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Abstract: Two-sided and one-sided shifts have a main role to extract several
examples in some branches, like ergodic theory. In this note our main aim is
to generalize them (two-sided and one-sided shifts) and compare the results; in
this way we find that if φ : Γ → Γ is one to one, then the the set of all periodic
points of the generalized shift σφ :

∏

Γ

X →
∏

Γ

X is dense in
∏

Γ

X .
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Preliminaries

We recall the following definitions from [2]:
The function T : (X,B, m) → (X ′,B′, m′) of measure spaces is

called measurable if for each D ∈ B′, T−1(D) ∈ B.The measurable
function T : (X,B, m) → (X ′,B′, m′) of probability spaces is called
measure preserving if for each D ∈ B′, m(T−1(D)) = m′(D). When
T : (X,B, m) → (X ′,B′, m′) is bijective, measure preserving and T−1 :
: (X ′,B′, m′) → (X,B, m) is measure preserving, then T : (X,B, m) →
→ (X ′,B′, m′) is called invertible measure preserving. The measure pre-
serving function T : (X,B, m) → (X,B, m), with S as a semi-algebra
which generates B, is called

• ergodic if for each A, B ∈ S,

lim
n→∞

1

n

n−1
∑

i=0

m(T−i(A) ∩ B) = m(A)m(B)

(or equivalently for each D ∈ B, with D = T−1(D) we have m(D) = 0 ∨
∨ m(D) = 1);

• weak-mixing if ∀A, B ∈ S,

lim
n→∞

1

n

n−1
∑

i=0

|m(T−i(A) ∩ B) − m(A)m(B)| = 0;

• strong-mixing if for each A, B ∈ S,

lim
n→∞

m(T−n(A) ∩ B) = m(A)m(B).

In a compact metrisable space X with continuous map T : X → X,
for any finite collection {α1, . . . , αn} of open covers of X,

∨

1≤i≤n

αi :=

{

⋂

1≤i≤n

Ui : ∀i ∈ {1, . . . , n} Ui ∈ αi

}

.

If α is an open cover of X, then the entropy of T relative to α is given
by

h(T, α) := lim
n→∞

1

n
ln

(
∣

∣

∣

∣

∨

0≤i≤n−1

T−i(α)

∣

∣

∣

∣

)

,

and h(T ) := sup
α

h(T, α) is the topological entropy of T . If T : X → X

is homeomorphism, a finite open cover α of X is a generator for T if
for every bisequence {An}n∈Z of members of α,

⋂

i∈Z

T−i(Ai) contains at

most one point of X, in case of existence of a generator for T , T is called



A note on shift theory 189

expansive. If T : X → X is expansive and α is a generator for T , then
h(T ) = h(T, α).

For definition and properties of product of arbitrary σ−algebras
and measure spaces, we refer the interested reader to [1].

Convention. In the following text let Γ be a nonempty index set,
φ : Γ → Γ be a map, X be a topological space and BX be the σ−algebra
on X generated by open subsets, suppose Y =

∏

Γ

X and σφ : Y → Y

be such that σφ

(

(xγ)γ∈Γ

)

= (xφ(γ))γ∈Γ

(

∀(xγ)γ∈Γ ∈
∏

Γ

X
)

. For η ∈ Γ let

πη :
∏

Γ

X → X be the projection map on η’s coordinate.

Note: It is evident that for card(X) > 1, σφ is onto if and only if φ

is one to one; σφ is one to one if and only if φ is onto; and σφ is bijective
if and only if φ is bijective.

Lemma 1. Let k ∈ N−{1}, X = {1, . . . , k} with discrete topology (BX =
= P(X)), for each γ ∈ Γ, (X,BX , mγ) be a probability measure space such
that mγ(i) = p

γ
i > 0 (i ∈ {1, . . . , k}) and (Y,B′, m′) =

∏

Γ

(X,BX , mγ),

then:
(i) σφ is measure preserving if and only if φ is one to one and

p
φ(γ)
i = p

γ
i (∀γ ∈ Γ, ∀i ∈ X).

(ii) σφ is invertible measure preserving if and only if φ is bijective

and p
φ(γ)
i = p

γ
i (∀γ ∈ Γ, ∀i ∈ X).

Proof. (i). If φ is not one to one and k ≥ 2, then there exist distinct
γ0, γ1 ∈ Γ with η := φ(γ0) = φ(γ1). We have

σ−1
φ

(

{

(xγ)γ∈Γ ∈
∏

γ∈Γ

X : xγ0
= xγ1

= 1
}

)

=

= σ−1
φ

(

{

(xγ)γ∈Γ ∈
∏

γ∈Γ

X : xγ0
= 1

}

)

=
{

(xγ)γ∈Γ ∈
∏

γ∈Γ

X : xη = 1
}

.

Since

m

(

{

(xγ)γ∈Γ ∈
∏

γ∈Γ

X : xγ0
= xγ1

= 1
}

)

=

= p
γ0

1 p
γ1

1 < p
γ0

1 = m

(

{

(xγ)γ∈Γ ∈
∏

γ∈Γ

X : xγ0
= 1

}

)

,

thus σφ is not measure preserving.
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Now if φ is one to one use the fact that for each distinct γ1, . . . , γk ∈
∈ Γ we have:

m

(

{

(xγ)γ∈Γ ∈
∏

γ∈Γ

X : ∀j ∈ {1, . . . , k} xγj
= ij

}

)

= p
γ1

i1
· · ·pγk

ik

and

m

(

σ−1
φ

(

{

(xγ)γ∈Γ ∈
∏

γ∈Γ

X : ∀j ∈ {1, . . . , k} xγj
= ij

}

))

=

= m

(

{

(xγ)γ∈Γ ∈
∏

γ∈Γ

X : ∀j ∈ {1, . . . , k} xφ(γj ) = ij

}

)

=

= p
φ(γ1)
i1

· · · p
φ(γk)
ik

.

(ii). Use (i).

Corollary 2. Let k ∈ N − {1}, X = {1, . . . , k} with discrete topol-
ogy (BX = P(X)), (X,BX , m) be a probability measure space such that
m(i) = pi > 0 (i ∈ {1, . . . , k}) and (Y,B′, m′) =

∏

Γ

(X,BX , m), then:

(i) σφ is measure preserving if and only if φ is one to one.
(ii) σφ is invertible measure preserving if and only if φ is bijective.

Proof. Use Lemma 1.

Theorem 3. In Lemma 1, let φ be one to one such that p
φ(γ)
i = p

γ
i and

φn(γ) 6= γ for each i ∈ {1, . . . , k}, γ ∈ Γ, n ∈ N, then σφ is ergodic,
strong-mixing, and weak-mixing.

Proof. Ergodicity: Proof is similar to [2, Th. 1.12] in the following
way. Suppose D ∈ B′ and σ−1

φ (D) = D. Let ǫ > 0 there exists A in
algebra generated by

{

∏

γ∈Γ

Vγ ⊆
∏

Γ

X : ∃γ1, . . . , γn ∈ Γ∀γ ∈ Γ − {γ1, . . . , γn}Vγ = X

}

(thus Γ − {γ ∈ Γ| πγ(A) = X} is finite) such that m(D∆A) < ǫ. On the
other hand:

|m(D) − m(A)| ≤ m(D − A) + m(A − D) < ǫ.

Choose n ∈ N so large that {γ ∈ Γ| πγ(A) 6= X}∩ {γ ∈ Γ| πγ(σ
−n
φ (A)) 6=

6= X} = ∅. We have m(A∩σ−n
φ (A)) = m(A)m(σ−n

φ (A)) = m(A)2. On the

other hand m(D∆σ−n
φ (A)) = m(σ−n

φ (D)∆σ−n
φ (A)) = m(σ−n

φ (D∆A) =

= m(D∆A) < ǫ. By D∆(A ∩ σ−n
φ (A)) ⊆ (D∆A) ∪ (D∆σ−n

φ (A)), we
have:

m(D − (A ∩ σ−n
φ (A)) ≤ m(D∆(A ∩ σ−n

φ (A))) < 2ǫ,
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and |m(D) − m(D)2| ≤ |m(D) − m(A ∩ σ−n
φ (A))| + |m(A ∩ σ−n

φ (A)) −
−m(D)2| < 2ǫ+|m(A)2−m(D)2| < 4ǫ. Therefore m(D) = 0 or m(D) = 1
and σφ is ergodic.

Strong-mixing: Proof is similar to [2, Th. 1.30].

Weak-mixing: With the above argument σφ × σφ is ergodic; by
[2, Th. 1.24], σφ is weak-mixing.

Note 4. Let k ∈ N− {1}, X = {1, . . . , k} and Γ be infinite. For n ∈ N

and a1, . . . , an ∈ X let pn(a1, . . . ., an) > 0 be such that:

•
∑

a1∈X

p1(a1) = 1,

• pn(a1, . . . , an) =
∑

an+1∈X

pn+1(a1, . . . , an, an+1).

Let

(Y,B′) =
∏

Γ

(X,P(X))

and (Y,B′, m) be such that for different γ1, . . . , γn ∈ Γ,

m

(

{

(xγ)γ∈Γ ∈
∏

Γ

X| xγ1
= a1, . . . ., xγn

= an

}

)

= pn(a1, . . . , an)

(for a1, . . . , an ∈ X), then using a similar method described for Lemma 1
we have:

(i) σφ is measure preserving if and only if φ is one to one.
(ii) σφ is invertible measure preserving if and only if φ is bijective.

Theorem 5. In Note 4 let P = [pij ]1≤i,j≤k be a stochastic matrix, i.e.,

for each i, j ∈ {1, . . . , k} we have pij ≥ 0,
k
∑

t=1

pit = 1,
k
∑

t=1

ptptj = pj > 0,

and pn(a1, . . . , an) = pa1
pa1a2

· · ·pan−1an
. If φ is one to one such that for

each n ∈ N and γ ∈ Γ we have φn(γ) 6= γ, then the following statements
are equivalent:

• σφ is ergodic;
• σφ is weak-mixing;
• σφ is strong-mixing;
• for each i, j ∈ {1, . . . , k}, pij = pj.

Proof. If σφ is ergodic, then

pipj = m

(

{

(xγ)γ∈Γ∈
∏

Γ

X : xλ = i
}

)

m

(

{

(xγ)γ∈Γ∈
∏

Γ

X : xλ =j
}

)

=
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= lim
N→+∞

1

N

N−1
∑

n=0

m

(

(σφ)
−n

{

(xγ)γ∈Γ ∈
∏

Γ

X : xλ = i
}

∩

∩
{

(xγ)γ∈Γ ∈
∏

Γ

X : xλ = j
}

)

=

= lim
N→+∞

1

N

N−1
∑

n=0

m

(

{

(xγ)γ∈Γ ∈
∏

Γ

X : xφn(λ) = i
}

∩

∩
{

(xγ)γ∈Γ ∈
∏

Γ

X : xλ = j
}

)

=

= lim
N→+∞

1

N
(δijpj + (N − 1)p2(i, j)) = pipij ,

thus pij = pj .
For other parts use a similar method, [2, Th. 1.17], and Cor. 2

(since for each i, j ∈ {1, . . . , k}, pij = pj , then we have the same measure
space).

Theorem 6. In Note 4 let P = [pij ]1≤i,j≤k be a stochastic matrix, i.e.,

for each i, j ∈ {1, . . . , k} we have pij ≥ 0,
k
∑

t=1

pit = 1,
k
∑

t=1

ptptj = pj > 0,

and pn(a1, . . . , an) = pa1
pa1a2

· · · pan−1an
. If φ is one to one with out any

fix point and q > 1 then:
• If σφ is ergodic, then there exists λ ∈ γ, with q = min{n ∈ N :

: φn(γ) = γ} if and only if for each λ ∈ γ, q = min{n ∈ N : φn(γ) = γ}.
• If σφ is strong-mixing, then for each γ ∈ Γ, φq(γ) 6= γ.
• If σφ is weak-mixing, then there exists λ∈γ with q = min{n∈N :

: φn(γ) = γ} if and only if for each λ ∈ γ, q = min{n ∈ N : φn(γ) = γ}.

Proof. If σφ is ergodic, and λ∈γ is such that q = min{n∈N : φn(γ)=
=γ}, then:

pipj = m

(

{

(xγ)γ∈Γ∈
∏

Γ

X : xλ = i
}

)

m

(

{

(xγ)γ∈Γ∈
∏

Γ

X : xλ = j
}

)

=

= lim
N→+∞

1

qN

qN−1
∑

n=0

m

(

(σφ)
−n

{

(xγ)γ∈Γ ∈
∏

Γ

X : xλ = i
}

∩

∩
{

(xγ)γ∈Γ ∈
∏

Γ

X : xλ = j
}

)

=
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= lim
N→+∞

1

qN

N−1
∑

n=0

m

(

{

(xγ)γ∈Γ ∈
∏

Γ

X : xφn(λ) = i
}

∩

∩
{

(xγ)γ∈Γ ∈
∏

Γ

X : xλ = j
}

)

=

= lim
N→+∞

1

qN
(Nδijpj + (q − 1)Np2(i, j)) =

=
δijpj + (q − 1)p2(i, j)

q
=

δijpj + (q − 1)p2(j, i)

q
=

=
pj(δij + (q − 1)pji)

q

thus:

pij =















qpj

q − 1
i 6= j

qpj − 1

q − 1
i = j

,

which leads to the desired result (use Th. 5 too).

Lemma 7. Let X has been occupied with discrete topology and φ is one
to one, then the set of all periodic points under σφ are dense in

∏

Γ

X

(x ∈
∏

Γ

X is periodic under σφ if there exists n ∈ N such that (σφ)
n(x) =

= (x)).

Proof. Suppose k > 1, let U be an open neighborhood of (aγ)γ∈Γ in
∏

Γ

X,

there exist distinct γ1, . . . , γn ∈ Γ such that
∏

γ∈Γ

Uγ ⊆ U , where Uγ = {aγ}

for γ = γ1, . . . , γn and Uγ = X otherwise. Without lost of generality we
can suppose l ≤ n be such that {φn(γi) : n ∈ Z}s are disjoint sets for
i = 1, . . . , l, and {γ1, . . . , γn} ⊆ {φn(γi) : 1 ≤ i ≤ l, 0 ≤ n ≤ p}. Define:

bγ =



























































aγ

γ ∈ {φn(γi) : 1 ≤ i ≤ l, 0 ≤ n ≤ p}
or

(∃t ∈ N φt(γ) = γ) ∧ γ ∈
⋃

i=1,...,l

{φn(γi) : n ∈ Z}

aφm(γi)

(

γ=φs(γi), i = 1, ..., l, s 6= 0, ..., p, s ≡ m(mod p+1), 0≤m≤p
)

,
and

(∀t ∈ N φt(γ) 6= γ)

c γ /∈
⋃

i=1,...,l

{φn(γi) : n ∈ Z}
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where c ∈ X is a fix point, then (bγ)γ∈Γ is a periodic point under σφ in U .

Theorem 8. Let φ be one to one, then the set of all periodic points
under σφ is dense in

∏

Γ

X.

Proof. Use Lemma 7.

Theorem 9. For finite X = {1, . . . , k} and countable Γ we have:
1. Suppose φ : Γ → Γ be bijective and for each n ∈ N, γ ∈ Γ,

φn(γ) 6= γ, moreover there exist γ1, . . . , γn ∈ Γ such that

Γ =
{

φi(γj) : j = 1, . . . , n, i ∈ Z
}

,

then σφ :
∏

Γ

X →
∏

Γ

X is expansive.

2. With the same assumptions as in item 1, if for j = 1, . . . , n,
{φi(γj) : i ∈ Z}s are pairwise disjoint, then σφ :

∏

Γ

X →
∏

Γ

X has

topological entropy n ln k.
3. Suppose φ : Γ → Γ be bijective and there exist γ1, . . . , γn ∈ Γ

such that Γ = {φi(γj) : j = 1, . . . , n, i ∈ Z} and for j = 1, . . . , n, {φi(γj) :
: i ∈ Z}s are pairwise disjoint, then σφ :

∏

Γ

X →
∏

Γ

X has topological

entropy m ln k, where

m =
∣

∣

{

j ∈ {1, . . . , n} : {φi(γj) : i ∈ Z} is infinite
}
∣

∣.

Proof. 1. σφ :
∏

Γ

X →
∏

Γ

X is a homeomorphism of compact metrizable

spaces. Without less of generality suppose {φi(γj) : i ∈ Z} for j =
= 1, . . . , n are pairwise disjoint.

{

{

(xγ)γ∈Γ ∈
∏

Γ

X : xγ1
= i1, . . . , xγn

= in

}

: i1, . . . , in ∈ {1, . . . , k}

}

is a generator. Now use [2, Th. 5.22].
2. Use [2, Th. 7.11] and consider the generator introduced in item 1.

Note 10. Let X = {1, . . . , k}. If Γ = N and φ(n) = n + 1 (∀n ∈ N),
then σφ is called one-sided shift; in addition if Γ = Z and φ(n) = n + 1
(∀n ∈ Z), then σφ is called two-sided shift.

For η, φ : Γ → Γ, σφση = σησφ if and only if |X| ≤ 1 or φη =
= ηφ. Therefore if Γ = N or Γ = Z and φ(n) = n + 1, |X| > 1, then
σφση = σησφ if and only if there exists n ∈ Γ ∪ {0} such that η = φn.

Questions. With the same assumptions as in Cor. 2 or Note 4, for one
to one φ:

What is the centralizer of σφ?
When σφ is coalescence?



A note on shift theory 195

Acknowledgement. A primary form and idea of the above discussed
text has been presented in a lecture under the title “A note on measures”
(Fatemah Ayatollah Zadeh Shirazi, Nasrin Karami Kabir) in the 3rd
Iranian Math. Students’ Seminar (2000, KNT University).

References

[1] FOLLAND, G. B.: Real analysis, modern techniques and their applications, John
Wiley & Sons, New York, 1984.

[2] WALTERS, P.: An introduction to ergodic theory, Springer-Verlag, New York,
1982.


