space of dimension at least 2 there holds $e_{j}(X)=\operatorname{card} X$.
Proof. It's obvious that in \mathbb{R}^{2} any circle is j-closed and it is composed of j-isolated points only. Hence $e_{j}(X) \geq \mathfrak{c}$. Let $B=\left\{b_{t}: t \in T\right\}$ be a Hamel base of the space X. Lemma 2.1 states that the base B is 0 closed in X and consisting exclusively of 0 -isolated elements. Now, by Fact 1.1, B is (j)-closed. Because of $\operatorname{card} X=\sup \{\mathfrak{c}, \operatorname{dim} X\}$, the proof is finished. \diamond

The inequality $h c_{j}(X) \geq e_{j}(X)$ and Th. 2.3 imply
Corollary 2.1. For every space X there holds $h c_{j}(X)=e_{j}(X)=$ $=\operatorname{card} X$.
Theorem 2.4. For every X there holds $\operatorname{ro}_{(j)}(X)=\sup \left\{\mathfrak{c}, 2^{\operatorname{dim} X}\right\}$.
Proof. Let a set D be a (j)-dense in X and card $D=d_{(j)}(X)$. Since $\mathrm{Cl}_{(j)} G=\mathrm{Cl}_{(j)}(D \cap G)$ for every (j)-open set G, so $\operatorname{ro}_{(j)}(X) \leq 2^{d_{(j)}(X)}=$
$=2^{\sup \left\{\aleph_{0}, \operatorname{dim} X\right\}}=\sup \left\{\mathfrak{c}, 2^{\operatorname{dim} X}\right\}$.
Since the topology $\tau_{0} \mid X$ is Euclidean for X if $\operatorname{dim} X<\aleph_{0}$, so $r o_{0}(X)=\mathfrak{c}$. By Fact 1.1, it follows that $r_{(j)}(X) \geq \mathfrak{c}$.

In the next $\operatorname{dim} X \geq \aleph_{0}$ and let B be a Hamel base of X. First we notice that the set K defined in Fact 1.2 is 0-regularly open. Therefore for every set $B_{0} \subset B$ the set $\bigcup_{b \in B_{0}}(b+K)$ is 0-regularly open. In consequence, $r o_{0}(X) \geq 2^{\operatorname{dim} X}$ and it implies that $r o_{(j)}(X) \geq 2^{\operatorname{dim} X}$. Therefore $r o_{(j)}(X) \geq \sup \left\{\mathfrak{c}, 2^{\operatorname{dim} X}\right\}$ and this completes the proof. \diamond

3. Character, weight

Theorem 3.1. For every space X there holds $\psi_{(j)}(X)=\aleph_{0}$.
Proof. It's obvious that $\psi_{(j)}(x)=\psi_{(j)}(0)$ for every $x \in X$. Let B be a Hamel base of the space X. Then, for K defined as in Fact 1.2, we have $\bigcap_{n=1}^{\infty} \frac{1}{n} K=\{0\}$. It implies that $\psi_{0}(X)=\aleph_{0}$. The equality $\psi_{j}(X)=\aleph_{0}$ follows from Fact 1.1. \diamond

From Thms. 2.1 and 2.4 it follows
Corollary 3.1. For every X and for $i=0,2,3$ there holds

$$
w_{i}(X) \leq \sup \left\{\mathfrak{c}, 2^{\operatorname{dim} X}\right\}
$$

Proof. By [7] τ_{0} is hereditary normal. By $[8] \tau_{2}$ and τ_{3} are totally regular. Hence all these topologies are regular, so for $i=0,2,3$ the family of all i-regular open sets is the base of the topology τ_{i}. Therefore, by Th. 2.4, we have $w_{i}(X) \leq \sup \left\{\mathfrak{c}, 2^{\operatorname{dim} X}\right\}$. \diamond

Now we will deal with the character and π-character of topological spaces $\left(X, \tau_{i}\right)$, where $i=0,1,2,3$.

Since any translation, i.e. the transformation $f_{y}: X \rightarrow X$ defined by the formula $f_{y}(x)=x+y$, where $y \in X$, is the homeomorphism mapping the space $\left(X, \tau_{(j)}\right)$ onto itself, so the family \mathcal{B} is a $(\pi-)$ base for the topology $\tau_{(j)}$ at the point 0 iff for each $x \in X$ the family $x+\mathcal{B}$ is a $(\pi-)$ base for the topology $\tau_{(j)}$ at the point x. Therefore $(\pi$-)character of the space is equal to $(\pi$ - $)$ character at 0 . Thanks to this property we will deal with $(\pi$-)character at 0 only and in the next we will not mention it. Lemma 3.1. Let L and M be complementary subspaces, \wp be a projection onto L and parallel to M. Then $\wp(G)$ is (j)-open in L for every (j)-open set G.

Proof. Let $x \in M$. Then $G \cap(x+L) \in \tau_{(j)}(x+L)$ and $(x+L) \cap M=$ $=\{x\}$. Consequently, $\wp(G \cap(x+L))=(G \cap(x+L))-x \in \tau_{(j)}(L)$. Hence $\wp(G)=\bigcup_{x \in M} \wp(G \cap(x+L)) \in \tau_{(j)}(L)$. \diamond
Fact 3.1. Let f be one of following cardinal functions $\chi_{(j)}, \pi-\chi_{(j)}, w_{(j)}$, π - $w_{(j)}$. Then, for any subspace L of X, there holds $f(L) \leq f(X)$.
Proof. Since $\tau_{(j)} \mid L=\tau_{(j)}(L)$, so for any subspace L of X there holds $f(L) \leq f(X)$ if $f=\chi_{(j)}$ or $f=\omega_{(j)}$. In the next we deal with $f=\pi-\chi_{(j)}$ or $f=\pi-\omega_{(j)}$ only.

In this proof we say that a family \mathcal{B} is an appropriate base if it is π-base for the topology $\tau_{(j)}$ at the point 0 in case $f=\pi-\chi_{(j)}$, and it is π-base for the topology $\tau_{(j)}$ in case $f=\pi$ - $\omega_{(j)}$.

Suppose that $f(L)>f(X)$ for a subspace L of X. Then there exists an appropriate base \mathcal{B} for X such that card $\mathcal{B}<f(L)$. Let \wp be a projection onto L and parallel to M. Therefore $\{\wp(B): B \in \mathcal{B}\}$ is not an appropriate base for L. By Lemma 3.1 the set $\wp(B) \in \tau_{(j)}(L)$ for every $B \in \mathcal{B}$, and \mathcal{B} is not an appropriate base for L. Hence there exists a (j)-open set G or (j)-neighbourhood G of 0 , respectively, such that $\wp(B) \backslash G \neq \emptyset$ for every $B \in \mathcal{B}$. Hence $B \backslash(G+M) \neq \emptyset$ for every $B \in \mathcal{B}$. Taking into account that $G+M \in \tau_{(j)}$ we conclude that \mathcal{B} is not an appropriate base. This contradiction proves the validity of the inequality $f(L) \leq f(X)$. \diamond
Lemma 3.2. The inequality $\pi-\chi_{(j)}(X)>\operatorname{dim} X$ holds true for every space X.
Proof. The lemma is obvious in case when X is finite dimensional. Therefore in the next we deal with X such that $\operatorname{dim} X \geq \aleph_{0}$.

Suppose that $\pi-\chi_{i}(X) \leq \operatorname{dim} X$ for an index $i \in\{0,1,2,3\}$ and for some space X. Then there exists π-base for the topology τ_{i} at 0 ; let this π-base be $\left\{V_{\alpha}: \alpha<\beta\right\}$, where $\beta \leq \operatorname{dim} X$. We inductively define the set $B=\left\{b_{\alpha}: \alpha<\beta\right\}$ such that $b_{1} \in V_{1} \backslash\{0\}$ and $b_{\alpha} \in V_{\alpha} \backslash \operatorname{Lin}\left\{b_{\gamma}: \gamma<\alpha\right\}$ for $1<\alpha<\beta$.

The set B is the Hamel base of the subspace $L=\operatorname{Lin} B$ of X. Let $M=\{0\}$ in case $L=X$, and M be the complementary subspace to L in X otherwise. Now, for any $r_{\alpha}>0$ such that $r_{\alpha} b_{\alpha} \in B_{\alpha}$, we denote

$$
K=\left\{\sum_{\alpha<\beta} s_{\alpha} b_{\alpha}:\left|s_{\alpha}\right|<r_{\alpha}\right\}+M
$$

It's clear that K is 0 -open. Hence K is (j)-open. Since $V_{\alpha} \backslash K \neq \emptyset$ for
$\alpha<\beta$, so $\left\{V_{\alpha}: \alpha<\beta\right\}$ is not a π-base for the topology τ_{i} at 0 , This contradiction closes the proof. \diamond

From Lemma 3.2 we immediately have
Corollary 3.2. The inequality $\chi_{(j)}(X)>\operatorname{dim} X$ holds for every space X.
Corollary 3.3. If $\operatorname{dim} X \geq \mathfrak{c}$, then $w_{(j)}=\chi_{(j)}$.
Proof. Let \mathcal{B} be a base for the topology $\tau_{(j)}$ at the point 0 . Then $\sum_{x \in X}(x+\mathcal{B})$ is a base for the topology $\tau_{(j)}$. Therefore $w_{(j)} \leq \chi_{(j)} \cdot \operatorname{card} X$. Since $\chi_{(j)}>\operatorname{dim} X \geq \mathfrak{c}$ and, in accordance with the assumption, we have card $X=\operatorname{dim} X$, so $w_{(j)} \leq \chi_{(j)}$. It, in view of the obvious inequality $\chi_{(j)} \leq w_{(j)}$, gives the equality $w_{(j)}=\chi_{(j)}$. \diamond
Corollary 3.4. For every space X there holds the equality $\pi-\chi_{(j)}(X)=$ $=\pi-w_{(j)}(X)$.
Proof. From Th. 2.1 we have $d_{(j)}(X)=\sup \left\{\aleph_{0}, \operatorname{dim} X\right\}$. In view of the inequality $\pi-w_{(j)}(X) \leq\left(\pi-\chi_{(j)}(X)\right) \cdot d_{(j)}(X)$ from Lemma 3.2 we get $\pi-w_{(j)}(X) \leq \pi-\chi_{(j)}(X)$. This, together with the obvious inequality $\pi-\chi_{(j)}(X) \leq \pi-w_{(j)}(X)$, gives the desired equality. \diamond
Theorem 3.2. If $\operatorname{dim} X \geq 2$, then $\sup \{\mathfrak{c}, \operatorname{dim} X\}<\pi-\chi_{1}(X) \leq \chi_{1}(X) \leq$ $2^{\text {sup }\{\text { c. } \operatorname{dim} X\}}$.
Proof. Let L be a subspace of X and $\operatorname{dim} L=2$. Let's suppose that \mathcal{B} is a π-base for the topology τ_{1} at 0 such that card $\mathcal{B} \leq \mathfrak{c}$. Then, by Lemma 1 [6, p. 241] there exists a set M such that $0 \notin M, \operatorname{card} M=\mathfrak{c}$ and $M \cap B \neq \emptyset$ for every $B \in \mathcal{B}$ and each line in X has no more than 2 points laying in M. Therefore $G=X \backslash M$ is 1-open and $B \backslash G \neq \emptyset$ for every $b \in \mathcal{B}$. In consequence, \mathcal{B} is not a π-base for the topology τ_{1} at 0 . This contradiction implies that $\pi-\chi_{1}(X)>\mathfrak{c}$.

By Lemma 3.2 we have $\pi-\chi_{1}(X)>\operatorname{dim} X$. This proves the left inequality. It also completes the proof because $\pi-\chi_{1}(X) \leq \chi_{1}(X)$ and $\chi_{1}(X) \leq 2^{\text {card } X} . \diamond$
Corollary 3.5. For any space X there hold the equalities $\pi-\chi_{1}(X)=$ $=\pi-w_{1}(X)$ and $\chi_{1}(X)=w_{1}(X)$.
Proof. The first of above equalities is stated in Cor. 3.4.
The second equality is obvious in case $\operatorname{dim} X=1$, because $\tau_{1}(X)$ is the Euclidean topology and, consequently, $\pi-\chi_{1}(X)=\chi_{1}(X)=w_{1}(X)=$ $=\pi-w_{1}(X)=\aleph_{0}$. If $\operatorname{dim} X \geq 2$, then by Th. 3.4 we have $\operatorname{card} X<$ $<\pi-\chi_{1}(X)$. By the obvious inequality $w_{1}(X) \leq \operatorname{card} X \cdot \chi_{1}(X)$ we get $\chi_{1}(X) \leq w_{1}(X) \leq \chi_{1}(X)$, so $w_{1}(X)=\chi_{1}(X)$. \diamond

As in [1, p. 115], the family $\mathcal{D} \subset \mathbb{N}^{\mathbb{N}}$ is called a dominating family if for each $f \in \mathbb{N}^{\mathbb{N}}$ there exists a function $g \in \mathcal{D}$ such that $f(n) \leq g(n)$ for all but finitely many $n \in \mathbb{N}$. If this inequality holds true for all $n \in \mathbb{N}$, then let us call the family \mathcal{D} a strongly dominating family. As in [1, p. 115], the minimal cardinality of a dominating family is denoted by \mathfrak{d}. In $[1, \mathrm{p} .119]$ it is shown that the cardinality of strongly dominating family is also equal to \mathfrak{d}.
Lemma 3.3. Let $\left\{b_{n}: n \in \mathbb{N}\right\}$ be a Hamel base of X. Let U be a 0-open neighbourhood of the point 0 . Then there exists the sequence $\left(\varepsilon_{n}\right)$ of positive numbers such that $V=\left\{x=\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}:\left|\alpha_{n}\right|<\varepsilon_{n}\right.$ for $\left.n \in \mathbb{N}\right\} \subset U$.
Proof. It is obvious that there exists $\varepsilon_{1}>0$ such that $\left\langle-\varepsilon_{1} b_{1}, \varepsilon_{1} b_{1}\right\rangle \subset U \cap$ $\cap \mathbb{R} b_{1}$. Now we suppose that there exist positive ε_{k}, where $k=1,2, \ldots, n$, such that $V_{n}=\left\{x=\sum_{k=1}^{n} \alpha_{k} b_{k}:\left|\alpha_{k}\right| \leq \varepsilon_{k}\right.$ for $\left.k=1,2, \ldots, n\right\} \subset U$. We will show that there exists $\varepsilon_{n+1}>0$ such that

$$
V_{n+1}=V_{n}+\left\langle-\varepsilon_{n+1} b_{n+1}, \varepsilon_{n+1} b_{n+1}\right\rangle \subset U .
$$

In the Euclidean topology in $L_{n+1}=\operatorname{Lin}\left\{b_{k}: k=1,2, \ldots, n+1\right\}$ the set V_{n} is compact, $L_{n+1} \backslash U$ is closed and $V_{n} \cap\left(L_{n+1} \backslash U\right)=\emptyset$. Hence $r=\rho\left(V_{n}, L_{n+1} \backslash V\right)>0$. Taking $\varepsilon_{n+1}<r$ we have $V_{n+1} \subset U$. By induction, there exists the sequence $\left(\varepsilon_{n}\right)$ of positive numbers such that $\bar{V}=\left\{x=\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}:\left|\alpha_{n}\right| \leq \varepsilon_{n}\right.$ for $\left.n \in \mathbb{N}\right\} \subset U$ and it makes the proof complete. \diamond
Corollary 3.6. Let $\left\{b_{n}: n \in \mathbb{N}\right\}$ be a Hamel base of the space X and let G be a non-empty 0 -open set. Then there exist $m \in \mathbb{N}$, $u^{(n)} \in \mathbb{Q}$ for $n=1,2, \ldots, m$ and $f \in \mathbb{N}^{\mathbb{N}}$ such that

$$
\sum_{n=1}^{m} u^{(n)} b_{n}+\left\{\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}:\left|\alpha_{n}\right|<\frac{1}{f(n)}\right\} \subset G
$$

Proof. Since the set $\left\{\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}: \alpha_{n} \in \mathbb{Q}\right\}$ is 0-dense, so there exist $m \in \mathbb{N}$ and $u^{(n)} \in \mathbb{Q}$ for $n=1,2, \ldots, m$ such that $u=\sum_{n=1}^{m} u^{(n)} b_{n} \in G$. From Lemma 3.3 there exists a sequence $\left(\varepsilon_{n}\right)$ of positive numbers such that $\left\{\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}:\left|\alpha_{n}\right|<\varepsilon_{n}\right\} \subset G-u$. Taking a function $f \in \mathbb{N}^{\mathbb{N}}$ such that $f(n)>\frac{1}{\varepsilon_{n}}$ and it easily implies the validity of the corollary. \diamond In particular, we have

Corollary 3.7. If $0 \in G$ and G is 0 -open set, then there exists $f \in \mathbb{N}^{\mathbb{N}}$ such that $\left\{\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}:\left|\alpha_{n}\right|<\frac{1}{f(n)}\right\} \subset G$.
Lemma 3.4. Let $\left\{b_{n}: n \in \mathbb{N}\right\}$ be a Hamel base of X. For every $f \in \mathbb{N}^{\mathbb{N}}$ we define the set $K_{f}=\left\{\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}:\left|\alpha_{n}\right|<\frac{1}{f(n)}\right\}$. Let \mathcal{V} be a π-base for the topology τ_{0} at 0 . For every $V \in \mathcal{V}$ there are defined $n_{V} \in \mathbb{N}$, $u_{V} \in \mathbb{Q}^{n_{V}}$ and $f_{V} \in \mathbb{N}^{\mathbb{N}}$ such that $G_{V}=\sum_{n=1}^{n_{V}} u_{V}^{(n)} b_{n}+K_{f_{V}} \subset V$, where $u_{V}^{(n)}$ denotes the n-th coordinate of u_{V}. Then the family $\left\{f_{V}: V \in \mathcal{V}\right\}$ contains a dominating family in $\mathbb{N}^{\mathbb{N}}$.
Proof. Suppose that $\left\{f_{V}: V \in \mathcal{V}\right\}$ does not contain a dominating family in $\mathbb{N}^{\mathbb{N}}$. Then there exists a function $g \in \mathbb{N}^{\mathbb{N}}$ such that for every $V \in \mathcal{V}$ there exists $k_{V} \in \mathbb{N}$ such that $g\left(k_{V}\right)>f_{V}\left(k_{V}\right)$ and $k_{V}>n_{V}$. It implies that $G_{V} \backslash K_{g} \neq \emptyset$ for every $V \in \mathcal{V}$. Since K_{g} is 0 -open and contains 0 , so \mathcal{V} is not a π-base for τ_{0} at 0 . This contradiction shows that $\left\{f_{V}: V \in \mathcal{V}\right\}$ contains a dominating family in $\mathbb{N}^{\mathbb{N}} . \diamond$
Theorem 3.3. (1) If X is finite dimensional, then $\chi_{0}(X)=\pi-\chi_{0}(X)=$ $=\pi-w_{0}(X)=w_{0}(X)=\aleph_{0}$.
(2) If $\operatorname{dim} X=\aleph_{0}$, then $\chi_{0}(X)=\pi-\chi_{0}(X)=\pi-w_{0}(X)=w_{0}(X)=\mathfrak{d}$.
(3) If $\operatorname{dim} X>\aleph_{0}$, then $\operatorname{dim} X<\pi-w_{0}(X)=\pi-\chi_{0}(X) \leq \chi_{0}(X) \leq$ $\leq w_{0}(X) \leq 2^{\operatorname{dim} X}$ and $\mathfrak{d} \leq \pi-w_{0}(X)=\pi-\chi_{0}(X) \leq \chi_{0}(X) \leq w_{0}(X)$.
Proof. (1) holds true because $\tau_{0}(X)$ is Euclidean.
(2). Let $\left\{b_{n}: n \in \mathbb{N}\right\}$ be a Hamel base of X and let \mathcal{B} be π-base for topology τ_{0}. Let $U_{m, u, f}=\sum_{n=1}^{m} u^{(n)} b_{n}+\left\{\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}:\left|\alpha_{n}\right|<\frac{1}{f(n)}\right\}$, where $m \in \mathbb{N}, u \in \mathbb{Q}^{m}, u^{(n)}$ is the n-th coordinate of u and $f \in \mathbb{N}^{\mathbb{N}}$. By Cor. 3.6 for each $V \in \mathcal{B}$ there exist $m_{V} \in \mathbb{N}, u_{V} \in \mathbb{Q}^{m_{V}}$ and $f_{V} \in \mathbb{N}^{\mathbb{N}}$ such that $U_{m_{V}, u_{V}, f_{V}} \subset V$. On behalf of Lemma 3.4 we have card $\left\{f_{V}: V \in \mathcal{B}\right\} \geq \mathfrak{d}$. Since $m_{V} \in \mathbb{N}$ and $u_{V} \in \mathbb{Q}^{m_{V}}$, so we easily conclude that card $\mathcal{B} \geq \mathfrak{d}$, hence $\pi-w_{0}(X) \geq \mathfrak{d}$. By Cor. 3.4 we have $\pi-w_{0}(X)=\pi-\chi_{0}(X) \geq \mathfrak{d}$.

Now let \mathcal{F} be a strongly dominating family in $\mathbb{N}^{\mathbb{N}}$ such that $\operatorname{card} \mathcal{F}=\mathfrak{d}$. We put $V_{f}=\left\{\sum_{n \in \mathbb{N}} \alpha_{n} b_{n}:\left|\alpha_{n}\right|<\frac{1}{f(n)}\right\}$ for $f \in \mathcal{F}$. Cor. 3.7 implies that $\left\{V_{f}: f \in \mathcal{F}\right\}$ is a base for the topology τ_{0} at 0 . Hence the family $\left\{x+V_{f}: f \in \mathcal{F}, x \in X\right\}$ is the base for the topology τ_{0}. Denote $L_{n}=$ $=\operatorname{Lin}\left\{b_{k}: k=1,2, \ldots, n\right\}, M_{n}=\operatorname{Lin}\left\{b_{k}: k>n\right\}$, and for given $x \in X \backslash\{0\}$ let n_{x} denote a natural number such that $x \in L_{n_{x}}$. Let's
take $x=\sum_{n \in \mathbb{N}} \alpha_{n} b_{n} \in X \backslash\{0\}$, where $a_{n} \in \mathbb{R}$. Then there exist $r_{k}, s_{k} \in \mathbb{Q}$, where $k=1,2, \ldots, n_{x}$, such that $r_{k}<\alpha_{k}<s_{k}$ and $U_{x, f}=\sum_{k=1}^{n_{x}}\left(r_{k}, s_{k}\right) b_{k} \subset$ $\subset\left(x+V_{f}\right) \cap L_{n_{x}}$. Therefore

$$
\begin{equation*}
x \in U_{x, f}+\left(V_{f} \cap M_{n_{x}}\right) \subset x+V_{f} . \tag{*}
\end{equation*}
$$

It's clear that $U_{x, f}+\left(V_{f} \cap M_{n_{x}}\right) \in \tau_{0}$.
Let $\mathcal{B}_{0}=\left\{V_{f}: f \in \mathcal{F}\right\}$ and

$$
\mathcal{B}_{n}=\left\{\sum_{k=1}^{n}\left(r_{k}, s_{k}\right) b_{k}+\left(V_{f} \cap M_{n}\right): r_{k}, s_{k} \in \mathbb{Q}, r_{k}<s_{k}, f \in \mathcal{F}\right\}
$$

for $n \in \mathbb{N}$. It's obvious that $\mathcal{B}_{n} \subset \tau_{0}$ and $\operatorname{card} \mathcal{B}_{n}=\aleph_{0} \cdot \mathfrak{d}=\mathfrak{d}$ for $n \in \mathbb{N} \cup$ $\cup\{0\}$. From the inclusion $(*)$ it follows that $\mathcal{B}=\bigcup_{n=0}^{\infty} \mathcal{B}_{n}$ is the base for the topology τ_{0}. Obviously, card $\mathcal{B}=\mathfrak{d}$ and, consequently, $w_{0}(X) \leq \mathfrak{d}$.

Since $\pi-\chi_{0}(X) \leq \chi_{0}(X) \leq w_{0}(X)$, so $\pi-\chi_{0}(X)=\chi_{0}(X)=w_{0}(X)=$ $=\mathfrak{d}$. The equality $\pi-w_{0}(X)=\pi-\chi_{0}(X)$ is stated in Cor. 3.4.
(3). The inequality $\operatorname{dim} X<\pi-\chi_{0}(X)$ is stated in Lemma 3.2. The inequality $\chi_{0}(X) \leq 2^{\operatorname{dim} X}$ follows from Cor. 3.1. The inequality $\pi-\chi_{0}(X) \geq \mathfrak{d}$ follows from the part (2) and Fact 3.1. On the behalf of Cor. 3.4 and the obvious inequality $\pi-\chi_{0}(X) \leq \chi_{0}(X) \leq w_{0}(X)$ we see the desired inequalities are satisfied. It closes the proof. \diamond
Theorem 3.4. For every space X there hold the equalities $\pi-\chi_{3}(X)=$ $=\pi-w_{3}(X)=\pi-w_{0}(X)=\pi-\chi_{0}(X)$.
Proof. $\operatorname{Int}_{0}(G) \neq \emptyset$ for every nonempty set $G \in \tau_{3}$. Therefore, if \mathcal{B} is a π-base for the topology τ_{0}, then it is also a π-base for τ_{3}. It proves that $\pi-w_{3}(X) \leq \pi-w_{0}(X)$. On the other side, if \mathcal{B} is a π-base for the topology τ_{3}, then for every $G \in \tau_{3}$ there exists a set $B \in \mathcal{B}$ such that $B \subset G$. Consequently, $\operatorname{Int}_{0} B \subset G$ and $\left\{\operatorname{Int}_{0} B: B \in \mathcal{B}\right\}$ is a π-base for the topology τ_{0} and $\pi-w_{0}(X) \leq \pi-w_{3}(X)$. Therefore $\pi-w_{0}(X)=\pi-w_{3}(X)$.

Applying Cor. 3.4 we get the equalities $\pi-\chi_{0}(X)=\pi-w_{0}(X)=$ $=\pi-w_{3}(X)=\pi-\chi_{3}(X)$ and it makes the proof complete. \diamond

In aim to determine the values of the character of the Klee topology and the directional topology, and the value of π-character of τ_{2} we introduce the notion of the isolated direction.
Definition 3.1. Let G be an j-open set and let $x \in G$. A semiline, denoted by P, is called an isolated direction of the set G for the point x if there are satisfied following conditions:
1° the semiline P has its origin at x,
2° there exist a j-component U of $G \backslash\{x\}$ and a point $y \in P \backslash\{x\}$ such that the segment $(x, y\rangle \subset U$,
3° there does not exist an element $z \in U \backslash \hat{P}$ such that $\langle x, z\rangle \subset U$, where \hat{P} is the line containing the semiline P.

Obviously, the set $G \backslash\{x\}$ is j-open if G is j-open. Since every two different j-components of $G \backslash\{x\}$ are disjoint, so for the point x the cardinality of all isolated directions is not greater than the cellularity $c_{j}(X)$. So, by Th. 2.1, we immediately get
Corollary 3.8. In every j-open set there exist at most $\sup \left\{\aleph_{0}, \operatorname{dim} X\right\}$ isolated directions.
Fact 3.2. For every semiline $P \subset X$ there exists a 3 -open set G such that P is its isolated direction and $\operatorname{Int}_{0} G=G \backslash\{x\}$, where x is the origin point of P.
Proof. Let L be a subspace of X such that $\operatorname{card}(P \cap L) \leq 1$ and $\operatorname{codim} L=1$. Let $\left\{b_{t}: t \in T\right\}$ be a Hamel base of L. First we will show that there exists a 3 -open set satisfying the requirements concerning the semiline $P-x$.

Let $y \in(P-x) \backslash L$ and $F=\left\{\alpha y+\sum_{t \in T} \alpha_{t} b_{t}: \sum_{t \in T} \alpha_{t}^{2}=\alpha^{4}, \alpha>0\right\}$.
For every finite dimensional space M containing y the set $(F \cup\{0\}) \cap M$ is 0 -closed. Hence $F \cup\{0\}$ is 0 -closed and $G_{1} \backslash\{0\} \subset \operatorname{Int}_{0} G_{1}$, where $G_{1}=X \backslash F$. Since $0 \in \mathrm{Cl}_{0} F$, so $\operatorname{Int}_{0} G_{1}=G_{1} \backslash\{0\}$.

Let $E=\bigcup_{z \in F}(0, z\rangle$ and $L_{-}=\{\alpha y+u: \alpha \leq 0, u \in L\}$. It is easy to see the set $H=(P-y) \cup \frac{1}{2} E \cup L_{-}$is 0 -closed, $H \backslash\{0\} \subset \operatorname{Int}_{0} G_{1}$ and $0 \in \operatorname{Cor} H$. It says that the sets $\operatorname{Int}_{0} G_{1}$ and $H \backslash\{0\}$ form the Klee pair for the point 0 . In consequence, G_{1} is 3 -open.

Moreover, if $\operatorname{dim} M=2$, then $(F \cup\{0\}) \cap M$ is composed of parts of two parabolas. Every one of them is tangent to the semiline $P-x$ at the point 0 . These parts lay on different sides of the line $\mathbb{R} y$. Hence $P-x$ is the isolated direction for the set G_{1} at the point 0 . Since the translation f_{x}, where $f_{x}(v)=x+v$, is a homeomorphism from $\left(X, \tau_{0}\right)$ onto the same space, so $G_{1}+x$ is the set G mentioned in the thesis. \diamond
Lemma 3.5. If $2 \leq \operatorname{dim} X \leq \aleph_{0}, \mathcal{P}$ denotes the family of all semilines in X beginning at the point $0, G_{P}$, where $P \in \mathcal{P}$, denotes a 3-open set such that P is its isolated direction at 0 , then $\operatorname{card} \mathcal{B} \geq \mathfrak{c}$, where \mathcal{B} is
a family of 1-neighbourhoods of the point 0 such that for every $P \in \mathcal{P}$ there exists $B \in \mathcal{B}$ and $B \subset G_{P}$.
Proof. It's clear that if $B \in \mathcal{B}$ and $B \subset G_{P}$ then P is the isolated direction for $\operatorname{Int}_{1} B$. Since card $\mathcal{P}=\mathfrak{c}$ and for every $B \in \mathcal{B}$, the set $\operatorname{Int}_{1} B$ may have at most countable many isolated directions at 0 , so $\operatorname{card} \mathcal{B} \geq \mathfrak{c} . \diamond$

In virtue of the inclusions $\tau_{3} \subset \tau_{2} \subset \tau_{1}$, from Lemma 3.5 it immediately follows
Corollary 3.9. If $\operatorname{dim} X \geq 2$ and \mathcal{B} is a base for the topology τ_{i} at 0 , where $i=2,3$, then $\operatorname{card} \mathcal{B} \geq \mathfrak{c}$.
Theorem 3.5. For every space X there holds $w_{3}(X)=\chi_{3}(X)$. Moreover, (1) if $\operatorname{dim} X \geq 2$ and $2^{\operatorname{dim} X} \leq \mathfrak{c}$, then $\chi_{3}(X)=\mathfrak{c}$,
(2) if $2^{\operatorname{dim} X}>\mathfrak{c}$, then $\operatorname{dim} X<\chi_{3}(X)$ and $\mathfrak{c} \leq \chi_{3}(X) \leq 2^{\operatorname{dim} X}$.

Proof. First we consider Case (1). By Cor. 3.9 we have $\chi_{3}(X) \geq \mathfrak{c}$. By Cor. 3.1 we have $\chi_{3}(X) \leq 2^{\operatorname{dim} X} \leq \mathfrak{c}$. Therefore (1) holds true.

The first inequality in (2) follows from Cor. 3.2. The left part of the second inequality is implied by (1) and Fact 3.1, the right one follows from Cor. 3.1.

Since $\chi_{3}(X) \geq \sup \{\mathfrak{c}, \operatorname{dim} X\}=\operatorname{card} X$ and $w_{3}(X) \leq \operatorname{card} X$. - $\chi_{3}(X)$, so $w_{3}(X) \leq \chi_{3}(X)$. By the obvious inequality $w_{3}(X) \geq \chi_{3}(X)$ we get the equality $w_{3}(X)=\chi_{3}(X)$. \diamond
Lemma 3.6. Let L be a subspace of X, $\operatorname{codim} L=1, b \in X \backslash L$. Let f be a directionally continuous function on L such that $f(L) \subset\langle 0,1\rangle$. Let $b_{1} \in L \backslash\{0\}, L^{\prime}=\operatorname{Lin}\left\{b, b_{1}\right\}$ and $F=\left\{\alpha b+\alpha_{1} b_{1}:\left|\alpha_{1}\right|=\alpha^{2}, \alpha>0, \alpha_{1} \in\right.$ $\in \mathbb{R}\}$. Then for $a \in f^{-1}(\langle 0,1))$ there exists a directionally continuous function f_{a} in L such that $f_{a} \mid L=f, f_{a}(X) \subset\langle 0,1\rangle$ and $(X \backslash L) \cap$ $\cap f_{a}^{-1}(1)=a+F$.
Proof. Since every translation, i.e., the function $p_{y}: X \rightarrow X$ defined for every $y \in X$ by the formula $p_{y}(X)=x+y$, is a homeomorphism of the space (X, τ_{2}) onto itself, so without the loss of generality we can work with $a=0$. Let $B=\left\{b_{t}: t \in T\right\}$ be a Hamel base of the space L and let $1 \in T$. Let's denote $\|y\|=\sqrt{\sum_{t \in T} \alpha_{t}^{2}}$ for $y=\sum_{t \in T} \alpha_{t} b_{t}$, where $\alpha_{t} \in \mathbb{R}$, and $F_{1}=\left\{\alpha b+y: \alpha^{2}=\|y\|, y \in L, \alpha>0\right\}$. It's clear that $F_{1} \cap L^{\prime}=F$ and $F_{1} \cup\{0\}$ are 0-closed.

Now we define the function f_{1} on the set $H=\left\{\alpha b+y: \alpha^{2} \geq\right.$ $\geq\|y\|, y \in L, \alpha>0\}$. Accordingly to [7, p. 57], the space $\left(X, \tau_{0}\right)$ is hereditary normal. Since $\mathbb{R}_{+} b \backslash\{0\}$ and F are disjoint 0 -closed sets in H,
so there exists in H a function 0 -continuous, i.e., continuous in τ_{0}, such that $f_{1}(H) \subset\langle f(0), 1\rangle, f_{1}(x)=1$ for $x \in F_{1}$ and $f_{1}(x)=f(0)$ for $x \in \mathbb{R}_{+}$ $+b \backslash\{0\}$. We extend f_{1} to the set $-\mathbb{R}_{+} b+L$ by the formula $f_{1}(\alpha b+y)=$ $=f(y)$, where $\alpha<0$. At last we extend it to the set $\left(\mathbb{R}_{+} b+L\right) \backslash(H \cup L)$ by the formula $f_{1}(\alpha b+y)=\beta+(1-\beta) f(y)$, where $\beta=\alpha\|y\|^{-1 / 2}$. One can check that $f_{1} \mid P \backslash\{0\}$ is continuous if P is an arbitrary line in X and P is equipped with the Euclidean topology. We will show that the function $f \mid P$ is also continuous on every line in X. The continuity is obvious if $P \subset L$ or $P=\mathbb{R} b$. If $0 \in P \neq \mathbb{R} b$ and $P \cap L=\{0\}$, then there exist $\alpha_{0}>0$ and $z \in L \backslash\{0\}$ such that $\left\langle 0, \alpha_{0} b+z\right\rangle \subset P \cap X \backslash H$. In consequence, there exist a point $y_{0} \in L \backslash\{0\}$ and a positive number θ such that $\alpha b+y \in P_{+}$iff $\alpha=\theta\|y\|$ and $y=\|y\| y_{0}$, where $y_{0} \in P_{+}, P_{+}$is the semiline beginning at 0 and contained in the line P.

It is easy to check that $\lim _{r \rightarrow 0^{+}} f_{1}\left(r\left(\theta b+y_{0}\right)\right)=f(0)$. Therefore the restriction $f_{1} \mid P$ is continuous. Hence f_{1} is directionally continuous.

In the space $-\mathbb{R}_{+} b+L$ we define the function f_{1} by the formula $f_{2}(\alpha b+y)=\exp (\alpha)$, where $\alpha \leq 0$ and $y \in L$. For any $x \in L^{\prime}$ we put $f_{2}(x)=1$. For $y \in \operatorname{Lin}\left(B \backslash\left\{b_{1}\right\}\right)$ we set $f_{2}\left(\alpha b+\alpha_{1} b_{1}+y\right)=\exp \left(-\alpha\|y\|_{1}\right)$, where $\alpha>0, \alpha_{1} \in \mathbb{R}$ and $\|y\|_{1}=\sqrt{\sum_{t \in T \backslash\{1\}} \alpha_{t}^{2}}$ for $y=\sum_{t \in T \backslash\{1\}} \alpha_{t} b_{t}$, where $\alpha_{t} \in \mathbb{R}$. The function f_{2} is 0 -continuous in X and $f_{2}^{-1}(1)=L \cup L^{\prime}$.

The function $f_{0}=f_{1} f_{2}$ is directionally continuous. Moreover, $f_{0} \mid L=f, f_{0}^{-1}(1)=f^{-1}(1) \cup F$. It makes the proof complete. \diamond
Lemma 3.7. Let $\left\{b_{t}: t \in T\right\}$ be a Hamel base of X, \mathcal{T} - the family of all finite subsets of T, the empty set excluded and let $L_{S}=\operatorname{Lin}\left\{b_{t}: t \in S\right\}$, where $S \in \mathcal{T}$. Then there exists a set A such that
(1) $A \cap L_{S}$ is dense in the Euclidean topology in L_{S} for every $S \in \mathcal{T}$,
(2) $\operatorname{card}\left(A \cap L_{S}\right)=\aleph_{0}$,
(3) if $x, y \in A, x \neq y$ and $x=\sum_{t \in T} \alpha_{t} b_{t}, y=\sum_{t \in T} \beta_{t} b_{t}$, where $\alpha_{t}, \beta_{t} \in \mathbb{R}$, then for every $t \in T$ the equality $\alpha_{t}=\beta_{t}$ implies $\alpha_{t}=\beta_{t}=0$.
Proof. Let $\mathcal{T}_{n}=\{S \in \mathcal{T}: \operatorname{card} S=n\}$ and $L_{S}^{\prime}=\bigcup\left\{L_{S^{\prime}}: S^{\prime} \varsubsetneqq S\right\}$, where $n \in \mathbb{N}$ and $S \in \mathcal{T}$. We inductively define the sets $A_{n}, n \in \mathbb{N}$, such that $A_{n} \subset A_{n+1}$ and for every $n \in \mathbb{N}$ there hold the conditions (1)-(3) with A and \mathcal{T} replaced by A_{n} and \mathcal{T}_{n}, resp.

It's obvious that for every $S \in \mathcal{T}_{1}$ there exists a set $A_{S} \subset L_{S}$ which is countable and dense in the Euclidean topology in L_{S}. Hence it is clear
that the set $A_{1}=\bigcup_{S \in \mathcal{T}_{1}} A_{S}$ fulfills the conditions (1)-(3) with A and \mathcal{T} replaced by A_{1} and \mathcal{I}_{1}, resp.

Now let's suppose that (1)-(3) are satisfied with A and \mathcal{T} replaced by A_{n} and \mathcal{T}_{n}, resp. Let's take a set $S \in \mathcal{T}_{n+1}$. For a set $Z \subset L_{S}$ we define the set $D_{S}(Z)=Z+\bigcup_{s \in S} L_{S \backslash\{s\}}$. It's clear that if card $Z \leq \aleph_{0}$ then $L_{S} \backslash D_{S}(Z)$ is dense in L_{S} in the Euclidean topology.

Let $\left\{B_{n}: n \in \mathbb{N}\right\}$ be a base of the Euclidean topology in L_{S}. Now we can inductively define the sequence $\left(a_{S, n}\right) \subset L_{S} \backslash L_{S}^{\prime}$ such that $a_{S, 1} \in B_{1} \cap\left(L_{S} \backslash D_{S}\left(A_{n} \cap L_{S}\right)\right)$ and $a_{S, n+1} \in B_{n+1} \cap\left(L_{S} \backslash D_{S}\left(\left(A_{n} \cap L_{S}\right) \cup\right.\right.$ $\left.\left.\cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)\right)$. We apply this procedure for every $S \in \mathcal{T}_{n+1}$. It's obvious that the set $A_{n+1}=A_{n} \cup\left\{a_{S, k}: S \in \mathcal{T}_{n+1}, k \in \mathbb{N}\right\}$ satisfies the conditions (1)-(3) with A and \mathcal{T} replaced by A_{n+1} and \mathcal{T}_{n+1}, resp.

This way we constructed the family $\left\{A_{n}: n \in \mathbb{N}\right\}$ of sets satisfying appropriately conditions (1)-(3). In consequence, the set $A=\bigcup_{n=1}^{\infty} A_{n}$ fulfills (1)-(3) and it closes the proof. \diamond
Lemma 3.8. Let $\left\{b_{\alpha}: 1 \leq \alpha<\gamma\right\}$ be a Hamel base of the space X, where γ is the initial ordinal number for $\operatorname{dim} X \geq \aleph_{0}$. Let's denote $L_{\beta}=\operatorname{Lin}\left\{b_{\alpha}: 1 \leq \alpha<\beta\right\}$ for $\beta<\gamma$ and $M_{\alpha}=\operatorname{Lin}\left\{b_{1}, b_{\alpha+1}\right\}$ for $1 \leq \alpha<\gamma$. Let $c_{\alpha} \in M_{\alpha} \backslash \mathbb{R} b_{1}$ for every α such that $1 \leq \alpha \leq \gamma$. If A is the set investigated in Lemma 3.7, then there exists a bijection $\mu:\{\alpha$: $: 1 \leq \alpha<\gamma\} \rightarrow A \backslash \mathbb{R} b_{1}$ for which there exists a directionally continuous function f satisfying following conditions:
(1) $f(X) \subset\langle 0,1\rangle$,
(2) $f^{-1}(1)=\bigcup_{1 \leq \alpha<\gamma} F_{\alpha}$, where $F_{\alpha}=a_{\alpha}+\left\{r c_{\alpha}+s b_{1}: r^{2}=|s|, r>0\right.$, $s \in \mathbb{R}\} \quad$ and $a_{\alpha}=\mu(\alpha)$.
Proof. Immediately from the definition of set A it follows that

$$
\operatorname{card}\left(A \backslash \mathbb{R} b_{1}\right)=\operatorname{dim} X
$$

Let ν be a bijection from $\{\alpha: 1 \leq \alpha<\gamma\}$ onto $A \backslash \mathbb{R} b_{1}$. Instead of $\nu(\alpha)$ we write a_{α}^{\prime}. We introduce $I=\left\{a_{\alpha}^{\prime}: 1 \leq \alpha<\gamma\right\}$. We will construct a transfinite sequence $\left\{a_{\alpha}: 1 \leq \alpha<\gamma\right\}$ such that
(a) for every $a \in A \backslash \mathbb{R} b_{1}$ there exists $\alpha<\gamma$ such that $a_{\alpha}=a$,
(b) $a_{1}, a_{2} \in L_{3} \cap\left(A \backslash \mathbb{R} b_{1}\right)$,
(c) $a_{\alpha} \in L_{\alpha+1} \cap\left(A \backslash \mathbb{R} b_{1}\right)$, if $3 \leq \alpha<\gamma$.

The condition (b) is fulfilled when a_{1}, a_{2} are two first elements in the set $I \cap L_{3}$. Let's suppose that we already have a_{α} with $\alpha \leq \beta, 2 \leq \beta<\gamma$,
satisfying (b) and (c). Since $\left(A \cap L_{\beta+1}\right) \backslash \bigcup_{\delta<\beta} L_{\delta+1} \neq \emptyset$, so $I \backslash\left\{a_{\alpha}: 1 \leq\right.$ $\leq \alpha<\beta\} \neq \emptyset$ and we denote its first element belonging to $L_{\beta+1}$ by a_{β}. It's clear that for every $a^{\prime} \in I$ there exists α such that $1 \leq \alpha<\gamma$ and $a^{\prime}=a_{\alpha}$. Therefore there exists a transfinite sequence $\left\{a_{\alpha}: 1 \leq \alpha<\gamma\right\}$ satisfying conditions (a)-(c).

Now, for every β, where $3 \leq \beta \leq \gamma$, we define on L_{β} a directionally continuous function f_{β} such that
$(\alpha) f_{\beta}\left(L_{\beta}\right) \subset\langle 0,1\rangle$,
(β) $f_{\beta} \mid L_{\alpha}=f_{\alpha}$ for $3 \leq \alpha<\beta<\gamma$,
$(\gamma) f_{\beta+1}^{-1}(1) \backslash L_{\beta}=\emptyset$ if β is a limit number and $\aleph_{0} \leq \beta<\gamma$,
($\delta) f_{\beta+2}^{-1}(1)=F_{\beta}$ for $2 \leq \beta<\gamma$, where F_{β} is the set mentioned in the thesis,
$(\varepsilon) f_{\beta}^{-1}(1) \cap\left(A \backslash \mathbb{R} b_{1}\right)=\emptyset$ if $3 \leq \beta<\gamma$.
We set $f_{3}=0$. Let's suppose that for any β where $4 \leq \beta<\gamma$, and for every ordinal number δ, where $3 \leq \delta<\beta$, there is defined a directionally continuous function f_{δ} fulfilling the conditions $(\alpha)-(\varepsilon)$. Now, we define a directionally continuous functions f_{β} satisfying $(\alpha)-(\varepsilon)$.

If β is a limit number, we put $f_{\beta}(x)=f_{\delta}(x)$ for $x \in L_{\delta}$. It's clear that f_{β} is directionally continuous and fulfills (α) and (β), so it fulfills all conditions $(\alpha)-(\varepsilon)$.

If $\beta=\varphi+1$ and φ is a limit number, we construct the function g_{φ} on L_{β} such that $g_{\varphi}\left(r b_{\varphi}+y\right)=f_{\varphi}(y)$, where $y \in L_{\varphi}$. Moreover, we take the function h_{φ} on L_{β} such that $h_{\varphi}\left(r b_{\varphi}+y\right)=\exp \left(-r^{2}\right)$, where $y \in L_{\varphi}$. It's clear that both functions, g_{φ} and h_{φ}, are directionally continuous on L_{β}. Hence their product $f_{\beta}=g_{\varphi} h_{\varphi}$ is the directionally continuous function. It's easy to verity that f_{β} fulfills conditions $(\alpha)-(\varepsilon)$.

Now let $\beta=\varphi+2$, where φ is an ordinal number (not necessarily a limit one). From the condition (c) it follows that $a_{\varphi} \in L_{\varphi+1} \subset L_{\beta}$. It's clear that now we can apply Lemma 3.6 with X, L, f, b, b_{1} and a substituted by $L_{\beta}, L_{\varphi+1}, f_{\varphi+1}, c_{\varphi}, b_{1}$ and a_{φ}, respectively. By this Lemma there exists in L_{β} a directionally continued function f_{β} satisfying conditions $(\alpha),(\beta)$ and (δ). At last we will show that the condition (ε) holds. Let $a_{\varphi}=\sum_{1 \leq \alpha \leq \varphi} \theta_{\alpha} b_{\alpha}$, where $\theta_{\alpha} \in \mathbb{R}$. Since $a_{\varphi} \in A \backslash \mathbb{R} b_{1}$, so there exists α_{0} such that $1<\alpha_{0} \leq \varphi$ and $\theta_{\alpha_{0}} \neq 0$. Let's suppose that there exists an element $a \in\left(a_{\varphi}+M_{\varphi}\right) \cap\left(A \backslash \mathbb{R} b_{1}\right)$ and $a \neq a_{\varphi}$ Then
$a=\sum_{1 \leq \alpha \leq \varphi+1} \theta_{\alpha}^{\prime} b_{\alpha}$ and $\theta_{\alpha}^{\prime}=\theta_{\alpha}$ if $1<\alpha \leq \varphi$. Therefore $\theta_{\alpha_{0}}^{\prime}=\theta_{\alpha_{0}}$ and it is contradictory to the condition (3) in Lemma 3.7. Consequently, $\left(a_{\varphi}+M_{\varphi}\right) \cap\left(A \backslash \mathbb{R} b_{1}\right)=\left\{a_{\varphi}\right\}$. Taking into account that $F_{\varphi} \subset a_{\varphi}+M_{\varphi}$ and $a_{\varphi} \notin F_{\varphi}$ we have that $F_{\varphi} \cap\left(A \backslash \mathbb{R} b_{1}\right)=\emptyset$. It implies that $f_{\beta}^{-1}(1) \cap$ $\cap\left(A \backslash L_{\varphi+1}\right)=\emptyset$. Since the function $f_{\varphi+1}$ satisfies the condition (ε), so f_{β} does it, too.

This way, by the transfinite induction, we proved that on X there exists a directionally continued function f fulfilling the condition (1) and such that $f \mid L_{\alpha}=f_{\alpha}$ for every $3 \leq \alpha<\gamma$.

Since $f_{3}=0$ and functions f_{α} satisfy conditions $(\alpha)-(\varepsilon)$ for $3 \leq \alpha<$ $<\gamma$, so f satisfies the condition (2). \diamond
Corollary 3.10. If X is infinite dimensional, then there exists a 2-open set G such that for any finite dimensional space L and every $x \in X$ the set $(x+L) \backslash G$ is nowhere dense in the Euclidean topology in $x+L$ and Int $_{0} G=\emptyset$.
Proof. We keep denotations used in the proof of Lemma 3.8 and we put $G=f^{-1}(\langle 0,1))$. From the condition (2) in Lemma 3.8 it follows that each line P in X has at most 3 common points with the set $f^{-1}(1)$. Hence $P \cap f^{-1}(1)$ is nowhere dense in the Euclidean topology in P.

If $2 \leq \operatorname{dim} L<\aleph_{0}$, then for every $x \in X$ there exist at most finitely many ordinal numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $(x+L) \cap F_{\alpha_{k}} \neq \emptyset$ and $1 \leq \alpha_{k}<\gamma$ for $k=1,2, \ldots, n$. Therefore $(x+L) \cap f^{-1}(1)$ is nowhere dense in the Euclidean topology in $x+L$.

From the definition of the set A it follows that $A \backslash \mathbb{R} b_{1}$ is 0 -dense in X. Since for every $a \in A \backslash \mathbb{R} b_{1}$ there exists a two-dimensional subspace L of X such that a is the accumulation point of the set $f^{-1}(1) \cap(a+L)$, so $A \backslash \mathbb{R} b_{1} \subset \mathrm{Cl}_{0}(X \backslash G)$. Since $A \backslash \mathbb{R} b_{1}$ is 0-dense in X, so $\mathrm{Cl}_{0}(X \backslash G)=X$. Hence $\operatorname{Int}_{0} G=\emptyset . \diamond$
Theorem 3.6. For any space X there hold the equalities $\chi_{2}(X)=\omega_{2}(X)$ and $\pi-\chi_{2}(X)=\pi-\omega_{2}(X)$, as well as
(1) $\chi_{2}(X)=\pi-\chi_{2}(X)=\aleph_{0}$ if $\operatorname{dim} X=1$,
(2) $\pi-\chi_{2}(X)=\aleph_{0}$ if $\operatorname{dim} X<\aleph_{0}$,
(3) $\chi_{2}(X)=\mathfrak{c}$ if $\operatorname{dim} X \geq 2$ and $2^{\operatorname{dim} X} \leq \mathfrak{c}$,
(4) $\pi-\chi_{2}(X)=\mathfrak{c}$ if $\operatorname{dim} X \geq \aleph_{0}$ and $2^{\operatorname{dim} X}=\mathfrak{c}$,
(5) $\chi_{2}(X) \geq \pi-\chi_{2}(X) \geq \mathfrak{c}$ if $2^{\operatorname{dim} X}>\mathfrak{c}$,
(6) $\operatorname{dim} X<\pi-\chi_{2}(X) \leq \chi_{2}(X) \leq 2^{\operatorname{dim} X}$ if $\operatorname{dim} X>\mathfrak{c}$.

Proof. First we deal with points (1)-(6).
(1) is obvious.
(2). Since $\left(X, \tau_{2}\right)$ is regular for arbitrary X, so for every 2-open set G and every $x \in G$ there exists a 2 -open set G^{\prime} such that $x \in G^{\prime}$ and $\mathrm{Cl}_{2} G^{\prime} \subset G$. From Cor. 2 in [6, p. 245] it follows that there exists an open set U in the Euclidean topology in X such that $x \in \mathrm{Cl}_{0} U$ and $U \subset \mathrm{Cl}_{2} G^{\prime}$. Therefore each base for the Euclidean topology in X is a π-base for the topology τ_{2} at 0 . Hence $\pi-\chi_{0}(X)=\aleph_{0}$.
(3). From Cor. 3.9 it follows that $\chi_{2}(X) \geq \mathfrak{c}$ if $\operatorname{dim} X \geq 2$. If $2^{\operatorname{dim} X} \leq \mathfrak{c}$, then from Cor. 3.1 it follows that $\chi_{2}(X) \leq \mathfrak{c}$. In consequence, if $\operatorname{dim} X \geq 2$ and $2^{\operatorname{dim} X} \leq \mathfrak{c}$, then $\chi_{2}(X)=\mathfrak{c}$.
(4). Let $\left\{b_{n}: n \in \mathbb{N}\right\}$ be a Hamel base of the space X and let A be the set as in Lemma 3.7. Taking into account the definition of A it is easy to state that there exists a sequence $\left(a_{n}\right) \subset X$ such that $\left\{a_{n}: n \in \mathbb{N}\right\}=$ $=A \backslash \mathbb{R} b_{1}, a_{1} \in L_{2}$ and $a_{n} \in L_{n}$ for $n \geq 2$, where $L_{n}=\operatorname{Lin}\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Let $c_{n, \theta}=\theta b_{1}+b_{n+2}$, where $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$. Since the assumptions of Lemma 3.8 are fulfilled, so for every $\theta \in \mathbb{R}$ there exists a directionally continuous function f_{θ} defined in this Lemma for the sequences $\left(a_{n}\right)$ and $\left(c_{n}\right)$, where $c_{n}=c_{n, \theta}$ and $n \in \mathbb{N}$. It's easy to see that the semiline $a_{n}+$ $+\mathbb{R}_{+} c_{n, \theta}$ is the isolated direction of the set $f_{\theta}^{-1}(\langle 0,1)) \cap M_{n}$ in the space $\left(M_{n}, \tau_{2} \mid M_{n}\right)$ where $M_{n}=a_{n}+\operatorname{Lin}\left\{b_{1}, b_{n+2}\right\}$.

Let \mathcal{B} be a π-base for the topology $\tau_{2}(X)$ at 0 . We will show that for every $B \in \mathcal{B}$ the set $\Theta_{B}=\left\{\theta \in \mathbb{R}: B \subset G_{\theta}\right\}$, where $G_{\theta}=f_{\theta}^{-1}(\langle 0,1))$, is at most countable. Arguing as in part (2) we conclude that for every L_{n} there exists a set $U \subset B$ which is open in the Euclidean topology in L_{n}. Since $\left(A \backslash \mathbb{R} b_{1}\right) \cap U=\emptyset$ for $n=1$, so in the next we deal with $n \geq 2$. Therefore, for $B \subset G_{\theta}$, and every $a \in\left(A \backslash \mathbb{R} b_{1}\right) \cap U$ there exists $n_{a} \in \mathbb{N}$ such that the semiline $a+\mathbb{R}_{+} c_{n_{a}, \theta}$ is the isolated direction of the set $B \cap M_{n_{a}}$ for the point a in the topology $\tau_{2} \mid M_{n_{2}}$. Let Θ_{B}^{*} denote the set of all real θ such that $a+\mathbb{R}_{+} c_{n_{a}, \theta}$ is the isolated direction of the set $B \cap M_{n_{a}}$ for every point $a \in U \cap\left(A \backslash \mathbb{R} b_{1}\right)$ in the topology $\tau_{2} \mid M_{n_{a}}$. Since $B \cap M_{n_{a}}$ has at most countable many isolated directions for every point a, so card $\Theta_{B}^{*} \leq \aleph_{0}$. Taking into account that $\Theta_{B} \subset \Theta_{B}^{*}$ we have $\operatorname{card} \Theta_{B} \leq \aleph_{0}$. Since card $\left\{G_{\theta}: \theta \in \mathbb{R}\right\}=\mathfrak{c}$, so $\operatorname{card} \mathcal{B} \geq \mathfrak{c}$. Therefore $\pi-\chi_{2}(X) \geq \mathfrak{c}$.

If $\operatorname{dim} X \geq \aleph_{0}$, then by Fact 3.1 it follows that $\pi-\chi_{2}(x) \geq \mathfrak{c}$. If $2^{\operatorname{dim} X} \leq \mathfrak{c}$, so from (3) it follows that $\pi-\chi_{2}(x) \leq \mathfrak{c}$. It proves (4).
(5) is the consequence of (4) and Fact 3.1.
(6). The left inequality is stated in Cor. 3.2 , the right one is implied by Cor. 3.1 because $2^{\operatorname{dim} X}>\boldsymbol{c}$.

As points (1)-(6) are proved, we notice that the equality $\pi-\chi_{2}(X)=$ $=\pi-w_{2}(X)$ is stated by Cor. 3.4. The equality $\chi_{2}(X)=w_{2}(X)$ is obvious if $\operatorname{dim} X=1$. If $\operatorname{dim} X>1$, from (2)-(6) we have $\chi_{2}(X) \geq \operatorname{card} X$. Since $w_{2}(X) \leq \chi_{2}(X) \cdot \operatorname{card} X=\chi_{2}(X)$, so $w_{2}(X)=\chi_{2}(X) . \diamond$
Theorem 3.7. $o_{0}(X)=\operatorname{ro}_{0}(X)=\sup \left\{\mathfrak{c}, 2^{\operatorname{dim} X}\right\}$.
Proof. Since $\mathcal{T}_{0}(X)$ is Euclidean topology if $\operatorname{dim} X<\aleph_{0}$, so $o_{0}(X)=\mathfrak{c}$.
In the next we deal with X such that $\operatorname{dim} X \geq \aleph_{0}$. Let \mathcal{B} be a base for the topology τ_{0} such that $\operatorname{card} \mathcal{B}=w_{0}(X)$ and $\left\{b_{t}: t \in T\right\}$ be a Hamel base of X. Let's denote the family of all finite subsets of T by \mathcal{T}, and $L_{S}=\operatorname{Lin}\left\{b_{t}: t \in S\right\}$ for every $S \in \mathcal{T}$. We take $G \in \tau_{0}$ and $\mathcal{G} \subset \mathcal{B}$ such that $\bigcup \mathcal{G}=G$. For arbitrary $S \in \mathcal{T}$ we can choose a countable subfamily $\mathcal{G}_{S} \subset \mathcal{G}$ such that $L_{S} \cap \bigcup \mathcal{G}_{S}=L_{S} \cap G$. Let $\mathcal{G}^{\prime}=\bigcup_{S \in \mathcal{T}} \mathcal{G}_{S}$. Therefore $\bigcup \mathcal{G}^{\prime}=G$. Since $\operatorname{card} \mathcal{T}=\operatorname{dim} X$, so $\operatorname{card} \mathcal{G}^{\prime}=$ $=\operatorname{dim} X$. Hence $o_{0}(X) \leq w_{0}(X)^{\operatorname{dim} X}$. Accordingly with Th. 3.3 we have $o_{0}(X) \leq(\operatorname{dim} X)^{\operatorname{dim} X}=2^{\operatorname{dim} X}$.

Since $o_{0}(X) \geq r o_{0}(X)$ so, by Th. $2.4, o_{0}(X) \geq 2^{\operatorname{dim} X}$. From both above inequalities we have $o_{0}(X)=2^{\operatorname{dim} X}$.

Reassuming, $o_{0}(X)=\sup \left\{\mathfrak{c}, 2^{\operatorname{dim} X}\right\}$ for X of arbitrary dimension. \diamond
Theorem 3.8. $o_{j}(X)=\mathfrak{c}$ if $\operatorname{dim} X=1$, and $o_{j}(X)=2^{\sup \{\mathfrak{c}, \operatorname{dim} X\}}$ otherwise.
Proof. In case $\operatorname{dim} X=1$ the thesis is obvious. Investigating the case $\operatorname{dim} X \geq 2$ we put $S=\left\{\sum_{t \in T} \alpha_{t} b_{t}: \sum_{t \in T} \alpha_{t}^{2}=1\right.$ and $\left.\alpha_{t} \in \mathbb{R}\right\}$, where $\left\{b_{t}:\right.$ $: t \in T\}$ is a Hamel base of X. Obviously, S is 0-closed. Taking $x \in S$ we see that the set $G_{x}=\{x\} \cup(X \backslash S)$ is 3-open. Since card $S=\operatorname{card} X$, so $o_{3}(X) \geq 2^{\text {card } X}$. At the same time $o_{3}(X) \leq 2^{\text {card } X}$, hence $o_{3}(X)=$ $=2^{\sup \{c, \operatorname{dim} X\}}$. Taking into account that $\tau_{3} \subset \tau_{2} \subset \tau_{1}$ and $o_{j}(X) \leq 2^{\text {card } X}$ we get the thesis. \diamond

4. Tightness

It's obvious that there holds
Fact 4.1. For every X and every $x \in X$ we have $t_{(j)}(x, X)=t_{(j)}(0, X)$, where $t_{i}(x, X)$ denotes the i-tightness of a point x in the topological space $\left(X, \tau_{i}\right)$.

Since the tightness of the sequential space is equal \aleph_{0} (see [2, p. 87]) and both τ_{0} and τ_{1} are sequential (it is proved in [8]), so there holds Theorem 4.1. $t_{0}(X)=t_{1}(X)=\aleph_{0}$.

We will show that the analogous result takes place for the Klee topology. Before stating this result we give
Lemma 4.1. Let $U \in \tau_{0}(X), x \notin U$ and $V=U \cup\{x\}$. If $V \cap L \in \tau_{3}(L)$ for every finite dimensional subspace L of infinite dimensional space X then $V \in \tau_{3}(X)$.
Proof. Without the loss of generality we can work with $x=0$. Let L be an arbitrary finite dimensional subspace of X. Since $V \cap L \in$ $\in \tau_{3} \mid L$, so there exists in Euclidean topology a closed set $F_{L} \subset L$ such that $\left(U \cap L, F_{L} \backslash\{0\}\right)$ is the Klee pair for the point 0 . Let $F_{L}^{*}=\{y \in$ $\left.\in F_{L}:\langle 0, y\rangle \subset F_{L}\right\}$. For arbitrary sequence $\left(z_{n}\right) \subset F_{L}^{*}$, which is convergent in the Euclidean topology to z_{0}, the segment $\left\langle 0, z_{0}\right\rangle$ is contained in $\mathrm{Cl} \bigcup_{n=1}^{\infty}\left\langle 0, z_{n}\right\rangle \subset F_{L}$. It shows that $z_{0} \in F_{L}^{*}$, so $F_{L}^{*} \cup\{0\}$ is 0 -closed.

Applying the transfinite induction we will show that there exists a 0 -closed set F such that $0 \in \operatorname{Cor} F$ and $F \backslash\{0\} \subset U$.

In this aim let γ be an initial number for $\operatorname{dim} X$ and let $\left\{b_{\alpha}: 1 \leq\right.$ $\leq \alpha<\gamma\}$ be a Hamel base of X. Let $X_{\beta}=\operatorname{Lin}\left\{b_{\alpha}: 1 \leq \alpha<\beta\right\}$, where $1<\beta \leq \gamma$. We go to show that for every β such that $1<\beta \leq \gamma$ there exists a 0 -closed set F_{β} satisfying three following conditions:
(1) $F_{\beta} \backslash\{0\} \subset X_{\beta} \cap U$,
(2) $0 \in \operatorname{Cor}_{X_{\beta}} F_{\beta}$,
(3) $F_{\beta_{2}} \cap X_{\beta_{1}}=F_{\beta_{1}}$ if $\beta_{1}<\beta_{2}<\gamma$.

For $\beta=2$ we have $X_{\beta}=\mathbb{R} b_{1}$ and, obviously, there exists a set F_{1} satisfying conditions (1) and (2). Now let's assume that for any $\beta>2$ and for all $\beta^{\prime}<\beta$ there exist 0 -closed sets $F_{\beta^{\prime}}$ which satisfy the conditions (1)-(3). In the next we consider two cases: β is a limit number or it is not.

If β is a limit number, we put $F_{\beta}=\bigcup_{\beta^{\prime}<\beta} F_{\beta^{\prime}}$. It's clear that F_{β} satisfies conditions (1) and (3). Moreover, F_{β} is 0 -closed and in aim to prove it we take an arbitrary finite dimensional subspace $L \subset X_{\beta}$. Then there exists $\beta_{0}<\beta$ such that $L \subset X_{\beta_{0}}$. Hence $L \cap F_{\beta_{0}}$ is 0 -closed. In virtue of the equalities $L \cap F_{\beta}=L \cap X_{\beta_{0}} \cap F_{\beta}=L \cap F_{\beta_{0}}$ we see that $L \cap F_{\beta}$ is 0 -closed. Since L was chosen arbitrarily, so F_{β} is 0 -closed.

For every $y \in X_{\beta}$ there exists $\beta_{0}<\beta$ such that $y \in X_{\beta_{0}}$. By (2),
$0 \in \operatorname{Cor}_{X_{\beta_{0}}}\left(F_{\beta} \cap X_{\beta_{0}}\right)$ and, furthermore, there exists $z \in X_{\beta}$ such that $(0, z) \subset(0, y) \cap F_{\beta}$. It implies that $0 \in \operatorname{Cor}_{X_{\beta}} F_{\beta}$. Hence F_{β} satisfies (1)-(3) in the case when β is a limit number.

Now we deal with the case when β is not a limit number. Let $\beta=\beta_{0}+1$.

First we will show that there exists a 0 -closed set E satisfying conditions (1)-(2) with $F_{\beta}=E$. The existence of such a set is obvious if $\beta<\aleph_{0}$. In the opposite situation, $\beta \geq \aleph_{0}$, we have $\operatorname{card} \beta_{0}=\operatorname{card} \beta$. We take an automorphism h of the space X such that

$$
h\left(\left\{b_{\alpha}: \alpha<\beta_{0}\right\}\right)=\left\{b_{\alpha}: \alpha \leq \beta_{0}\right\} .
$$

Then the set $U^{\prime}=h^{-1}(U)$ is 0-open and $\left(U^{\prime} \cup\{0\}\right) \cap L \in \tau_{3} \mid L$ for every finite dimensional L. By the inductive assumption, in $X_{\beta_{0}}$ there exist 0 -closed sets F_{α}^{\prime}, where $2 \leq \alpha \leq \beta_{0}$, such that conditions (1)-(3) are satisfied with U^{\prime} instead of U and F_{α}^{\prime} replacing F_{β}^{\prime}. Therefore $E=$ $=h\left(F_{\beta_{0}}^{\prime}\right)$ is 0 -closed in X_{β} and, in consequence, it satisfies conditions (1)-(2), where F_{β} is replaced by E. We define

$$
H=\left\{x=\sum_{\beta^{\prime}<\beta} r_{\beta} b_{\beta}: \underset{\beta^{\prime}<\beta_{0}}{\forall}\left|r_{\beta_{0}}\right| \geq r_{\beta^{\prime}}^{2}\right\} .
$$

Since for every finite subset $P \subset\left\{\beta^{\prime}: \beta^{\prime} \leq \beta\right\}$ the intersection $\operatorname{Lin}\left\{b_{\beta^{\prime}}: \beta^{\prime} \in P\right\} \cap H$ is closed in the Euclidean topology, so H is 0 closed. It's obvious that $H \cap X_{\beta_{0}}=\{0\}$ and for every $y \in X_{\beta} \backslash X_{\beta_{0}}$ there exists z such that $(0, z) \subset(0, y) \cap H$. The set $F_{\beta}=(E \cap H) \cup F_{\beta_{0}}$ is 0 -closed and satisfies conditions (1)-(3). In this way we inductively proved that there exists a 0 -closed set $F=F_{\gamma}$ such that $0 \in \operatorname{Cor} F$ and $F \backslash\{0\} \subset U$. It means that $(U, F \backslash\{0\})$ is a Klee pair for the point 0 . This way we proved that V is 3 -open. \diamond

Let's notice that Lemma 4.1 does not hold for an arbitrary V such that $V \cap L \in \tau_{3}(L)$ for every finite dimensional $L \subset X$. This is shown in following
Example 4.1. Let $\left\{b_{n}: n \in \mathbb{N}\right\}$ be a Hamel base of X. For $m \in$ $\in \mathbb{N} \backslash\{1\}$ we introduce $L_{m}=\operatorname{Lin}\left\{b_{1}, b_{m}\right\}, X_{m}=\operatorname{Lin}\left\{b_{n}: n \leq m\right\}$, $F_{m}^{*}=\left\{r_{1} b_{1}+r_{m} b_{m}: r_{m}^{2} \leq\left|r_{1}\right| \leq 4 r_{m}^{2}\right\}, F_{m}=F_{m}^{*}+\frac{1}{m} b_{1}, G=X \backslash \bigcup_{m=2}^{\infty} F_{m}$, $H=G \cup\left\{\frac{1}{n+1} b_{1}: n \in \mathbb{N}\right\}$ and $G_{m}=\left(X_{m} \cap H\right) \backslash\left\{\frac{1}{n+1} b_{1}: n=1,2, \ldots, m-\right.$ $-1\}$. It is clear that G_{m} is open in X_{m} in the Euclidean topology. We will show that $H \cap X_{m} \in \tau_{3}\left(X_{m}\right)$. To do it we put $J_{k}^{*}=\left(\mathbb{R} b_{k} \cup\left\{r_{1} b_{1}+\right.\right.$ $\left.\left.+r_{k} b_{k}:\left|r_{1}\right| \geq 5 r_{k}^{2}\right\}\right)+\operatorname{Lin}\left\{b_{n}: n=2,3, \ldots, m\right.$ and $\left.n \neq k\right\}$. It is easy to
see that J_{k}^{*} is closed in the Euclidean topology in X_{m} and $0 \in \operatorname{Cor}_{X_{m}} J_{k}^{*}$ for every $k=2,3, \ldots, m$. For $k=2,3, \ldots, m$ we put $J_{k}=\left(J_{k}^{*}+\frac{1}{k} b_{1}\right) \cap$ $\cap B_{k}$, where B_{k} denotes the closed ball in X_{m} with the center at $\frac{1}{k} b_{1}$ and the radius $\frac{1}{(k+1)^{2}}$. Now, we notice that J_{k} is closed in the Euclidean topology and $\frac{1}{k} b_{1} \in \operatorname{Cor}_{X_{m}} J_{k}$. Moreover, $J_{k} \backslash\left\{\frac{1}{k} b_{1}\right\} \subset G_{m} \subset H \cap X_{m}$. Since $G_{m} \in \tau_{0}\left(X_{m}\right)$ and $\frac{1}{k} b_{1} \in \operatorname{Cor}_{X_{m}} J_{k}$, so $\left(G_{m}, J_{k} \backslash\left\{\frac{1}{k} b_{1}\right\}\right)$ is a Klee pair for the point $\frac{1}{k} b_{1}$ in the space X_{m}. It implies that $H \cap X_{m} \in \tau_{3} \mid X_{m}$. In consequence, the set $H \cap L$, where L is a finite dimensional space, is 3 -open in L.

At last we show that $H \notin \tau_{3}$. In this aim we notice that $\operatorname{Int}_{0} H \subset$ $\subset G$. Therefore $\left\{\frac{1}{n+1} b_{1}: n \in \mathbb{N}\right\} \cap \operatorname{Int}_{0} H=\emptyset$. Hence $0 \notin \operatorname{Cor} G$ and, consequently, $0 \notin \operatorname{Int}_{3} H$ and it states that $H \notin \tau_{3}$.

Now we can give the announced result which is analogous to Th. 4.1.
Theorem 4.2. $t_{3}(X)=\aleph_{0}$.
Proof. From Fact 4.1 it is enough to consider $t_{3}(0, X)$.
Let $A \subset X \backslash\{0\}, 0 \in \mathrm{Cl}_{3} A$ and $B=\mathrm{Cl}_{0} A$. Since $\mathrm{Cl}_{3} A \subset B$, so $0 \in B$.

Let's consider the case when there exists $x \in X \backslash\{0\}$ such that there exists a sequence $\left(x_{n}\right) \subset B \cap \mathbb{R} x$ convergent to 0 . Then, by Th. 4.1 and Fact 4.1, there exist countable sets $A_{n} \subset A$ for $n \in \mathbb{N}$ such that $x_{n} \in \mathrm{Cl}_{0} A_{n}$. It implies that $0 \in \mathrm{Cl}_{0}\left(\bigcup_{n=1}^{\infty} A_{n}\right)$ and, consequently, there does not exist an 0 -open set G and an element $z \in G \backslash\{0\}$ such that $G \cap \bigcup_{n=1}^{\infty} A_{n}=\emptyset$ and $(0, z) \subset G \cap \mathbb{R} x$. Therefore $t_{3}(0, A)=\aleph_{0}$.

In the next we investigate the case when for every $x \in X \backslash\{0\}$ there exists $r_{x}>0$ such that $\left(r_{x} x, 0\right) \subset(X \backslash B) \cap \mathbb{R} x$. This investigation is made below in two parts: I) if $\operatorname{dim} X<\aleph_{0}$ and II) if $\operatorname{dim} X \geq \aleph_{0}$.

Part I $\left(\operatorname{dim} X<\aleph_{0}\right)$. In this part the closure, the interior, the convergence etc. are in the Euclidean topology, if any other topology is not indicated. In the same manner we write, e.g., $\mathrm{Cl} A$ and $\operatorname{Int} A$ instead of $\mathrm{Cl}_{0} A$ and $\operatorname{Int}_{0} A$, resp. Moreover, in this part of this proof we denote $\hat{x}=\frac{x}{\|x\|}$ for $x \in X \backslash\{0\}$.

Let's denote $K=K(0,1), \bar{K}=\mathrm{Cl} K$ and $S=\bar{K} \backslash K$. For a set $H \subset$ $\subset X$ such that $0 \in \operatorname{Cor}(H \cup\{0\})$ we define the function $\omega_{H}: S \rightarrow(0,1\rangle$ as follows: for every $x \in S$ the segment $\left(0, \omega_{H}(x) x\right)$ is a component of $\operatorname{Int}_{\mathbb{R} x}(H \cap(0,1) x)$.

Now, for a certain ordinal number β we construct the families
$\left\{C_{n}^{\alpha}: n \in \mathbb{N}, 1 \leq \alpha \leq \beta\right\},\left\{D^{\alpha}: 1 \leq \alpha \leq \beta\right\}$ and $\left\{E^{\alpha}: 1 \leq \alpha \leq\right.$ $\leq \beta\}$, of sets such that
(a) $C_{1}^{1}=D^{1}=S$,
(b) D^{α} and C_{n}^{α} are non-empty sets, for $\alpha<\beta$ and every $n \in \mathbb{N}$,
(c) $C_{n}^{\alpha}=\mathrm{Cl}\left\{x \in C_{1}^{\alpha}: \omega_{X \backslash B}(x) \leq \frac{1}{n}\right\}$,
(d) $D^{\alpha+1}=\bigcap_{n=1}^{\infty} C_{n}^{\alpha}$,
(e) $D^{\alpha}=\bigcap_{\alpha^{\prime}<\alpha} C_{1}^{\alpha^{\prime}}$ if α is a limit number,
(f) $D^{\alpha}=C_{1}^{\alpha} \cup E^{\alpha}$, where the set C^{α} is perfect and the set E^{α} is countable,
(g) for every $\alpha<\beta$ the set $C_{1}^{\alpha+1}$ is boundary in the space $\left(C_{1}^{\alpha}, \tau\right)$, where τ denotes the Euclidean topology in C_{1}^{α}, except for the case when $\alpha+1=\beta$ and the condition (h2) holds,
(h) there holds true one of following conditions

1) $\operatorname{card} D^{\beta} \leq \aleph_{0}$,
2) $\operatorname{Int}_{C_{1}^{\beta^{\prime}}} C_{1}^{\beta} \neq \emptyset$ for $\beta^{\prime}+1=\beta$,
3) $C_{n}^{\beta}=\emptyset$ for any $n \in \mathbb{N}$.

In the next the set C_{1}^{α} is denoted by C^{α}.
Let's assume that for an ordinal number $\alpha \leq \beta$ and for every $\alpha^{\prime}<\alpha$ there are already constructed sets $C^{\alpha^{\prime}}, D^{\alpha^{\prime}}, E^{\alpha^{\prime}}$, and $C_{n}^{\alpha^{\prime}}$ with $n \in \mathbb{N}$ satisfying conditions (a)-(g).

Now, according to (d) and (e), we construct the set D^{α}. If card $D^{\alpha} \leq$ $\leq \aleph_{0}$ then $\alpha=\beta$ and we put $C^{\alpha}=C_{n}^{\alpha}=\emptyset$ for $n \in \mathbb{N}$. In the opposite case, since D^{α} is closed, so by Cantor-Bendixson Theorem [2, p. 84] we have the decomposition $D^{\alpha}=C^{\alpha} \cup E^{\alpha}$, where C^{α} is perfect in the space $\left(D^{\alpha}, \tau_{0} \mid D^{\alpha}\right)$ and $\operatorname{card} E^{\alpha} \leq \aleph_{0}$. If $\alpha=\alpha_{1}+1$ and $\operatorname{Int}_{C^{\alpha_{1}}} C^{\alpha} \neq \emptyset$ then $\alpha=\beta$. If C^{α} is boundary in $C^{\alpha_{1}}$ or α is a limit number then the sets C_{n}^{α} are constructed by (c). If there exists $m \in \mathbb{N}$ such that $C_{n}^{\alpha}=\emptyset$ for all $n>m$ then we have $\alpha=\beta$. But if $C_{n}^{\alpha} \neq \emptyset$ for every $n \in \mathbb{N}$ then the sets C^{α}, D^{α} and C_{n}^{α} are already constructed and $\alpha<\beta$. This way we inductively constructed the families of sets satisfying conditions (a)-(h) for a certain ordinal number β.

Since every C^{α} is closed and there holds the implication $\alpha_{1}<\alpha_{2}<$ $<\beta \Rightarrow C^{\alpha_{2}} \subset C^{\alpha_{1}}$, so card $\left\{C^{\alpha}: \alpha<\beta\right\} \leq \aleph_{0}$ and this way card $\beta \leq \aleph_{0}$.

Now our proceeding is depending on which case of (h1)-(h3) takes place.

In case (h2), i.e., when $\operatorname{Int}_{C^{\beta}} C^{\beta} \neq \emptyset$ for $\beta^{\prime}+1=\beta$, we take a set U open in $\tau_{0} \mid C^{\beta^{\prime}}$ and such that $\mathrm{Cl} U \subset C^{\beta}$, and we take a subset $W \subset U$ such that $\operatorname{card} W=\aleph_{0}$ and $\mathrm{Cl} W=\mathrm{Cl} U$.

Since $C^{\beta} \subset \bigcap_{n=1}^{\infty} C_{n}^{\beta^{\prime}}$, so $W \subset U \subset C_{n}^{\beta^{\prime}}$ for every $n \in \mathbb{N}$. In consequence, for every $w \in W$ there exists a sequence $\left(z_{n}^{(w)}\right) \subset(B \cap \operatorname{Con} U) \backslash$ $\backslash\{0\}$ such that $z_{n}^{(w)} \rightarrow 0$ and $\hat{z}_{n}^{(w)} \rightarrow w$. Let's denote $Z=\left\{z_{n}^{(w)}: n \in\right.$ $\in \mathbb{N}, w \in W\}$. Since $Z \subset B$, so for every $z \in Z$ there exists a sequence $\left(x_{n}^{(z)}\right) \subset A$ such that $x_{n}^{(z)} \rightarrow z$. Now we define the set $A^{*}=\left\{x_{n}^{(z)}: n \in\right.$ $\in \mathbb{N}, z \in Z\}$. Let's assume that there exists a closed set F such that $0 \in \operatorname{Cor} F$ and $F \backslash\{0\} \subset X \backslash \mathrm{Cl} A^{*}$. For every $m \in \mathbb{N}$ the set $F_{m}=\{y \in$ $\left.\in \mathrm{Cl} U: \frac{1}{m} \leq \omega_{F}(y)\right\}$ is closed because for every convergent sequence $\left(y_{n}\right) \subset F_{m}$, where $m \in \mathbb{N}$, the segments $\left\langle\frac{1}{m} y_{n}, 0\right\rangle \subset F \cap \frac{1}{m} \bar{K}$ and it implies that $\left\langle\frac{1}{m} y_{0}, 0\right\rangle \subset \mathrm{Cl} \bigcup_{n=1}^{\infty}\left\langle\frac{1}{m} y_{n}, 0\right\rangle$, so the segment $\left\langle\frac{1}{m} y_{0}, 0\right\rangle \subset F \cap$ $\cap \frac{1}{m} \bar{K}$, where y_{0} denotes the limit of $\left(y_{n}\right)$. Since $\mathrm{Cl} U$ is a Baire set of the 2 nd category in $C^{\beta^{\prime}}$ i.e., it is not a countable sum of nowhere dense sets and $\bigcup_{n=1}^{\infty} F_{n}=\mathrm{Cl} U$, so there exists $n_{0} \in \mathbb{N}$ such that $\operatorname{Int}_{C^{\beta^{\prime}}} F_{n_{0}} \neq \emptyset$. Let $V \in \tau_{0} \mid C^{\beta^{\prime}}$ and $V \subset F_{n_{0}}$. Since $V \cap W \neq \emptyset$, so $\frac{1}{n} K \cap \operatorname{Con} V \cap Z \neq \emptyset$ for every $n \in \mathbb{N}$. Since $\frac{1}{n} K \cap \operatorname{Con} V \subset F$ for every $n>n_{0}$, so $F \cap Z \neq \emptyset$. Therefore $(F \backslash\{0\}) \cap \mathrm{Cl} A^{*} \neq \emptyset$, so there does not exists a closed set F such that $0 \in \operatorname{Cor} F$ and $(F \backslash\{0\}) \subset X \backslash \mathrm{Cl} A^{*}$. It means that the sets $F \backslash\{0\}$ and $X \backslash \mathrm{Cl} A^{*}$ do not form a Klee pair for 0 . It follows that there does not exist a 3 -neighbourhood of 0 disjoint with the set A^{*}. It implies that $0 \in \mathrm{Cl}_{3} A^{*}$. Reassuming, we proved for a set A there exists its countable subset A^{*} such that $0 \in \mathrm{Cl}_{3} A^{*}$.

Now we consider cases (h1) and (h3). First we define a function φ : $: S \rightarrow\left(0, \frac{2}{3}\right\rangle$. The definition of φ will be separately given on non-empty sets E^{α} and $C_{n}^{\alpha} \backslash C_{n+1}^{\alpha}$ for $n \in \mathbb{N}$ and $\alpha \leq \beta$.

Let $\delta(\alpha)$ denote the rank of the set D^{α}. It is easy to see that $E^{\alpha}=\bigcup_{0 \leq \delta<\delta(\alpha)} E_{\delta}^{\alpha}$, where $E_{\delta}^{\alpha}=\left(D^{\alpha}\right)^{(\delta)} \backslash\left(D^{\alpha}\right)^{(\delta+1)}$ and $\left(D^{\alpha}\right)^{(\gamma)}$ denotes the derived set of the order γ of the set D^{α}. Taking into account that $C^{\alpha}=\left(D^{\alpha}\right)^{\delta(\alpha)}$ we define the family
$\mathcal{D}=\left\{\left(D^{\alpha}\right)^{(\delta)}: \alpha \leq \beta\right.$ and $\left.0 \leq \delta \leq \delta(\alpha)\right\} \cup\left\{C_{n}^{\alpha}: \alpha \leq \beta\right.$ and $\left.n \in \mathbb{N} \backslash\{1\}\right\}$. It's easy to see that \mathcal{D} is well-ordered by the inclusion \supset. Obviously, $\rho_{G_{1}}(x) \leq \rho_{G_{2}}(x)$ if $G_{2} \subset G_{1}$ and $\rho_{G}(x)>0$ if $x \notin G$, where G_{1}, G_{2},
$G \in \mathcal{D}$. For $\alpha \leq \beta$ we define

$$
\varphi(x)=\left\{\begin{array}{ll}
\frac{1}{3} \rho_{T}(x) \omega_{X \backslash B}(x) & \text { if } T=\left(D^{\alpha}\right)^{(\delta+1)} \\
\frac{1}{5 n} \rho_{T}(x) & \text { if } T=C_{n+1}^{\alpha}
\end{array} \quad \text { and } x \in E_{\delta}^{\alpha}, ~ a n \in C_{n}^{\alpha} \backslash C_{n+1}^{\alpha} .\right.
$$

As the function φ on the sphere S is defined, we will show that the set $F=\bigcup_{x \in S}\left\langle 0, \varphi_{(x)} x\right\rangle$ is closed. Let's denote $F^{*}=\{\varphi(x) x: x \in S\}$ and let's take the sequence $\left(x_{n}\right) \subset F^{*}$ convergent to a point x_{0}.

If $x_{0}=0$ then it's obvious that $x_{0} \in F$. We will prove that $x_{0} \in F$ also when $x_{0} \neq 0$. In this aim we denote by G_{1} the first set in the family \mathcal{D} such that $\hat{x}_{0} \notin G_{1}$.

We will show that $G=\bigcap\left\{G^{\prime} \in \mathcal{D}: G_{1} \subset G^{\prime}\right\} \in \mathcal{D}$. First let's notice that $G_{1} \neq D^{\alpha}$ for $\alpha<\beta$. Let's suppose that it does not take place. Then $\hat{x}_{0} \in C_{n}^{\alpha^{\prime}}$ for every $\alpha^{\prime}<\alpha$ and $n \in \mathbb{N}$. From conditions (d) and (e) we have that $\hat{x}_{0} \in D^{\alpha}$, and it contradicts that $G_{1}=D^{\alpha}$. If $G_{1}=$ $=\left(D^{\alpha}\right)^{(\delta)}$ for some $\alpha<\beta$ and $1 \leq \delta \leq \delta(\alpha)$ then δ is not a limit number (and one can check it as above), so $\delta=\gamma+1$ and $G=\left(D^{\alpha}\right)^{(\gamma)}$. If $G_{1}=$ $=C_{n}^{\alpha}$ for some $\alpha<\beta$ and $n \in \mathbb{N}$ then or $G=C_{n-1}^{\alpha}$ either $G=\left(D^{\alpha}\right)^{(\delta(\alpha))}$ depending on n is greater than or equal to 1 , respectively.

The above constructed set G is the last set in \mathcal{D} such that $\hat{x}_{0} \in G$.
It is enough to examine two cases:
(i) $\hat{x}_{n} \notin G$ for all $n \in \mathbb{N}$,
(ii) $\hat{x}_{n} \in G$ for all $n \in \mathbb{N}$.

In Case (i), by definition of the function φ and from the equality $\left\|x_{n}\right\|=\varphi\left(\hat{x}_{n}\right)$, we have $\left\|x_{n}\right\|<\varrho_{G}\left(\hat{x}_{n}\right)$. Taking into account that $\hat{x}_{0} \in G$ we have $\left\|x_{n}\right\| \rightarrow 0$, so $x_{0}=0$. It is in the contrary with the assumption $x_{0} \neq 0$, so Case (i) takes no place.

Now we consider Case (ii). Since the set G_{1} is closed, so if the sequence $\left(\hat{x}_{n}\right) \subset G$ is convergent to \hat{x}_{0} then $\hat{x}_{n} \in G \backslash G_{1}$ for all but finitely many natural n. There are two possibilities: either $\hat{x}_{0} \in E_{\delta}^{\alpha}$ or $\hat{x}_{0} \in C_{m}^{\alpha} \backslash C_{m+1}^{\alpha}$ for any $m \in \mathbb{N}$, where $\alpha \leq \beta$ and $0 \leq \delta<\delta(\alpha)$. Since E_{δ}^{α} is composed of isolated points, so if $\hat{x}_{0} \in E_{\delta}^{\alpha}$, then $\hat{x}_{n}=\hat{x}_{0}$ for all but finitely many $n \in \mathbb{N}$. Hence $x_{n}=x_{0}$ for all but finitely many $n \in \mathbb{N}$ and, furthermore, $x_{0} \in F$. If $\hat{x}_{0} \in C_{m}^{\alpha} \backslash C_{m+1}^{\alpha}$ then $\hat{x}_{n} \in C_{m}^{\alpha} \backslash$ $\backslash C_{m+1}^{\alpha}$ for almost all $m \in \mathbb{N}$. Since the function $\rho_{C_{m+1}^{\alpha}}^{\alpha}$ is continuous, so $\rho_{C_{m+1}^{\alpha}}\left(\hat{x}_{n}\right) \rightarrow \rho_{C_{m+1}^{\alpha}}\left(\hat{x}_{0}\right)$. From the definition of the function φ it follows that $\varphi\left(\hat{x}_{n}\right) \rightarrow \varphi\left(\hat{x}_{0}\right)$. Hence, since $\left(x_{n}\right) \subset F^{*}$, i.e., $x_{n}=\varphi\left(\hat{x}_{n}\right) \hat{x}_{n}$ for every $n \in \mathbb{N}$, and $\hat{x}_{n} \rightarrow \hat{x}_{0}$, so the sequence $\left(x_{n}\right)$ converges to $\hat{x}_{0}=\varphi\left(\hat{x}_{0}\right) \hat{x}_{0} \in F^{*}$. This way we proved that $x_{0} \in F$ if $\hat{x}_{0} \in E_{\delta}^{\alpha}$
$(0 \leq \delta<\delta(\alpha)$ and $\alpha \leq \beta)$ and also if $\hat{x}_{0} \in C_{n}^{\alpha} \backslash C_{n+1}^{\alpha}(n \in \mathbb{N}, \alpha \leq$ $\leq \beta$). In view of the equality

$$
\begin{equation*}
\bigcup_{1 \leq \alpha \leq \beta} \bigcup_{0 \leq \delta<\delta(\alpha)} E_{\delta}^{\alpha} \cup \bigcup_{1 \leq \alpha \leq \beta} \bigcup_{n=1}^{\infty}\left(C_{n}^{\alpha} \backslash C_{n+1}^{\alpha}\right)=S \tag{*}
\end{equation*}
$$

we have $x_{0} \in F$. This way we proved that F is closed. Now we prove that $F \backslash\{0\} \subset X \backslash B$. If $x \in C_{n}^{\alpha} \backslash C_{n+1}^{\alpha}$, where $1 \leq \alpha \leq \beta$ and $n \in \mathbb{N}$, then $\omega_{X \backslash B}(x) \geq \frac{1}{n+1}$. Therefore $(0, \varphi(x) x) \subset\left(0, \frac{2}{5 n} x\right) \subset\left(0, \omega_{X \backslash B}(x) x\right)$ and, consequently, $(0, x\rangle \cap F \subset X \backslash B$. If $x \in E_{\delta}^{\alpha}$, where $1 \leq \alpha \leq \beta$ and $0 \leq \delta<\delta(\alpha)$, then $(0, \varphi(x) x) \subset\left(0, \omega_{X \backslash B}(x) x\right)$ and, as above $(0, x\rangle \cap$ $\cap F \subset X \backslash B$. This way, in view of $(*)$, we have $F \backslash\{0\} \subset X \backslash B$. From $0 \in \operatorname{Cor} F$ it follows that $(X \backslash B, F \backslash\{0\})$ is a Klee pair for the point 0 . Hence there exists a 3 -neighbourhood of 0 disjoint with $B \backslash\{0\}$ and therefore so it is disjoint with A. Consequently, $0 \notin \mathrm{Cl}_{3} A$ and it contradicts the assumption that $0 \in \mathrm{Cl}_{3} A$.

This statement completes the proof of Part I because we showed that if $0 \in \mathrm{Cl}_{3} A$ then there exists a countable subset of A such that its 3 -closure contains 0 .

Part II ($\left.\operatorname{dim} X \geq \aleph_{0}\right)$. Since $0 \in \mathrm{Cl}_{3}(B \backslash\{0\})$, so, by Lemma 4.1, it follows that there exists a finite dimensional space L such that $0 \in$ $\in \mathrm{Cl}_{3}((B \backslash\{0\}) \cap L)$.

Let $B_{1} \subset L$ be a countable and 0 -dense set in $B \cap L$. Since $B=$ $=\mathrm{Cl}_{0} A$, so, by Th. 4.1, for every $x \in B_{1}$ there exists a countable set $A_{x} \subset A$ such that $x \in \mathrm{Cl}_{0} A_{x}$. We put $A_{0}=\bigcup_{x \in B_{1}} A_{x}$. Then $B \cap L=$ $=\mathrm{Cl}_{0} B_{1} \subset \mathrm{Cl}_{0} A_{0}$. Let's assume that there exists $V_{1} \in \tau_{0}$ such that
$(* *) \quad V=\{0\} \cup V_{1} \in \tau_{3}$
and $V_{1} \cap A_{0}=\emptyset$. Then $V_{1} \cap \mathrm{Cl}_{0} A_{0}=\emptyset$, so $V_{1} \cap((B \cap L) \backslash\{0\})=$ $=\emptyset$ and, consequently, $V \cap((B \cap L) \backslash\{0\})=\emptyset$. It implies that $0 \notin$ $\mathrm{Cl}_{3}((B \cap L) \backslash\{0\})$. This way we obtained the contradiction. Therefore $V \cap A_{0} \neq \emptyset$ for an arbitrary set V of the form $(* *)$, where $V_{1} \in \tau_{0}$. Since every 3 -neighbourhood G of the point 0 contains the set V of the form $(* *)$, so $G \cap A_{0} \neq \emptyset$. In consequence, $0 \in \mathrm{Cl}_{3} A_{0}$ and therefore $t_{3}(0, A)=\aleph_{0} . \diamond$

What concerns the tightness of the directional topology, we obviously have $\aleph_{0} \leq t_{2}(X) \leq \sup \{\mathfrak{c}, \operatorname{dim} X\}$. It could be interesting to get the answer to the following
Question 4.1. Is it possible to determine more precisely the valuet $t_{2}(X)$?

Acknowledgments. We thank very much an anonymous referee for valuable remarks and suggestion.

References

[1] VAN DOUWEN, E. K.: The integers and topology, in: Handbook of set-theoretic topology, North-Holland, 1984, 111-167.
[2] ENGELKING, R.: General topology, PWN, Warsaw, 1977.
[3] HORBACZEWSKA, G.: Core density topologies, Real Analysis Exchange 20 (2) (1994/5), 416-417.
[4] HORBACZEWSKA, G.: Some modifications of the core topology on the plane, Real Analysis Exchange 24 (1) (1998/9), 185-204.
[5] HORBACZEWSKA, G. and WILCZYŃSKI, W.: I-density continuous transformations on \mathbb{R}^{2}, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 279-284.
[6] JANKOWSKI, L.: Some properties of the core topologies, Comm. Math. XIX (1977), 239-247.
[7] JANKOWSKI, L. and MARLEWSKI, A.: A note on the core topology and three other ones Fasciculi Mathematici 36 (2005), 49-63.
[8] JANKOWSKI, L. and MARLEWSKI, A.: Some properties of four topologies in real linear spaces, submitted for publication.
[9] KAKUTANI, S. and KLEE, V.: The finite topology of a linear space, Arch. Math. 14 (1963), 55-58.
[10] KLEE, V. L.: Convex sets in linear spaces, Duke Math. J. 18 (1951), 444-466.
[11] KLEE, V. L.: Convex sets in linear spaces, III, Duke Math. J. 20 (1953), 105-112.
[12] KLEE, V. L.: Some finite dimensional affine topological spaces, Portugaliae Math. 14 (1955), 27-30.
[13] KLOSE, J.: A note on the core topology used in optimization, Optimization 23 (1992), 27-40.
[14] KOTTMAN, C. A.: A characterization of the Euclidean topology among the affine topologies, Israel J. Math. 10 (1971), 212-217.
[15] KUCZMA, M.: A note on the core topology, Annales Math. Silesianae 5 (1991), 28-36.
[16] KURATOWSKI, K.: Topology (in Russian), Mir, Moskva, 1966.
[17] LELONG, P.: Topologies semi-vectorielles. Application à l'analyse complexe, Annales de l'Institut Fourier 25, no. 3-4 (1975), 381-407.
[18] PAWLAK R. J.: The almost continuity of a function of two variables with respect to its sections and core-topology, Atti Sem. Mat. Fis. Univ. Modena XLVI (1998), 457-468.
[19] ŚWIA̧TKOWSKI, T.: Some properties of cross- and core-topologies on \mathbb{R}^{2}, Zesz. Nauk. Polit. Lódź., Matematyka 25 (1993), 77-81.
[20] WAGNER-BOJAKOWSKA, E. and WILCZYŃSKI, W.: Approximate core topologies, Real Analysis Exchange 20 (1) (1994/5), 192-203.
[21] WAGNER-BOJAKOWSKA, E. and WILCZYŃSKI, W.: Approximate core-a.e. topology, Zesz. Nauk. Polit. Eódź., Matematyka 27 (1995), 129-138.
[22] WAGNER-BOJAKOWSKA, E. and WILCZYŃSKI, W.: Separation axioms for some modifications of the core topology, Atti Sem. Mat. Fis. Univ. Modena XLVI (1998), 361-370.

[^0]: E-mail address: ljankows@math.put.poznan.pl

