Mathematica Pannonica

19/2 (2008), 187-195

A NOTE ON SHIFT THEORY

Fatemah Ayatollah Zadeh Shirazi

Faculty of of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Ave., Tehran, Iran

Nasrin Karami Kabir

Faculty of Science, Islamic Azad University-Hamedan Branch, Hamedan, Iran

Fatemeh Heydari Ardi

Faculty of of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Ave., Tehran, Iran

Received: November 2007
MSC 2000: 28 D 05
Keywords: Ergodic, measure, periodic point, shift, strong-mixing, weakmixing.

Abstract

Two-sided and one-sided shifts have a main role to extract several examples in some branches, like ergodic theory. In this note our main aim is to generalize them (two-sided and one-sided shifts) and compare the results; in this way we find that if $\phi: \Gamma \rightarrow \Gamma$ is one to one, then the the set of all periodic points of the generalized shift $\sigma_{\phi}: \prod_{\Gamma} X \rightarrow \prod_{\Gamma} X$ is dense in $\prod_{\Gamma} X$.

[^0]
Preliminaries

We recall the following definitions from [2]:
The function $T:(X, \mathcal{B}, m) \rightarrow\left(X^{\prime}, \mathcal{B}^{\prime}, m^{\prime}\right)$ of measure spaces is called measurable if for each $D \in \mathcal{B}^{\prime}, T^{-1}(D) \in B$.The measurable function $T:(X, \mathcal{B}, m) \rightarrow\left(X^{\prime}, \mathcal{B}^{\prime}, m^{\prime}\right)$ of probability spaces is called measure preserving if for each $D \in \mathcal{B}^{\prime}, m\left(T^{-1}(D)\right)=m^{\prime}(D)$. When $T:(X, \mathcal{B}, m) \rightarrow\left(X^{\prime}, \mathcal{B}^{\prime}, m^{\prime}\right)$ is bijective, measure preserving and $T^{-1}:$ $:\left(X^{\prime}, \mathcal{B}^{\prime}, m^{\prime}\right) \rightarrow(X, \mathcal{B}, m)$ is measure preserving, then $T:(X, \mathcal{B}, m) \rightarrow$ $\rightarrow\left(X^{\prime}, \mathcal{B}^{\prime}, m^{\prime}\right)$ is called invertible measure preserving. The measure preserving function $T:(X, \mathcal{B}, m) \rightarrow(X, \mathcal{B}, m)$, with \mathcal{S} as a semi-algebra which generates \mathcal{B}, is called

- ergodic if for each $A, B \in \mathcal{S}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} m\left(T^{-i}(A) \cap B\right)=m(A) m(B)
$$

(or equivalently for each $D \in \mathcal{B}$, with $D=T^{-1}(D)$ we have $m(D)=0 \vee$ $\vee m(D)=1)$;

- weak-mixing if $\forall A, B \in \mathcal{S}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1}\left|m\left(T^{-i}(A) \cap B\right)-m(A) m(B)\right|=0
$$

- strong-mixing if for each $A, B \in \mathcal{S}$,

$$
\lim _{n \rightarrow \infty} m\left(T^{-n}(A) \cap B\right)=m(A) m(B)
$$

In a compact metrisable space X with continuous map $T: X \rightarrow X$, for any finite collection $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of open covers of X,

$$
\bigvee_{1 \leq i \leq n} \alpha_{i}:=\left\{\bigcap_{1 \leq i \leq n} U_{i}: \forall i \in\{1, \ldots, n\} U_{i} \in \alpha_{i}\right\}
$$

If α is an open cover of X, then the entropy of T relative to α is given by

$$
h(T, \alpha):=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\left|\bigvee_{0 \leq i \leq n-1} T^{-i}(\alpha)\right|\right)
$$

and $h(T):=\sup h(T, \alpha)$ is the topological entropy of T. If $T: X \rightarrow X$ is homeomorphism, a finite open cover α of X is a generator for T if for every bisequence $\left\{A_{n}\right\}_{n \in \mathbf{Z}}$ of members of $\alpha, \bigcap_{i \in \mathbf{Z}} T^{-i}\left(\bar{A}_{i}\right)$ contains at most one point of X, in case of existence of a generator for T, T is called
expansive. If $T: X \rightarrow X$ is expansive and α is a generator for T, then $h(T)=h(T, \alpha)$.

For definition and properties of product of arbitrary σ-algebras and measure spaces, we refer the interested reader to [1].
Convention. In the following text let Γ be a nonempty index set, $\phi: \Gamma \rightarrow \Gamma$ be a map, X be a topological space and \mathcal{B}_{X} be the σ-algebra on X generated by open subsets, suppose $Y=\prod_{\Gamma} X$ and $\sigma_{\phi}: Y \rightarrow Y$ be such that $\sigma_{\phi}\left(\left(x_{\gamma}\right)_{\gamma \in \Gamma}\right)=\left(x_{\phi(\gamma)}\right)_{\gamma \in \Gamma}\left(\forall\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X\right)$. For $\eta \in \Gamma$ let $\pi_{\eta}: \prod_{\Gamma} X \rightarrow X$ be the projection map on η 's coordinate.

Note: It is evident that for $\operatorname{card}(X)>1, \sigma_{\phi}$ is onto if and only if ϕ is one to one; σ_{ϕ} is one to one if and only if ϕ is onto; and σ_{ϕ} is bijective if and only if ϕ is bijective.
Lemma 1. Let $k \in \mathbf{N}-\{1\}, X=\{1, \ldots, k\}$ with discrete topology $\left(\mathcal{B}_{X}=\right.$ $=\mathcal{P}(X))$, for each $\gamma \in \Gamma,\left(X, \mathcal{B}_{X}, m_{\gamma}\right)$ be a probability measure space such that $m_{\gamma}(i)=p_{i}^{\gamma}>0(i \in\{1, \ldots, k\})$ and $\left(Y, \mathcal{B}^{\prime}, m^{\prime}\right)=\prod_{\Gamma}\left(X, \mathcal{B}_{X}, m_{\gamma}\right)$, then:
(i) σ_{ϕ} is measure preserving if and only if ϕ is one to one and $p_{i}^{\phi(\gamma)}=p_{i}^{\gamma}(\forall \gamma \in \Gamma, \forall i \in X)$.
(ii) σ_{ϕ} is invertible measure preserving if and only if ϕ is bijective and $p_{i}^{\phi(\gamma)}=p_{i}^{\gamma}(\forall \gamma \in \Gamma, \forall i \in X)$.
Proof. (i). If ϕ is not one to one and $k \geq 2$, then there exist distinct $\gamma_{0}, \gamma_{1} \in \Gamma$ with $\eta:=\phi\left(\gamma_{0}\right)=\phi\left(\gamma_{1}\right)$. We have

$$
\begin{aligned}
& \sigma_{\phi}^{-1}\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X: x_{\gamma_{0}}=x_{\gamma_{1}}=1\right\}\right)= \\
& =\sigma_{\phi}^{-1}\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X: x_{\gamma_{0}}=1\right\}\right)=\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X: x_{\eta}=1\right\} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X: x_{\gamma_{0}}=x_{\gamma_{1}}=1\right\}\right)= \\
& =p_{1}^{\gamma_{0}} p_{1}^{\gamma_{1}}<p_{1}^{\gamma_{0}}=m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X: x_{\gamma_{0}}=1\right\}\right)
\end{aligned}
$$

thus σ_{ϕ} is not measure preserving.

Now if ϕ is one to one use the fact that for each distinct $\gamma_{1}, \ldots, \gamma_{k} \in$ $\in \Gamma$ we have:

$$
m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X: \forall j \in\{1, \ldots, k\} x_{\gamma_{j}}=i_{j}\right\}\right)=p_{i_{1}}^{\gamma_{1}} \cdots p_{i_{k}}^{\gamma_{k}}
$$

and

$$
\begin{aligned}
& m\left(\sigma_{\phi}^{-1}\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X: \forall j \in\{1, \ldots, k\} x_{\gamma_{j}}=i_{j}\right\}\right)\right)= \\
& =m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X: \forall j \in\{1, \ldots, k\} x_{\phi\left(\gamma_{j}\right)}=i_{j}\right\}\right)= \\
& =p_{i_{1}}^{\phi\left(\gamma_{1}\right)} \cdots p_{i_{k}}^{\phi\left(\gamma_{k}\right)} .
\end{aligned}
$$

(ii). Use (i).

Corollary 2. Let $k \in \mathbf{N}-\{1\}, X=\{1, \ldots, k\}$ with discrete topology $\left(\mathcal{B}_{X}=\mathcal{P}(X)\right),\left(X, \mathcal{B}_{X}, m\right)$ be a probability measure space such that $m(i)=p_{i}>0(i \in\{1, \ldots, k\})$ and $\left(Y, \mathcal{B}^{\prime}, m^{\prime}\right)=\prod_{\Gamma}\left(X, \mathcal{B}_{X}, m\right)$, then:
(i) σ_{ϕ} is measure preserving if and only if ϕ is one to one.
(ii) σ_{ϕ} is invertible measure preserving if and only if ϕ is bijective.

Proof. Use Lemma 1.
Theorem 3. In Lemma 1, let ϕ be one to one such that $p_{i}^{\phi(\gamma)}=p_{i}^{\gamma}$ and $\phi^{n}(\gamma) \neq \gamma$ for each $i \in\{1, \ldots, k\}, \gamma \in \Gamma, n \in \mathbf{N}$, then σ_{ϕ} is ergodic, strong-mixing, and weak-mixing.
Proof. Ergodicity: Proof is similar to [2, Th. 1.12] in the following way. Suppose $D \in \mathcal{B}^{\prime}$ and $\sigma_{\phi}^{-1}(D)=D$. Let $\epsilon>0$ there exists A in algebra generated by

$$
\left\{\prod_{\gamma \in \Gamma} V_{\gamma} \subseteq \prod_{\Gamma} X: \exists \gamma_{1}, \ldots, \gamma_{n} \in \Gamma \forall \gamma \in \Gamma-\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} V_{\gamma}=X\right\}
$$

(thus $\Gamma-\left\{\gamma \in \Gamma \mid \pi_{\gamma}(A)=X\right\}$ is finite) such that $m(D \Delta A)<\epsilon$. On the other hand:

$$
|m(D)-m(A)| \leq m(D-A)+m(A-D)<\epsilon .
$$

Choose $n \in \mathbf{N}$ so large that $\left\{\gamma \in \Gamma \mid \pi_{\gamma}(A) \neq X\right\} \cap\left\{\gamma \in \Gamma \mid \pi_{\gamma}\left(\sigma_{\phi}^{-n}(A)\right) \neq\right.$ $\neq X\}=\emptyset$. We have $m\left(A \cap \sigma_{\phi}^{-n}(A)\right)=m(A) m\left(\sigma_{\phi}^{-n}(A)\right)=m(A)^{2}$. On the other hand $m\left(D \Delta \sigma_{\phi}^{-n}(A)\right)=m\left(\sigma_{\phi}^{-n}(D) \Delta \sigma_{\phi}^{-n}(A)\right)=m\left(\sigma_{\phi}^{-n}(D \Delta A)=\right.$ $=m(D \Delta A)<\epsilon$. By $D \Delta\left(A \cap \sigma_{\phi}^{-n}(A)\right) \subseteq(D \Delta A) \cup\left(D \Delta \sigma_{\phi}^{-n}(A)\right)$, we have:

$$
m\left(D-\left(A \cap \sigma_{\phi}^{-n}(A)\right) \leq m\left(D \Delta\left(A \cap \sigma_{\phi}^{-n}(A)\right)\right)<2 \epsilon\right.
$$

and $\left|m(D)-m(D)^{2}\right| \leq\left|m(D)-m\left(A \cap \sigma_{\phi}^{-n}(A)\right)\right|+\mid m\left(A \cap \sigma_{\phi}^{-n}(A)\right)-$ $-m(D)^{2}\left|<2 \epsilon+\left|m(A)^{2}-m(D)^{2}\right|<4 \epsilon\right.$. Therefore $m(D)=0$ or $m(D)=1$ and σ_{ϕ} is ergodic.

Strong-mixing: Proof is similar to [2, Th. 1.30].
Weak-mixing: With the above argument $\sigma_{\phi} \times \sigma_{\phi}$ is ergodic; by [2, Th. 1.24], σ_{ϕ} is weak-mixing.
Note 4. Let $k \in \mathbf{N}-\{1\}, X=\{1, \ldots, k\}$ and Γ be infinite. For $n \in \mathbf{N}$ and $a_{1}, \ldots, a_{n} \in X$ let $p_{n}\left(a_{1}, \ldots, a_{n}\right)>0$ be such that:

- $\sum_{a_{1} \in X} p_{1}\left(a_{1}\right)=1$,
- $p_{n}\left(a_{1}, \ldots, a_{n}\right)=\sum_{a_{n+1} \in X} p_{n+1}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)$.

Let

$$
\left(Y, \mathcal{B}^{\prime}\right)=\prod_{\Gamma}(X, \mathcal{P}(X))
$$

and $\left(Y, \mathcal{B}^{\prime}, m\right)$ be such that for different $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$,

$$
m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X \mid x_{\gamma_{1}}=a_{1}, \ldots, x_{\gamma_{n}}=a_{n}\right\}\right)=p_{n}\left(a_{1}, \ldots, a_{n}\right)
$$

(for $a_{1}, \ldots, a_{n} \in X$), then using a similar method described for Lemma 1 we have:
(i) σ_{ϕ} is measure preserving if and only if ϕ is one to one.
(ii) σ_{ϕ} is invertible measure preserving if and only if ϕ is bijective.

Theorem 5. In Note 4 let $P=\left[p_{i j}\right]_{1 \leq i, j \leq k}$ be a stochastic matrix, i.e., for each $i, j \in\{1, \ldots, k\}$ we have $p_{i j} \geq 0, \sum_{t=1}^{k} p_{i t}=1, \sum_{t=1}^{k} p_{t} p_{t j}=p_{j}>0$, and $p_{n}\left(a_{1}, \ldots, a_{n}\right)=p_{a_{1}} p_{a_{1} a_{2}} \cdots p_{a_{n-1} a_{n}}$. If ϕ is one to one such that for each $n \in \mathbf{N}$ and $\gamma \in \Gamma$ we have $\phi^{n}(\gamma) \neq \gamma$, then the following statements are equivalent:

- σ_{ϕ} is ergodic;
- σ_{ϕ} is weak-mixing;
- σ_{ϕ} is strong-mixing;
- for each $i, j \in\{1, \ldots, k\}, p_{i j}=p_{j}$.

Proof. If σ_{ϕ} is ergodic, then

$$
p_{i} p_{j}=m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=i\right\}\right) m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=j\right\}\right)=
$$

$$
\begin{aligned}
& =\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{n=0}^{N-1} m\left(\left(\sigma_{\phi}\right)^{-n}\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=i\right\} \cap\right. \\
& \left.\cap\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=j\right\}\right)= \\
& =\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{n=0}^{N-1} m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\phi^{n}(\lambda)}=i\right\} \cap\right. \\
& \left.\cap\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=j\right\}\right)= \\
& =\lim _{N \rightarrow+\infty} \frac{1}{N}\left(\delta_{i j} p_{j}+(N-1) p_{2}(i, j)\right)=p_{i} p_{i j},
\end{aligned}
$$

thus $p_{i j}=p_{j}$.
For other parts use a similar method, [2, Th. 1.17], and Cor. 2 (since for each $i, j \in\{1, \ldots, k\}, p_{i j}=p_{j}$, then we have the same measure space).
Theorem 6. In Note 4 let $P=\left[p_{i j}\right]_{1 \leq i, j \leq k}$ be a stochastic matrix, i.e., for each $i, j \in\{1, \ldots, k\}$ we have $p_{i j} \geq 0, \sum_{t=1}^{k} p_{i t}=1, \sum_{t=1}^{k} p_{t} p_{t j}=p_{j}>0$, and $p_{n}\left(a_{1}, \ldots, a_{n}\right)=p_{a_{1}} p_{a_{1} a_{2}} \cdots p_{a_{n-1} a_{n}}$. If ϕ is one to one with out any fix point and $q>1$ then:

- If σ_{ϕ} is ergodic, then there exists $\lambda \in \gamma$, with $q=\min \{n \in \mathbf{N}$: $\left.: \phi^{n}(\gamma)=\gamma\right\}$ if and only if for each $\lambda \in \gamma, q=\min \left\{n \in \mathbf{N}: \phi^{n}(\gamma)=\gamma\right\}$.
- If σ_{ϕ} is strong-mixing, then for each $\gamma \in \Gamma, \phi^{q}(\gamma) \neq \gamma$.
- If σ_{ϕ} is weak-mixing, then there exists $\lambda \in \gamma$ with $q=\min \{n \in \mathbf{N}$: $\left.: \phi^{n}(\gamma)=\gamma\right\}$ if and only if for each $\lambda \in \gamma, q=\min \left\{n \in \mathbf{N}: \phi^{n}(\gamma)=\gamma\right\}$. Proof. If σ_{ϕ} is ergodic, and $\lambda \in \gamma$ is such that $q=\min \left\{n \in \mathbf{N}: \phi^{n}(\gamma)=\right.$ $=\gamma\}$, then:

$$
\begin{aligned}
p_{i} p_{j}= & m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=i\right\}\right) m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=j\right\}\right)= \\
= & \lim _{N \rightarrow+\infty} \frac{1}{q N} \sum_{n=0}^{q N-1} m\left(\left(\sigma_{\phi}\right)^{-n}\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=i\right\} \cap\right. \\
& \left.\cap\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=j\right\}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{N \rightarrow+\infty} \frac{1}{q N} \sum_{n=0}^{N-1} m\left(\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\phi^{n}(\lambda)}=i\right\} \cap\right. \\
& \left.\qquad \cap\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\lambda}=j\right\}\right)= \\
& =\lim _{N \rightarrow+\infty} \frac{1}{q N}\left(N \delta_{i j} p_{j}+(q-1) N p_{2}(i, j)\right)= \\
& =\frac{\delta_{i j} p_{j}+(q-1) p_{2}(i, j)}{q}=\frac{\delta_{i j} p_{j}+(q-1) p_{2}(j, i)}{q}= \\
& =\frac{p_{j}\left(\delta_{i j}+(q-1) p_{j i}\right)}{q}
\end{aligned}
$$

thus:

$$
p_{i j}= \begin{cases}\frac{q p_{j}}{q-1} & i \neq j \\ \frac{q p_{j}-1}{q-1} & i=j\end{cases}
$$

which leads to the desired result (use Th. 5 too).
Lemma 7. Let X has been occupied with discrete topology and ϕ is one to one, then the set of all periodic points under σ_{ϕ} are dense in $\prod_{\Gamma} X$ $\left(x \in \prod_{\Gamma} X\right.$ is periodic under σ_{ϕ} if there exists $n \in \mathbf{N}$ such that $\left(\sigma_{\phi}\right)^{n}(x)=$ $=(x))$.
Proof. Suppose $k>1$, let U be an open neighborhood of $\left(a_{\gamma}\right)_{\gamma \in \Gamma}$ in $\prod_{\Gamma} X$, there exist distinct $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$ such that $\prod_{\gamma \in \Gamma} U_{\gamma} \subseteq U$, where $U_{\gamma}=\left\{a_{\gamma}\right\}$ for $\gamma=\gamma_{1}, \ldots, \gamma_{n}$ and $U_{\gamma}=X$ otherwise. Without lost of generality we can suppose $l \leq n$ be such that $\left\{\phi^{n}\left(\gamma_{i}\right): n \in \mathbf{Z}\right\}$ S are disjoint sets for $i=1, \ldots, l$, and $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subseteq\left\{\phi^{n}\left(\gamma_{i}\right): 1 \leq i \leq l, 0 \leq n \leq p\right\}$. Define:

$$
b_{\gamma}=\left\{\begin{array}{c}
\gamma \in\left\{\phi^{n}\left(\gamma_{i}\right): 1 \leq i \leq l, 0 \leq n \leq p\right\} \\
\text { or } \\
a_{\gamma}\left(\exists t \in \mathbf{N} \phi^{t}(\gamma)=\gamma\right) \wedge \gamma \in \bigcup_{i=1, \ldots, l}\left\{\phi^{n}\left(\gamma_{i}\right): n \in \mathbf{Z}\right\} \\
a_{\phi^{m}\left(\gamma_{i}\right)}\left(\gamma=\phi^{s}\left(\gamma_{i}\right), i=1, \ldots, l, s \neq 0, \ldots, p, s \equiv m(\bmod p+1), 0 \leq m \leq p\right), \\
c \quad \text { and } \\
c \quad\left(\forall t \in \mathbf{N} \phi^{t}(\gamma) \neq \gamma\right) \\
\gamma \notin \bigcup_{i=1, \ldots, l}\left\{\phi^{n}\left(\gamma_{i}\right): n \in \mathbf{Z}\right\}
\end{array}\right.
$$

where $c \in X$ is a fix point, then $\left(b_{\gamma}\right)_{\gamma \in \Gamma}$ is a periodic point under σ_{ϕ} in U. Theorem 8. Let ϕ be one to one, then the set of all periodic points under σ_{ϕ} is dense in $\prod_{\Gamma} X$.
Proof. Use Lemma 7.
Theorem 9. For finite $X=\{1, \ldots, k\}$ and countable Γ we have:

1. Suppose $\phi: \Gamma \rightarrow \Gamma$ be bijective and for each $n \in \mathbf{N}, \gamma \in \Gamma$, $\phi^{n}(\gamma) \neq \gamma$, moreover there exist $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$ such that

$$
\Gamma=\left\{\phi^{i}\left(\gamma_{j}\right): j=1, \ldots, n, i \in \mathbf{Z}\right\}
$$

then $\sigma_{\phi}: \prod_{\Gamma} X \rightarrow \prod_{\Gamma} X$ is expansive.
2. With the same assumptions as in item 1, if for $j=1, \ldots, n$, $\left\{\phi^{i}\left(\gamma_{j}\right): i \in \mathbf{Z}\right\}$ s are pairwise disjoint, then $\sigma_{\phi}: \prod_{\Gamma} X \rightarrow \prod_{\Gamma} X$ has topological entropy $n \ln k$.
3. Suppose $\phi: \Gamma \rightarrow \Gamma$ be bijective and there exist $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$ such that $\Gamma=\left\{\phi^{i}\left(\gamma_{j}\right): j=1, \ldots, n, i \in \mathbf{Z}\right\}$ and for $j=1, \ldots, n,\left\{\phi^{i}\left(\gamma_{j}\right)\right.$: $: i \in \mathbf{Z}\}$ s are pairwise disjoint, then $\sigma_{\phi}: \prod_{\Gamma} X \rightarrow \prod_{\Gamma} X$ has topological entropy $m \ln k$, where

$$
m=\mid\left\{j \in\{1, \ldots, n\}:\left\{\phi^{i}\left(\gamma_{j}\right): i \in \mathbf{Z}\right\} \text { is infinite }\right\} \mid .
$$

Proof. 1. $\sigma_{\phi}: \prod_{\Gamma} X \rightarrow \prod_{\Gamma} X$ is a homeomorphism of compact metrizable spaces. Without less of generality suppose $\left\{\phi^{i}\left(\gamma_{j}\right): i \in \mathbf{Z}\right\}$ for $j=$ $=1, \ldots, n$ are pairwise disjoint.

$$
\left\{\left\{\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in \prod_{\Gamma} X: x_{\gamma_{1}}=i_{1}, \ldots, x_{\gamma_{n}}=i_{n}\right\}: i_{1}, \ldots, i_{n} \in\{1, \ldots, k\}\right\}
$$

is a generator. Now use [2, Th. 5.22].
2. Use [2, Th. 7.11] and consider the generator introduced in item 1.

Note 10. Let $X=\{1, \ldots, k\}$. If $\Gamma=\mathbf{N}$ and $\phi(n)=n+1(\forall n \in \mathbf{N})$, then σ_{ϕ} is called one-sided shift; in addition if $\Gamma=\mathbf{Z}$ and $\phi(n)=n+1$ $(\forall n \in \mathbf{Z})$, then σ_{ϕ} is called two-sided shift.

For $\eta, \phi: \Gamma \rightarrow \Gamma, \sigma_{\phi} \sigma_{\eta}=\sigma_{\eta} \sigma_{\phi}$ if and only if $|X| \leq 1$ or $\phi \eta=$ $=\eta \phi$. Therefore if $\Gamma=\mathbf{N}$ or $\Gamma=\mathbf{Z}$ and $\phi(n)=n+1,|X|>1$, then $\sigma_{\phi} \sigma_{\eta}=\sigma_{\eta} \sigma_{\phi}$ if and only if there exists $n \in \Gamma \cup\{0\}$ such that $\eta=\phi^{n}$.
Questions. With the same assumptions as in Cor. 2 or Note 4 , for one to one ϕ :

What is the centralizer of σ_{ϕ} ?
When σ_{ϕ} is coalescence?

Acknowledgement. A primary form and idea of the above discussed text has been presented in a lecture under the title "A note on measures" (Fatemah Ayatollah Zadeh Shirazi, Nasrin Karami Kabir) in the 3rd Iranian Math. Students' Seminar (2000, KNT University).

References

[1] FOLLAND, G. B.: Real analysis, modern techniques and their applications, John Wiley \& Sons, New York, 1984.
[2] WALTERS, P.: An introduction to ergodic theory, Springer-Verlag, New York, 1982.

[^0]: E-mail addresses: fatemah@khayam.ut.ac.ir, n.karamikabir@iauh.ac.ir, fatemeh_33heydari@yahoo.com

