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Abstract: We give a direct proof of the fact that the following three categories
are isomorphic: the category of separated local proximity spaces and equicon-
tinuous mappings, the category of LC-proximity spaces and SR-proximally con-
tinuous functions, and the category of separated L-supertopological spaces and
supertopological mappings. Many basic statements of the theory of Efremovich
proximity spaces are generalized for the class of local proximity spaces.

1. Introduction

In 1967, S. Leader ([9]) described the ordered set of all (up to
equivalence) locally compact Hausdorff extensions of Tychonoff spaces
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by means of the notion of separated local proximity in which the bound-
edness and proximity are both primitive terms. Some other descriptions
of the locally compact Hausdorff extensions were given by V. Zaharov
([11, 12]) (by means of some special vector lattices of functions), by
G. Dimov and D. Doitchinov ([3]) (on the basis of the notion of super-
topological space), by Dimov ([2]) (using the notion of LC-proximity) and
recently by G. Dimov and D. Vakarelov ([4]) – a purely proximity-type
description by means of the so-called lc-proximities. In all these theories,
a description (in the language of the regarded structure) of the functions
having a continuous extension over corresponding locally compact ex-
tensions was given. Therefore, some categories arise: their objects are
the corresponding structures, and their morphisms are the functions just
mentioned. It is clear that all these categories are isomorphic (indeed,
they are all isomorphic (as it follows immediately from the theories listed
above) to the category LCExt of equivalence classes of locally compact
Hausdorff extensions (i.e., the objects of the category LCExt are the
equivalence classes [(X, l)], where l : X → L(X,l) is a dense homeomor-
phic embedding of a Tychonoff space X into a locally compact Hausdorff
space L(X,l)) with morphisms determined by the continuous functions

f : X → Y having a continuous extension f̂ : L(X,l) → L(Y,l′) over the

corresponding locally compact Hausdorff extensions (i.e., f̂ ◦ l = l′ ◦ f)).
Here we construct directly these isomorphisms, i.e. the locally compact
extensions are not used in our proof. This is done for the categories aris-
ing from the descriptions given by Leader ([9]), Dimov and Doitchinov
([3]) and Dimov ([2]). In this way we describe internally the connections
between these three structures, i.e. starting with one of them, we build
directly the other two. Surprisingly, the proof is not easy (at least that
one found by us). It contains some generalizations (for the class of local
proximity spaces) of the most of the basic statements of the theory of
Efremovich proximity spaces. We hope that the direct descriptions, ob-
tained here, of the transitions from each of these structures to any other
of them could be used further. Let us also mention that the direct proof
of the isomorphism between the categories arising from the theories of
Leader ([9]) and Dimov and Vakarelov ([4]) was given in [4] (in fact, in
[4], the existence of such an isomorphism was used for showing that lc-
proximities describe the locally compact Hausdorff extensions). We do
not discuss here the theory of Zaharov.

The paper is organized as follows. The second section contains all



On some categories arising in the theory of locally compact extensions 221

preliminary results and notions. In it we do not describe the theories of
locally compact extensions developed in the cited above papers because
we have no need of them. We only give the definitions of the struc-
tures defined in [9], [3] and [2], and list those statements about them
which are used later. In the third section we prove our main theorems –
Th. 3.8 and Th. 3.9, where the isomorphisms mentioned above between
the corresponding categories are established.

We now fix the notations.
If C denotes a category, we write X ∈ |C| if X is an object of C, and

f ∈ C(X, Y ) if f is a morphism of C with domain X and codomain Y .
If X is a set then by Exp(X) we denote the power set of X. The

set of all natural numbers is denoted by ω. By a “neighborhood” of a
point in a topological space we mean a “neighborhood in the sense of
Bourbaki”, i.e. its interior contains the given point.

For all notions and notations not defined here see [1, 7, 10].

2. Preliminaries

Definition 2.1 (see [10]). A basic proximity (or, simply, proximity) on
a set X is a symmetric binary relation δ on Exp(X) which satisfies the
following three conditions:
(P1) ∅δA, for every A ⊆ X (where δ is the negation of δ);
(P2) AδA, for every A 6= ∅;
(P3) Aδ(B ∪ C) iff AδB or AδC.
A basic proximity is called separated if it satisfies the condition
(P4) xδy implies x = y.
When δ is a (separated) basic proximity on a set X then the pair (X, δ)
is called a (separated) proximity space. We write A≪δ B (or simply A ≪
≪ B) if Aδ(X \ B).

If Y ⊆ X then we will denote by δY the restriction of δ to Y .
A function f : (X1, δ1) → (X2, δ2) between two basic proximity

spaces (Xi, δi), i = 1, 2, is called proximally continuous if, for every
A, B ⊆ X1, Aδ1B implies f(A)δ2f(B).

Let (X, δ) be a proximity space. Then the operator clδ on Exp(X),
defined by clδ(A) = {x ∈ X | xδA}, is a Čech closure operator. Hence
τδ = {X \ A | A = clδ(A)} is a topology on X.
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Definition 2.2. Let X be a set. A separated proximity δ on X satisfying
the axiom
(R) If x ∈ X and x ≪ A then there exists a B ⊆ X such that

x ≪ B ≪ A
is called an R-proximity and the pair (X, δ) – an R-proximity space ([8]);
if it satisfies the axiom
(EF) If A, B ⊆ X and A ≪ B then there exists a C ⊆ X such that

A ≪ C ≪ B
then it is called an EF -proximity (or Efremovich proximity) and the pair
(X, δ) – an EF -proximity space ([6]); finally, if δ satisfies the axiom

(LO) For every A, B ⊆ X, clδ(A)δclδ(B) implies AδB,

then it is called a Lodato proximity (see [10]).

Note that if δ is an R-proximity on a set X then clδ is a Kuratowski
closure operator ([8]).

Definition 2.3 (see [10]). A non-empty family G of subsets of a set X
is called a grill in X if it satisfies the following three conditions:
(G1) ∅ 6∈ G;
(G2) If A1 ∪ A2 ∈ G, then A1 ∈ G or A2 ∈ G;
(G3) If A ∈ G, B ⊆ X and A ⊆ B then B ∈ G.

Lemma 2.4 (see [10]). Let G be a grill in X. If A0 ∈ G then there exists
an ultrafilter U such that (a) A0 ∈ U , and (b) U ⊆ G.

Definition 2.5. Let (X, δ) be a proximity space and ∅ 6= σ ⊆ Exp(X).
The family σ is called a cluster in (X, δ) if it satisfies the following three
conditions:
(CL1) If A, B ∈ σ then AδB;
(CL2) If A ⊆ X and AδB for every B ∈ σ then A ∈ σ;
(CL3) If A ∪ B ∈ σ then either A ∈ σ or B ∈ σ.

Obviously, every cluster in a proximity space (X, δ) is a grill in X.

Theorem 2.6 (see [10]). A family σ of subsets of an EF-proximity space
(X, δ) is a cluster iff there exists an ultrafilter U in X such that

(1) σ = {A ⊆ X | AδB for every B ∈ U}.

If σ is a cluster in (X, δ) and A0 ∈ σ then there exists an ultrafilter
U in X containing A0 and satisfying equality (1).

Definition 2.7 (see [10]). We say that a family A of subsets of a prox-
imity space (X, δ) is a δ-system if for every A ∈ A there exists a B ∈ A
such that B ≪ A.
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Definition 2.8 (see [10]). A round filter F in a proximity space (X, δ)
is a filter which is a δ-system. A round filter F is called an end in (X, δ)
(or δ-end) if it satisfies the following condition:
(E) A ≪ B implies that either (X \ A) ∈ F or B ∈ F .
The set of all ends in (X, δ) will be denoted by Σend(X, δ) or simply by
Σend(δ).

Proposition 2.9 (see [10]). Every δ-system which has the finite inter-
section property is contained in a maximal round filter.

Theorem 2.10 (see [10]). Let δ be an EF-proximity on X. Then F is
a maximal round filter in (X, δ) if and only if F is an end in (X, δ).

Proposition 2.11 (see [10]). Let δ be an EF-proximity on X and A, B ⊆
⊆ X. Then A ≪ B if and only if every end in X contains either X \ A
or B.

Definition 2.12 ([2]). Let (X, δ) be an R-proximity space and Σ be a
set of round filters in (X, δ) such that:
(SR1) All neighborhood filters of the points of (X, τδ) are in Σ, and
(SR2) For A, B ⊆ X, AδB is equivalent to the existence of an element

F of Σ which does not contain the sets X \ A and X \ B.
Then the pair α = (δ, Σ) is called an SR-proximity on the set X and the
pair (X, α) – an SR-proximity space. If (X, τ) is a topological space and
α = (δ, Σ) is an SR-proximity on the set X such that τ = τδ, then we
say that α is an SR-proximity on the space X.

A function f : (X, α1) → (Y, α2), where αi = (δi, Σi), i = 1, 2, are
SR-proximities, is called SR-proximally continuous if for every F ∈ Σ1

there exists a G ∈ Σ2 such that G is contained in the filter in Y generated
by the filter-base f(F).

Proposition 2.13 ([2]). The condition (SR2) from Def. 2.12 is equiva-
lent to the following condition:
(SR2’) For A, B⊆X, AδB if and only if there exists an element F ∈ Σ

such that for every F ∈ F , A ∩ F 6= ∅ and B ∩ F 6= ∅ hold.

Proposition 2.14 ([2]). If f : (X, α1) → (Y, α2), where αi = (δi, Σi),
i = 1, 2 are SR-proximities, is an SR-proximally continuous function,
then f : (X, δ1) → (Y, δ2) is a proximally continuous mapping.

Definition 2.15 ([2]). An SR-proximity α = (δ, Σ) on a set X is called
an LC-proximity on the set X if for every F ∈ Σ there exists a U ∈ F
with the following two properties:
(LC1) the restriction δU of δ to U is an EF-proximity;
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(LC2) if G ∈ Σend(δ) and U ∈ G then G ∈ Σ.
The pair (X, α), where α is an LC-proximity on the set X, is called an
LC-proximity space.

Definition 2.16 ([9]). A non-empty collection B of subsets of a set X
is called a boundedness in X if it satisfies the following two conditions:
(B1) A ∈ B and B ⊆ A implies B ∈ B, and
(B2) A, B ∈ B implies A ∪ B ∈ B.

The elements of B are called bounded sets.

Definition 2.17 ([9]). A (separated) local proximity space is a triple
(X, β,B), where X is a set, β is a (separated) basic proximity on X, and
B is a boundedness in X, subject to the following axioms:
(LP1) If A ∈ B, C ⊆ X and A ≪ C then there exists a B ∈ B

such that A ≪ B ≪ C;
(LP2) If A, B ⊆ X and AβC, then there is a B ∈ B such

that B ⊆ C and AβB.
A function f : X1 → X2 between two local proximity spaces

(X1, β1,B1) and (X2, β2,B2) is said to be an equicontinuous mapping if
the following two conditions are fulfilled for any A, B ⊆ X:
(EQ1) Aβ1B implies f(A)β2f(B);
(EQ2) B ∈ B1 implies f(B) ∈ B2.

A filter (resp. cluster) F in a local proximity space (X, β,B) is
called bounded if F ∩ B 6= ∅.

Proposition 2.18 ([9]). Let (X, β,B) be a local proximity space. Then:
(a) Every finite subset of (X, β,B) is bounded;
(b) for every B ∈ B there exists a D ∈ B such that Bβ(X \ D);
(c) β is a Lodato proximity.

Definition 2.19 ([5]). Let X be a set. Suppose that a set M is given
such that J (X) ⊆ M ⊆ Exp(X), where J (X) is the set of all one-point
subsets of X. Then Σ = (M,V) is called a supertopology on X (and
the pair (X, Σ) – a supertopological space), if to every A ∈ M there
corresponds a filter V(A) in X such that the following two conditions are
satisfied:

(ST1) A ⊆ U for every A ∈ M and every U ∈ V(A);
(ST2) if U ∈ V(A), then there is such a V ∈ V(A) that U ∈ V(B)

provided that B ∈ M and B ⊆ V .
Note that every supertopology Σ = (M,V) on a set X induces a

topology on the set X whose neighborhood filters are precisely the filters
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{V({x}) | x ∈ X}.
A supertopology Σ = (M,V) on X is said to be symmetric if it

satisfies the following additional condition:
(STS) If A, B ∈ M and U ∩ B 6= ∅ for every U ∈ V(A),

then V ∩ A 6= ∅ for every V ∈ V(B).

Definition 2.20 ([3]). We call a symmetric supertopology Σ = (M,V)
on a set X L-supertopology (and the pair (X, Σ) – an L-supertopological
space) if the following conditions are fulfilled:
(LST1) if A ∈ M and B ⊆ A, then B ∈ M;
(LST2) if A, B ∈ M, then A ∪ B ∈ M;
(LST3) if A ∈ M, then there is a U ∈ V(A) such that U ∈ M.

Let (MX ,VX) be a supertopology on X and (MY ,VY ) be a super-
topology on Y . A mapping f : X → Y is called supertopological if it
satisfies the following conditions:
(STC1) f(MX) ⊆ MY ;
(STC2) f−1(VY (f(A))) ⊆ VX(A) for every A ∈ MX .

Definition 2.21. An L-supertopology Σ = (M,V) on a set X is called
separated if for every two different points x and y of X there exists a
V ∈ V({x}) such that y 6∈ V .

3. The results

For proving our main theorems (Th. 3.8 and Th. 3.9), we need some
statements about local proximity spaces generalizing some well-known
results of the theory of Efremovich proximity spaces.

Notation 3.1 (see [10]). Let F be a family of subsets of a set X. We
put

F∗ = {A ⊆ X | X \ A 6∈ F}.

Note that F∗∗ = F , and if F is a filter then F ⊆ F∗.
The next proposition generalizes [10, Th. 6.11].

Proposition 3.2. If F is a bounded cluster in a local proximity space
(X, δ,B) then F∗ is a bounded end in (X, δ,B).

Proof. Following the proof of [10, Th. 6.11], we get that F∗ is a filter
satisfying condition (E) (see Def. 2.8).

Let us prove that F∗ is a bounded filter. We have that there exists
an E ∈ F ∩B. As it follows from Prop. 2.18, there exists an E ′ ∈ B such
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that E ≪ E ′. Hence either X \ E ∈ F∗ or E ′ ∈ F∗. Since E ∈ F , we
get that X \ E 6∈ F∗. Thus E ′ ∈ F∗ and therefore F∗ is bounded.

We will now show that F∗ is a δ-system. Let B ∈ F∗ and E 6≪ B
for every E ∈ F . Then Eδ(X \ B) for every E ∈ F . Hence X \ B ∈ F .
This contradiction shows that for every B ∈ F∗ there exists an E ⊆ X
such that E ≪ B and X \ E 6∈ F∗. Further, we know that there exists
an E ′ ∈ F∗ ∩ B. Let A ∈ F∗. We set A′ = A ∩ E ′. Then A′ ∈ F∗ ∩ B.
Hence there exists a C ⊆ X such that C ≪ A′ and X \ C 6∈ F∗. By
(LP1) (see Def. 2.17), there exists a D ∈ B such that C ≪ D ≪ A′.
Since F∗ satisfies condition (E) and X \ C 6∈ F∗, we get that D ∈ F∗.
From D ≪ A′ ⊆ A it follows that D ≪ A. Therefore F∗ is a δ-system.
Hence, F∗ is an end. ♦

The following lemma is a generalization of [10, Lemma 6.8].

Lemma 3.3. Let F be a bounded round filter in a local proximity space
(X, δ,B), A, B ⊆ X and A ≪ B. If A∩ F 6= ∅ for every F ∈ F , then F
is a subset of some bounded round filter which contains B.

Proof. Let G = {A∩F | F ∈ F} and G0 = {E ⊆ X | ∃C ∈ G such that
C ≪ E}. We will prove that G0 has the required properties. Following
the proof of [10, Lemma 6.8], we get that G0 is a filter finer than F and
B ∈ G0. Hence G0 is a bounded filter. So, we need only to show that G0

is a δ-system. Let P ∈ G0 and F ∩ A ≪ P for some F ∈ F . Since F is
bounded, there exists a C ∈ F ∩ B such that C ⊆ F . Then A ∩ C ≪ P .
By condition (LP1) (see Def. 2.17), there exists an R ∈ B such that
A ∩ C ≪ R ≪ P . Thus R ∈ G0 and R ≪ P . Hence G0 is a δ-system. ♦

The next proposition generalizes Th. 2.10 (= [10, Th. 6.9]).

Proposition 3.4. Let F be a bounded filter in a local proximity space
(X, δ,B). Then F is a maximal round filter in the proximity space (X, δ)
iff F is an end in (X, δ).

Proof. Let F be a maximal round filter in the proximity space (X, δ).
Let A ≪ B and B 6∈ F . By Lemma 3.3, there exists an E ∈ F such that
E ∩ A = ∅. Then E ⊆ (X \ A). Hence X \ A ∈ F . Thus F is an end.
The proof in the converse direction is the same as that of [10, Th. 6.7]. ♦

With the next proposition we generalize [10, Cor. 5.18].

Proposition 3.5. If E is a bounded subset of a local proximity space
(X, δ,B) then every cluster σ′ in the proximity space (E, δE) is contained
in a unique cluster σ in (X, δ), and

σ = {A ⊆ X : AδB, for every B ∈ σ′}.



On some categories arising in the theory of locally compact extensions 227

Proof. For every G ⊆ X such that E ⊆ G, set
σG = {C ⊆ G | CδD for every D ∈ σ′};

then, obviously, σ′ ⊆ σG and thus σ′ ⊆ σ. We will prove that σ is a
cluster in (X, δ). Indeed, let C1, C2 ∈ σ. By Prop. 2.18, there exists
an E1 ∈ B such that E ≪ E1. Let D ∈ σ′. Then D ⊆ E and thus
D ≪ E1, i.e. Dδ(X \E1). Hence Dδ(Ci \E1), i = 1, 2. Since C1, C2 ∈ σ,
and D ∈ σ′, we have that CiδD, i = 1, 2. Then, by (P3), Dδ(Ci ∩ E1),
i = 1, 2. Set C ′

i = Ci ∩ E1, i = 1, 2. Then C ′

i ∈ σE1
, i = 1, 2. Since

E1 ∈ B, δE1
is an EF-proximity. Thus, by [10, Cor. 5.18], σE1

is a cluster
in (E1, δE1

). Therefore C ′
1δC

′
2 and hence C1δC2. Let F ⊆ X and FδC

for every C ∈ σ. Since σ′ ⊆ σ we get that FδC for every C ∈ σ′ and
thus F ∈ σ. Let F1 ∪F2 ∈ σ. Then, for every C ∈ σ′, Cδ((F1 ∪F2) \E1).
Since, for every C ∈ σ′, Cδ(F1 ∪ F2), we get that Cδ((F1 ∪ F2) ∩E1) for
every C ∈ σ′. Hence (F1 ∪ F2) ∩ E1 ∈ σE1

. Then, by [10, Cor. 5.18],
F1 ∩ E1 ∈ σE1

or F2 ∩ E1 ∈ σE1
. Therefore F1 ∈ σ or F2 ∈ σ. So, σ is a

cluster. Finally, if σ1 is a cluster in (X, δ) containing σ′ then, obviously,
σ1 ⊆ σ and thus σ1 = σ. ♦

With the next proposition we generalize [10, Th. 5.14].

Proposition 3.6. Let (X, δ,B) be a local proximity space, E ∈ B, A, B ⊆
⊆ E and AδB. Then there exists a cluster σ in (X, δ) such that A, B ∈ σ.

Proof. We have that the restriction δE of δ to E is an EF-proximity.
Then, by [10, Th. 5.14], there exists a cluster σE of (E, δE) such that
A, B ∈ σE . From Prop. 3.5 it follows that there exists a cluster σ of X
such that σE ⊆ σ. Then A, B ∈ σ. ♦

Notation 3.7. Let C1 be the category of LC-proximity spaces and SR-
proximally continuous mappings between them, C2 be the category of
separated local proximity spaces and equicontinuous mappings between
them, and C3 be the category of separated L-supertopological spaces and
supertopological mappings between them.

Theorem 3.8. The categories C1 and C2 are isomorphic.

Proof. We will construct two covariant functors
F : C1 → C2 and G : C2 → C1

such that G ◦ F = idC1
and F ◦ G = idC2

.
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Step 1. Construction of the functor F : C1 → C2 on the objects of
the category C1.

Let (X, α) ∈ |C1| and α = (δ, Σ). Set

(2)

B′ =
{

B ⊆ X | ∃F ∈ Σ and ∃U, V, W ∈ F such that

B ⊆ W ≪ V ≪ U and U satisfies conditions

(LC1), (LC2) of Def. 2.15
}

.

Now let
F (X, α) = (X, δ,B),

where B is the family of all finite unions of the elements of B′. We will
prove that (X, δ,B) is a local proximity space. It is obvious that B is
a boundedness. Further, by Def. 2.12, δ is a separated proximity. We
shall show that condition (LP1) of Def. 2.17 is fulfilled. Let B ∈ B and
B ≪ D. We can assume w.l.o.g. that B ∈ B′. Then there exist F ∈ Σ
and U, V, W ∈ F such that B ⊆ W ≪ V ≪ U and U satisfies conditions
(LC1), (LC2). It follows that B ≪ V . Thus B ≪ (V ∩ D), i.e. Bδ(X \
\(V ∩D)). Now the equality X \(V ∩D) = (X \U)∪(U \(V ∩D)) implies
that Bδ(U \ (V ∩ D)), i.e. B ≪δU

(V ∩ D). Since δU is an EF-proximity,
we get that there exists a C ⊆ U such that B ≪δU

C ≪δU
(V ∩ D). So,

Bδ(X \U) and Bδ(U \C). Then Bδ((X \U)∪ (U \C)), i.e. Bδ(X \C).
Thus B ≪ C. Analogously, C ≪ (V ∩ D) ⊆ D. Hence B ≪ C ≪ D. It
remains to show that C ∈ B′. By (LC1), there exists a W1 ⊆ U such that
C ≪δU

W1 ≪δU
V . This implies that C ≪ W1 ≪ V because C ≪ V ≪

≪ U . Set W ′ = W1 ∪ W . Then W ′ ∈ F and C ⊆ W ′ ≪ V ≪ U . Thus
C ∈ B′ ⊆ B. So, condition (LP1) from Def. 2.17 is fulfilled. For checking
condition (LP2) from the same definition, let AδB. By Prop. 2.13, there
exists an F ∈ Σ such that for every F ∈ F , A ∩ F 6= ∅ and B ∩ F 6= ∅.
Since α is an LC-proximity and F is a round filter, we get that there
exists a C ∈ B ∩F . Then C ∩F ∈ F for every F ∈ F and thus B ∩C ∩
∩ F 6= ∅ for every F ∈ F . Hence B ∩C ∈ B and, by (SR2’), Aδ(B ∩C).
Therefore, (X, δ,B) is a local proximity space.

Step 2. Construction of the functor G : C2 → C1.
Let (X, δ,B) ∈ |C2|. Set

(3)
G(X, δ,B) = (X, α), where α = (δ, Σ) and

Σ =
{

F ∈ Σend | B ∩ F 6= ∅
}

.

We will prove that α is an LC-proximity. Let x ∈ X and x ≪ A. By
Prop. 2.18(a), {x} ∈ B. Then (LP1) implies that there exists a B ∈
∈ B such that {x} ≪ B ≪ A. Thus δ is an R-proximity. We will
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prove that α is an SR-proximity. Using Prop. 2.18(c), one can easily
show that condition (SR1) (see Def. 2.12) is fulfilled. We will prove that
condition (SR2’) (see Prop. 2.13) is satisfied; this will imply, according to
Prop. 2.13, that condition (SR2) from Def. 2.12 is fulfilled. Let A, B ⊆ X
and there exists an F ∈ Σ such that F ∩A 6= ∅ and F ∩B 6= ∅ for every
F ∈ F . Suppose that AδB, i.e. A ≪ (X \ B). Since the filter F is an
end, we get that either X \ A ∈ F or X \ B ∈ F , a contradiction. So,
AδB. Conversely, let AδB. We will prove that there exists an F ∈ Σ
such that for every F ∈ F , F ∩ A 6= ∅ and F ∩ B 6= ∅. By condition
(LP2) (see Def. 2.17), there exist C, D ∈ B such that (A ∩ C)δ(B ∩ D).
Set E = C ∪ D, A′ = A ∩ E and B′ = B ∩ E. Then E ∈ B and thus,
by Prop. 2.18(b), there exists some E1 ∈ B such that E ≪ E1. Now,
condition (LP1) (see Def. 2.17) implies that there exists a P ∈ B such
that E ≪ P ≪ E1. Since the restriction δE1

of δ to E1 is an Efremovich
proximity, Prop. 2.11 yields that there exists an end FE1

in (E1, δE1
) such

that A′ ∩ F 6= ∅ and B′ ∩ F 6= ∅ for every F ∈ FE1
. Obviously, A′ ≪δ P

implies that A′ ≪δE1
P and hence either E1 \A′ ∈ FE1

or P ∈ FE1
. Since

A′ ∩ (E1 \ A′) = ∅, we get that P ∈ FE1
. Set FP = {P ∩ F | F ∈

∈ FE1
}. Obviously, FP is a filter-base of FE1

. We will prove that FP

is a filter-base of a round filter in (X, δ). Let F ∈ FP ⊆ FE1
. There

exists a G ∈ FE1
such that G≪δE1

F , i.e. Gδ(E1 \ F ). We have that

G ⊆ F ⊆ P ≪δ E1. Therefore Gδ(X \E1). Thus Gδ((X \E1)∪ (E1 \F )),
i.e. G ≪ F . Hence FP is a filter-base of a round filter F in (X, δ) and
FE1

⊆ F . We will prove that F is an end. Let A1, B1 ⊆ X and A1 ≪ B1,
i.e. A1δ(X \B1). Then (A1 ∩E1)δ((X \B1)∩E1). The next three cases
are possible:

1. A1 ∩ E1 = ∅. Then E1 ⊆ (X \ A1). Hence (X \ A1) ∈ F .
2. (X \ B1) ∩ E1 = ∅. Then E1 ⊆ B1 so B1 ∈ F .
3. A1∩E1 6=∅ and (X\B1)∩E1 6=∅. Obviously, (A1 ∩ E1)δ(E1 \ B1)

is equivalent to (A1 ∩ E1)≪δE1
(B1 ∩ E1). Then E1 \ A1 ∈ FE1

or (B1 ∩
∩ E1) ∈ FE1

. Hence (X \ A1) ∈ F or B1 ∈ F .
In all cases we have that X \ A1 ∈ F or B ∈ F . Thus F is an

end in (X, δ). From E1 ∈ F ∩ B1 it follows that F ∈ Σ. Since FP is a
filter-base for F and FP ⊆ FE1

, we get that, for every F ∈ F , A′∩F 6= ∅
and B′ ∩ F 6= ∅, and hence A ∩ F 6= ∅ and B ∩ F 6= ∅. So, condition
(SR2’) is fulfilled. Therefore, (X, α) is an SR-proximity space.

We will now prove that α is an LC-proximity. Let F ∈ Σ. Then
there exists a U ∈ F ∩ B. Obviously, the restriction δU of δ to U is an
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Efremovich proximity. From this and from the definition of Σ it follows
that α = (δ, Σ) is an LC-proximity.

Let

(X1, β1,B1), (X2, β2,B2) ∈ |C2|, and f ∈ C2((X1, β1,B1), (X2, β2,B2)).

We will prove that f ∈ C1(G(X1, β1,B1), G(X2, β2,B2)). For simplicity,
we shall write “≪i” instead of “≪βi

”, i = 1, 2.
Let F1 be a bounded end in (X1, β1,B1). Set

(4)
F2 =

{

A ⊆ X2 | ∃ V ∈ B2 such that V ≪2 A

and ∀F ∈ F1, V ∩ f(F ) 6= ∅
}

.

We will prove that F2 ∈ Σ2 and F2 is contained in the filter with the
filter-base f(F1). Indeed, there exists a C ∈ F1 ∩ B1; then f(C) ∈ B2

and f(C)∩f(F ) 6= ∅ for every F ∈ F1. Since f(C)≪2 X2, it follows that
X2 ∈ F2. So, F2 6= ∅. It is obvious that ∅ 6∈ F2 and that F2 is closed
under supersets. Let A1, A2 ∈ F2. Then, by (4), there exist V1, V2 ∈
∈ B2 such that Vi ≪2 Ai and Vi ∩ f(F ) 6= ∅ for every F ∈ F1, i = 1, 2.
Now, condition (LP1) (see Def. 2.17) implies that there exist W1, W2 ∈
∈ B2 such that Vi ≪2 Wi ≪2 Ai, i = 1, 2. Then W1 ∩ W2 ≪2 A1 ∩ A2 and
Wi ∩ f(F ) 6= ∅ for every F ∈ F1, i = 1, 2. Suppose that there exists an
F0 ∈ F1 such that (W1∩W2)∩f(F0) = ∅. Then f(F0) ⊆ X2 \ (W1∩W2).
Hence (X2 \ (W1 ∩ W2)) ∩ f(F ) 6= ∅ for every F ∈ F1, i.e. ((X2 \ W1) ∪
∪ (X2 \ W2)) ∩ f(F ) 6= ∅ for every F ∈ F1. From this we get that either
(X2 \ W1) ∩ f(F ) 6= ∅ for every F ∈ F1, or (X2 \ W2) ∩ f(F ) 6= ∅ for
every F ∈ F1. Indeed, suppose that there exist F1, F2 ∈ F1 such that
(X2 \W1)∩f(F1) = ∅ and (X2 \W2)∩f(F2) = ∅; then F = F1 ∩F2 ∈ F1

and ((X2 \W1)∪ (X2 \W2))∩ f(F ) = ∅, a contradiction. We can assume
w.l.o.g. that (X2 \ W1) ∩ f(F ) 6= ∅ for every F ∈ F1, i.e. f(F ) \ W1 6= ∅
for every F ∈ F1. We have that V1 ≪2 W1. Hence, by (EQ1) (see Def.
2.17), f−1(V1)≪1 f−1(W1). Since F1 is an end, it follows that either X1\
\f−1(V1) ∈ F1 or f−1(W1) ∈ F1. If F1 = f−1(W1) ∈ F1 then f(F1) ⊆ W1

and f(F1) \ W1 = ∅, so f−1(W1) /∈ /∈ F1. Hence F2 = X1 \ f−1(V1) ∈
∈ F1. Then f(F2) = f(X1) \ V1 ⊆ X2 \ V1 and thus f(F2) ∩ V1 = ∅, a
contradiction. Therefore, W1 ∩ W2 ∩ f(F ) 6= ∅ for every F ∈ F1. Hence
A1 ∩ A2 ∈ F2. Thus F2 is a filter.

We will now prove that F2 is a bounded round filter. Let U ∈ F2.
Then there exists a V ∈ B2 such that V ≪2 U and V ∩ f(F ) 6= ∅ for
every F ∈ F1. By condition (LP1) from Def. 2.17, there exists a W ∈ B2

such that V ≪2 W ≪2 U . Then W ∈ F2 ∩B2 and W ≪2 U . Thus F2 is a
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bounded round filter.
We will prove that F2 is contained in the filter with the filter-base

f(F1). Let U ∈ F2. Then there exists a V ∈ B2 such that V ≪2 U and
V ∩ f(F ) 6= ∅ for every F ∈ F1. Hence f−1(V )≪1 f−1(U). This implies
that either X1 \ f−1(V ) ∈ F1 or f−1(U) ∈ F1. Supposing that that F1 =
= X1 \ f−1(V ) ∈ F1, we obtain that f(F1) ∩ V = ∅. This contradiction
shows that f−1(U) ∈ F1. Then f(f−1(U)) ∈ f(F1) and f(f−1(U)) ⊆ U .
Thus F2 is contained in the filter, generated by the filter-base f(F1).

Now we will prove that F2 is an end. Let A, B ⊆ X2 and A≪2 B.
There are two possible cases:

1. A ∈ B2. Then there exists a C ∈ B2 such that A≪2 C ≪2 B.
Suppose that B 6∈ F2. Then there exists an F0 ∈ F1 such that C ∩
∩ f(F0) = ∅. Hence f(F0) ⊆ X2 \ C. We can assume w.l.o.g. that
f(F0) ∈ B2. Since X2 \ C ≪2 X2 \ A, we get that f(F0)≪2 X2 \ A.
Obviously, f(F0) ∩ f(F ) 6= ∅ for every F ∈ F1. Hence X2 \ A ∈ F2. So,
we proved that either B ∈ F2 or X2 \ A ∈ F2.

2. A 6∈ B2. There exists a C ∈ F2 ∩ B2. Obviously, C ∩ A≪2 B
and C ∩ A ∈ B2. Then, by the previous case, we get that either B ∈ F2

or (X2 \ (C ∩A)) ∈ F2. Let (X2 \ (C ∩A)) ∈ F2. Then (X2 \ (C ∩A))∩
∩ C = C \ A ∈ F2. Since C \ A ⊆ X2 \ A, it follows that X2 \ A ∈ F2.
So, we proved that either B ∈ F2 or X2 \ A ∈ F2.

Hence F2 is a bounded end in (X2, β2,B2) contained in the filter
generated by the filter-base f(F1). So f is an SR-proximally continuous
mapping. Set G(f) = f .

Step 3. Proof of the equality G ◦ F = idC1
on the objects of the

category C1.
Let (X, α)∈|C1|, where α=(δ, Σ). Then G(F (X, α))=G(X, δ,B)=

= (X, α1), where α1 = (δ, Σ1).
We will prove that Σ = Σ1. Let F ∈ Σ. Since α is an LC-proximity,

there exists a U ∈ F such that the restriction δU of δ to U is an Efre-
movich proximity and, moreover, if G ∈ Σend(δ) and U ∈ G then G ∈ Σ.
Since F is a round filter, there exist V, W ∈ F such that W ≪ V ≪ U .
Then, obviously, W ∈ B ∩ F . Hence F ∈ Σ1. So, Σ ⊆ Σ1. Conversely,
let G ∈ Σ1. Then G is an end and there exists a B ∈ G ∩ B. We have
that B =

⋃

{Bi ∈ B′ | i = 1, . . . , n} for some n ∈ ω, n ≥ 1 (see (2) for
B′). For every i = 1, . . . , n, there exist Fi ∈ Σ and Wi, Vi, Ui ∈ Fi such
that Bi ⊆ Wi ≪ Vi ≪ Ui and Ui satisfies conditions (LC1) and (LC2)
from Def. 2.15. If there exists an i0 ∈ {1, . . . , n} such that Bi0 ∈ G, then
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Ui0 ∈ G and hence G ∈ Σ. Let now Bi 6∈ G for every i = 1, . . . , n. Then
there exists an j0 ∈ {1, . . . , n} such that X \ Bj0 6∈ G. (Indeed, suppose

that X \Bi ∈ G for every i ∈ {1, . . . , n}. Then
n
⋂

i=1

(X\Bi)=X\
(

n
⋃

i=1

Bi

)

=

= X \B ∈ G. Since B ∈ G, we get a contradiction.) The filter G is an
end and Bj0 ≪Uj0. Hence either X \Bj0 ∈ G or Uj0 ∈ G. Thus Uj0 ∈ G
and therefore G∈Σ. So, Σ1⊆Σ. We have proved that Σ = Σ1.

Step 4. Proof of the equality F ◦ G = idC2
on the objects of the

category C2.
Let (X, δ,B) ∈ |C2|. Then G(X, δ,B) = (X, α), where α = (δ, Σ),

and F (X, α) = (X, δ,B1). We have to prove that B = B1. Let B ∈ B
and B 6= ∅. By Prop. 2.18(b), there exists a B1 ∈ B such that B ≪
≪ B1. Using (LP1) (see Def. 2.17), we construct by induction a family
{An | n ∈ ω, n ≥ 1} of subsets of X such that B ≪ . . . ≪ An ≪
≪ An−1 ≪ . . . ≪ A1 ≪ B1. Obviously, {An} is a δ-system and has the
finite intersection property. Then Prop. 2.9 implies that there exists a
maximal round filter F in (X, δ) such that {An | n ∈ ω, n ≥ 1} ⊆ F .
Thus B1 ∈ F , i.e. F is a bounded maximal round filter in (X, δ). Hence,
by Prop. 3.4, F is a bounded end in (X, δ). Therefore F ∈ Σ. Since
A1 ⊆ B1, we get that A1 ∈ B and hence the restriction δA1

of δ to A1 is
an Efremovich proximity. Thus A1 satisfies conditions (LC1) and (LC2)
from Def. 2.15. Finally, from B ⊆ A3 ≪ A2 ≪ A1 we get that B ∈ B1.
Hence B ⊆ B1. Let now C ∈ B1. We can assume w.l.o.g. that C has
the following property: there exist an F ∈ Σ and V1, U1 ∈ F such that
C ≪ V1 ≪ U1, C ∈ F and U1 satisfies conditions (LC1), (LC2) from
Def. 2.15. By (LP1), there exist V, U ∈ B1 such that C ≪ V ≪ U ≪ V1.
Since C ∈ F , we get that V, U ∈ F . From U ⊆ U1 it follows that U
satisfies conditions (LC1), (LC2) from Def. 2.15. Suppose that C 6∈ B.
Then C ∈ B1 \ B. Set G = {B ⊆ U | B ∈ B1 \ B} and G′ = {A ⊆
⊆ U | there exists a B ∈ G such that B ⊆ A}. We will prove that G ′

is a grill in U . It is obvious that C ∈ G′, G′ ∩ B = ∅ and ∅ 6∈ G′. Let
A = A1 ∪ A2 ∈ G′. Then there exists a B ∈ G such that B ⊆ A1 ∪
∪ A2. Put Bi = Ai ∩ B, i = 1, 2. Then Bi ∈B1, i = 1, 2. Suppose that
Bi 6∈ G for i = 1, 2. Then B1, B2 ∈ B, so that B1 ∪ B2 = B ∈ B. This
contradiction shows that either B1 ∈ G or B2 ∈ G. Then either A1 ∈ G′

or A2 ∈ G′. Hence G′ is a grill in U . Then from Lemma 2.4 it follows
that there exists an ultrafilter L in U such that C ∈ L and L ⊆ G′. Set
σ = {A ⊆ U | AδB for every B ∈ L}. Then, by Th. 2.6, σ is a cluster
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in (U, δU), L ⊆ σ and C ∈ σ. Set σ′ = {A ⊆ X | AδB for every B ∈ σ}.
Then Prop. 3.5 implies that σ′ is a cluster in (X, δ). Since C ∈ σ′ ∩ B1,
we get that σ′ is a bounded cluster in (X, δ,B1). Then, by Prop. 3.2,
F ′ = (σ′)∗ = {E ⊆ X | X \ E 6∈ σ′} is a bounded end in (X, δ,B1). Let
(X, α1) = G(X, δ,B1). Then (X, α1) = G(F (X, α)). Hence, by Step 3,
α = α1. So, α1 = (δ, Σ). Therefore, an end in (X, δ) is bounded with
respect to B1 if and only if it is bounded with respect to B. Thus F ′ is
a bounded end in (X, δ,B). Since F ′ ⊆ (F ′)∗ = σ′, we get that σ′ is a
bounded cluster in (X, δ,B), i.e. there exists a B0 ∈ σ′ ∩ B. Let’s show
that L ∩ G is a filter-base of L. Indeed, if L ∈ L, then L ∩ C ∈ B1 ∩ L
and L ∩ C 6∈ B. Hence L ∩ C ∈ G. From L ∩ C ⊆ L it follows that
L ∩ G is a filter-base of L. We have that B1 \ B 6= ∅ for every B1 ∈ G
and for every B ⊆ U such that B ∈ B, i.e. B1 ∩ (X \ B) 6= ∅ for every
B ∈ BU , where BU = {B ∈ B | B ⊆ U}. Then (U \B) ∩L 6= ∅ for every
B ∈ BU and for every L ∈ L ∩ G. Since L ∩ G is a filter-base of L, we
get that U \ B ∈ L for every B ∈ BU . Now, from C ∈ L it follows that
(U \B)∩C ∈ L for every B ∈ BU . Since B0 ∈ σ′∩B and L ⊆ σ ⊆ σ′, we
get that B0δ((U \ B) ∩ C), for every B ∈ BU . We have that Cδ(X \ V ).
Thus (B0 ∩V )δ((U \B)∩C), for every B ∈ BU . Then (B0 ∩V )δ(U \B),
for every B ∈ BU , i.e.

(5) B0 ∩ V 6 ≪δU
B for every B ∈ BU .

From (B0 ∩ V ) ⊆ V ≪ U and B0 ∩ V ∈ B it follows that there exists an
M ∈ BU such that (B0 ∩ V ) ≪ M ≪ U , and then B0 ∩ V ≪δU

M . This
contradicts (5). Hence C ∈ B. Thus B1 ⊆ B. Therefore B = B1.

Step 5. Definition of the functor F on the morphisms of the cate-
gory C1.

Let (Xi, αi)∈|C1|, αi =(δi, Σi), i=1, 2, and f ∈C1((X1, α1), (X2, α2)).
We will prove that f ∈ C2(F (X1, α1), F (X2, α2)). Let F (Xi, αi) =

= (Xi, δi,Bi), i = 1, 2. From Prop. 2.14 we have that f : (X1, δ1) →
→ (X2, δ2) is a proximally continuous mapping.

It remains to show that if B ∈ B1 then f(B) ∈ B2. Let W ∈ B1.
Suppose that f(W ) 6∈ B2.

As it follows from the proof of Step 3, for i = 1, 2, Σi coincides with
the set of all bounded ends in the local proximity space (Xi, δi,Bi).

From Prop. 2.18(b) it follows that there exists a V ∈ B1 such that
W ≪1 V . Set

(6)
Ω =

{

E ∈ B2 | (∃F ∈ Σ1)(∃B ∈ B2)((B ≪2 E)∧

∧ ((∀ H ∈ F)((H ∩ V 6= ∅) ∧ (B ∩ f(H) 6= ∅))))
}

.
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Note that:
1) if E ∈ Ω and E ′ ∈ B2 then E ∪ E ′ ∈ Ω; and
2) if E ∈ Ω then there exists an E ′ ∈ Ω such that E ≪2 E ′.
From f(W ) 6∈ B2 it follows that f(W ) is not a subset of any element

of Ω. Hence, for every E ∈ Ω, f(W ) \ E 6= ∅. Thus

(7) W ∩ (X1 \ f−1(E)) 6= ∅, for every E ∈ Ω.

Set D′ = {X1 \ f−1(E) | E ∈ Ω}. Then
1. D 6= ∅, for every D ∈ D′;
2. if D1, D2 ∈ D′ then D1 ∩ D2 ∈ D′;
3. D′ is a δ1-system (indeed, let D ∈ D′; then there exists an

E ∈ Ω such that D = X1 \ f−1(E); there exists an E ′ ∈ Ω such that
E ≪2 E ′; then f−1(E)≪1 f−1(E ′); hence X1 \ f−1(E ′)≪1 X1 \ f−1(E)
and D′ = X1 \ f−1(E ′) ∈ D′).

From W ∈ B1 and W ≪1 V it follows that for every n ∈ ω, n ≥ 1,
there exists a Wn ∈ B1 such that W ≪1 . . . ≪1 Wn ≪1 Wn−1 ≪1 . . . ≪1

≪1 W1 ≪1 V . Set D′′ = {Wn | n = 1, 2, . . .} and D = {D′ ∩ D′′ | D′ ∈
∈ D′ ∪ {X1}, D′′ ∈ D′′ ∪ {X1}}. Then, obviously, D′ ∪ D′′ ⊆ D, D is a
δ1-system, its elements are non-empty sets and it is closed under finite
intersections. Hence D is a filter-base. Let F ′ be the filter generated by
the filter-base D. Then F ′ is a bounded round filter in (X1, δ1,B1). There
exists a maximal bounded round filter F containing F ′. Then Prop. 3.4
implies that F is a bounded end in (X1, δ1,B1). Hence F ∈ Σ1. We have
that D′′ ⊆ F and therefore W1 ∈ F ; hence V ∈ F . Thus V ∩ H 6= ∅,
for every H ∈ F . Since f is an SR-proximally continuous function, there
exists a G ∈ Σ2 contained in the filter generated by the filter-base f(F).
The filter G is a bounded end in (X2, δ2,B2). Thus there exists an E ∈
∈ G ∩ B2 and a B ∈ G such that B ≪2 E. There exists an H0 ∈ F such
that f(H0) ⊆ B; therefore B∩f(H) 6= ∅, for every H ∈ F . Hence E ∈ Ω
and H0 ⊆ f−1(B) ⊆ f−1(E). Thus f−1(E) ∈ F . From D′ ⊆ F ′ ⊆ F it
follows that X1\f−1(E) ∈ F . This contradiction shows that f(W ) ∈ B2.

Thus f is an equicontinuous mapping. Put F (f) = f .

Step 6. Proof of the equalities F ◦ G = idC2
and G ◦ F = idC1

on
the morphisms of the categories C1 and C2.

This follows trivially from the definitions of F and G on the mor-
phisms.

Hence the categories C1 and C2 are isomorphic. ♦

Theorem 3.9. The categories C2 and C3 are isomorphic.
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Proof. Step 1. Construction of the functor F : C3 → C2.
Let (X, Σ) ∈ |C3| and Σ = (M,V). Put

F (X, Σ) = (X, δ,M),
where δ is a proximity of X defined as follows: if A, B ⊆ X then

(8)
AδB iff ∃A′, B′ ∈ M such that A′ ⊆ A,

B′ ⊆ B and A′ ∩ V 6= ∅, ∀ V ∈ V(B′).

Note that if B ∈ M then

(9)
AδB iff ∃A′ ∈ M such that A′ ⊆ A

and V ∩ A′ 6= ∅, for every V ∈ V(B).

Indeed, it is obvious that the right side of (9) implies the left one. Con-
versely, if AδB and V ∈ V(B) then there exists such a W ∈ V(B) that
V ∈ V(C) provided that C ∈ M and C ⊆ W . There exist A′ ⊆ A, B′ ⊆
⊆ B such that A′, B′ ∈ M and V ′ ∩ A′ 6= ∅, for every V ′ ∈ V(B′). Since
B′ ∈ M and B′ ⊆ B ⊆ W , we get that V ∈ V(B′). Hence V ∩ A′ 6= ∅.
So, (9) is proved.

We will now show that (X, δ,M) is a local proximity space. Obvi-
ously, conditions (LST1) and (LST2) (see Def. 2.20) imply that M is a
boundedness. Let’s prove that δ is a basic proximity. As it follows from
condition (STS) (see Def. 2.19), δ is a symmetric relation. It is obvious
that ∅δA for every A ⊆ X, and AδA for every non-empty A ⊆ X (indeed,
if A 6= ∅ then set A′ = {x}, where x is some point of A). Let A, B, C ⊆
⊆ X and Aδ(B ∪ C). Then there exist A′, D ∈ M such that A′ ⊆ A,
D ⊆ (B ∪ C) and V ∩ D 6= ∅, for every V ∈ V(A′). Let D1 = D ∩ B
and D2 = D ∩C. Obviously, D1, D2 ∈ M. Suppose that AδB and AδC.
Then there exist V1, V2 ∈ V(A′) such that V1 ∩ D1 = ∅ and V2 ∩ D2 = ∅.
Thus we have V = V1 ∩ V2 ∈ V(A′) and V ∩ D = ∅. This contradiction
shows that either AδB or AδC. Conversely, let A, B, C ⊆ X and either
AδB or AδC. Let, e.g., AδB. Then there exist A′, B′ ∈ M such that
A′ ⊆ A, B′ ⊆ B and B′ ∩ V 6= ∅ for every V ∈ V(A′). Since B′ ⊆ B ∪C,
we get that Aδ(B ∪ C). Hence, Aδ(B ∪C) iff either AδB or AδC. So, δ
is a basic proximity.

Let’s prove a fact that will be used later:

(10) if B ∈ M then V ∈ V(B) iff B ≪ V.

Indeed, let V ∈ V(B). Suppose that Bδ(X \ V ). Then, by (9), there
exists a U ⊆ X \ V such that U ∈ M and U ∩ V ′ 6= ∅ for every V ′ ∈
∈ V(B). Then, in particular, U ∩V 6= ∅, a contradiction. Hence B ≪ V .
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Conversely, let B ∈ M and B ≪ V . If V = X then, clearly, V ∈ V(B).
So, let V 6= X. Then X \ V 6= ∅. There exists a V ′ ∈ M such that V ′ ⊆
⊆ X \ V . Now, Bδ(X \ V ) and (9) imply that there exists a U ′ ∈ V(B)
such that U ′ ∩ V ′ = ∅. As it follows from (LST1) and (LST3) (see Def.
2.20), we can suppose w.l.o.g. that U ′ ∈ M. The next two cases are
possible:

1. U ′∩ (X \V ) = ∅. Then U ′ ⊆ V . Since V(B) is a filter, it follows
that V ∈ V(B).

2. U ′ ∩ (X \ V ) 6= ∅. Set D = U ′ ∩ (X \ V ). We have that D ∈ M
and D ⊆ (X \ V ). Since B ≪ V , there exists a U ′′ ∈ V(B) such that
D ∩ U ′′ = ∅ (by (9)). Then U = U ′ ∩ U ′′ ∈ V(B) and U ∩ (X \ V ) = ∅.
Thus U ⊆ V and hence V ∈ V(B).

So, (10) is established.
Since Σ is a separated L-supertopology, we get that δ is a separated

proximity. It remains to show that (X, δ,M) satisfies conditions (LP1)
and (LP2) of Def. 2.17. The conditions (LP2) is obviously fulfilled. We
will prove that condition (LP1) takes place. Let B ≪ D and B ∈ B.
Then, by (10), D ∈ V(B). Hence, setting

VD(B) = {V ∩ D | V ∈ V(B)},
we get that VD(B) ⊆ V(B). By (LST3), there exists a U0 ∈ VD(B)∩M.
From (ST2) (see Def. 2.19) it follows that there exists a V ∈ V(B) such
that U0 ∈ V(A) provided that A ⊆ V and A ∈ M. By (LST3), we can
suppose that V ∈ M. Then U0 ∈ V(V ). Since V ∈ V(B), (10) implies
that B ≪ V . Suppose that V δ(X \ D). Then, by (9), there exists a
D′ ⊆ (X \ D) such that D′ ∈ M and D′ ∩ U0 6= ∅. Since U0 ∈ VD(B), it
follows that U0 = A∩D for some A ∈ V(B). Thus D′∩ (A∩D) 6= ∅, i.e.
D′ ∩ D 6= ∅. This contradiction shows that V ≪ D. Thus B ≪ V ≪ D.
Hence, (X, δ,M) is a local proximity space.

Let f : (X1, (M1,V1)) → (X2, (M2,V2)) be a supertopological
mapping. We will prove that f : F (X1, (M1,V1)) → F (X2, (M2,V2))
is an equicontinuous mapping. Let F (Xi, (Mi,Vi)) = (Xi, βi,Mi), i =
= 1, 2. Obviously, the condition (EQ2) from Def. 2.17 follows from the
condition (STC1) (see Def. 2.19). Let A, B ⊆ X1 and Aβ1B. Then there
exist C, D ∈ M1 such that (A ∩ C)β1(B ∩ D); thus, by (9),

(11) U ∩ (B ∩ D) 6= ∅ for every U ∈ V1(A ∩ C).

Suppose that f(A)β2f(B). Then f(A ∩ C)β2f(B ∩ D). Hence, by (9),
there exists a V ∈ V2(f(A ∩ C)) such that V ∩ f(B ∩ D) = ∅. There-
fore f−1(V ) ∩ (B ∩ D) = ∅. Since f is supertopological, we get that
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f−1(V ) ∈ V1(A ∩ C). This contradicts (11). Hence f(A)β2f(B). So,
f : F (X1, (M1,V1)) → F (X2, (M2,V2)) is an equicontinuous mapping.
We put F (f) = f .

Step 2. Construction of the functor G : C2 → C3.
Let (X, δ,B) ∈ |C2|. Set

G(X, δ,B) = (X, (M,V)),

where

(12) M = B and V = {V(A) = {B ⊆ X | A ≪ B} | A ∈ M}.

We will prove that G(X, δ,B) ∈ |C3|. Obviously, condition (ST1) from
Def. 2.19 is satisfied. We will show that condition (ST2) takes place. Let
A ∈ M and U ∈ V(A), i.e. A ≪ U . Then condition (LP1) (see Def.
2.17) implies that there exists a C ∈ B such that A ≪ C ≪ U . Thus
C ∈ V(A). Let B ⊆ C. Then B ∈ M and B ≪ U . Hence U ∈ V(B),
for every B ⊆ C. So, Σ = (M,V) is a supertopology. Now we will prove
that Σ = (M,V) is a symmetric supertopology. Let A, B ∈ M and
U ∩ A 6= ∅, for every U ∈ V(B). Suppose that there exists a V ∈ V(A)
such that V ∩ B = ∅. Then Aδ(X \ V ) and B ⊆ (X \ V ). Thus AδB,
i.e. (X \A) ∈ V(B). This contradiction shows that B ∩ V 6= ∅, for every
V ∈ V(A). So, Σ = (M,V) is a symmetric supertopology. Further,
conditions (LST1) and (LST2) (see Def. 2.20) are obviously satisfied.
We will prove that condition (LST3) is also fulfilled. Let A ∈ M and
V ∈ V(A), i.e. A ≪ V . Then condition (LP1) (see Def. 2.17) implies
that there exists a C ∈ M such that A ≪ C ≪ V . Thus C ∈ V(A)∩M.
Hence, Σ = (B,V) is an L-supertopology. Obviously, it is separated.

Let f ∈ C2((X1, β1,B1), (X2, β2,B2)). We will prove that
f ∈ C3(G(X1, β1,B1), G(X2, β2,B2)).

Let B ∈ M1 = B1. Then f(B) ∈ B2 = M2. Hence f(M1) ⊆
⊆ M2. Let A ∈ M1 and V ∈ f−1(V2(f(A))). Then there exists a
U ∈ V2(f(A)) such that V = f−1(U). Since f(A)≪2 U , it follows
that f−1(f(A))≪1 f−1(U). Then A≪1 V , i.e. V ∈ V1(A). Therefore
f−1(V2(f(A))) ⊆ V1(A). Hence, f is a supertopological mapping. We
put G(f) = f .

Step 3. Proof of the equality G ◦ F = idC3
.

Let (X, Σ) ∈ |C3|, where Σ = (M,V). Then G(F (X, Σ)) =
= G(X, δ,M) = (X, Σ1), where Σ1 = (M,V1). We have to prove that
V = V1. Let A ∈ M and V ∈ V(A). Then, by (10), A ≪ V and thus
V ∈ V1(A). Conversely, let V ∈ V1(A). Then A ≪ V . Thus, by (10),
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V ∈ V(A). Hence V(A) = V1(A), for every A ∈ M. So, G(F (X, Σ)) =
= (X, Σ).

Step 4. Proof of the equality F ◦ G = idC2
.

Let (X, δ,B) ∈ |C2|. Then F (G(X, δ,B)) = F (X, Σ) = (X, δ1,B),
where Σ = (B,V). We have to prove that δ = δ1. Let A≪δ B, i.e.
Aδ(X \ B). Then Cδ(X \ B), for every C ⊆ A. Hence B ∈ V(C),
for every C ∈ M such that C ⊆ A. Suppose that Aδ1(X \ B). Then
there exist a C1 ⊆ A and a B1 ⊆ (X \ B) such that B1, C1 ∈ M and
C ′ ∩ B1 6= ∅ for every C ′ ∈ V(C1). We have that B ∈ V(C1). Hence
B ∩ B1 6= ∅. This contradiction shows that A≪δ1 B. Conversely, let
A≪δ1 B. Then, by (10), B ∈ V(A). This means, however, that A≪δ B.
Hence (X, δ,B) = (X, δ1,B).

Therefore, the categories C2 and C3 are isomorphic. ♦

Corollary 3.10 For every (separated) L-supertopology Σ = (M,V) on a
set X, the induced topology T on X is a (Hausdorff) completely regular
topology.

Proof. By Th. 3.9, there exists (X, δ,B) ∈ |C2| such that (X, Σ) =
= G(X, δ,B). Hence, by (12), for every x ∈ X, V(x) = {C ⊆ X | {x} ≪
≪ C}. Obviously, for every A ⊆ X, int(X,τδ)(A) = {x ∈ X | {x} ≪ A}.
Therefore, τδ = T . Now, all follows from [9, 2.1]. ♦
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