Mathematica Pannonica

19/2 (2008), 155-170

UNIFORM TYPE HYPERSPACES

Teresa Abreu
Escola Superior de Gestão, Instituto Politécnico do Cávado e do Ave. Barcelos. Portugal
Eusebio Corbacho
Departamento de Matematica Aplicada 1, E. T. S. E. de Telecomunicacion, Universidad de Vigo, Vigo, Spain

Vaja Tarieladze

Niko Muskhelishvili Institute of Computational Mathematics, Tbilisi-0193, Georgia

Received: October 2007
MSC 2000: Primary 22 A 10; secondary 46 A 99
Keywords: Local quasi-uniform conoid, quasi-uniform conoid, quasi-uniform hyperspace.

Abstract

If (X, \mathcal{Q}) is a quasi-uniform space, then in the hyperspace $\mathcal{P}_{0}(X)$ of all non-empty subsets of X we investigate the several quasi-uniformities related with the Bourbaki-Hausdorff quasi-uniformity ([5], [10], [11], [12]). We show that if (X, \mathcal{Q}) is a quasi-uniform monoid (conoid), then $\mathcal{P}_{0}(X)$ with respect to the corresponding algebraic operations and quasi-uniformities is again a quasiuniform monoid (conoid). Moreover, it is demonstrated that if (X, \mathcal{Q}) is a quasi-uniform conoid, then in case of the hyperspace $\mathcal{P}_{c}(X)$ of all non-empty convex subsets of X the scalar multiplication on positive real numbers has some nice continuity properties.

The authors are partially supported by PAI project (Junta de Andalucia, SPAIN, 2008) and by the MEC-FEDER grants MTM 2007-61284 and MTM 2007-65726 (MEC, Spain, 2007).
E-mail addresses: tabreu@ipca.pt, corbacho@uvigo.es, tar@gw.acnet.ge, visit01@uvigo.es

1. Preliminary concepts

1.1. Uniform type spaces

\mathbb{R} will denote the set of real numbers and $\mathbb{R}_{+}:=[0, \infty[$. The set \mathbb{R} and its subsets (including \mathbb{R}_{+}and the unit segment $[0,1]$) will be supposed to be endowed with the usual topology \mathfrak{e}.

For a topological space (X, τ) we denote by $\mathcal{N}_{\tau}(x)$ the collection of all neighborhoods of a point $x \in X$. For the considered topologies and topological spaces no separation axioms are required in advance.

Fix a non-empty set X, a subset of $X \times X$ is called a (binary) relation on X. The relations will be denoted by P, Q, R, etc. We write:

$$
\begin{aligned}
\Delta_{X} & :=\{(x, x) \in X \times X \mid x \in X\}, \\
\top(P) & :=\{(y, x) \in X \times X \mid(x, y) \in P\}, \\
P \circ Q:=\{(x, y) \in X & \times X \mid \exists z \in X \text { such that }(x, z) \in Q,(z, y) \in P\} .
\end{aligned}
$$

The relation $\top(P)$ is called the converse relation of P. Instead of $\top(P)$ the notation P^{-1} also is used. A relation P is called reflexive if $\Delta_{X} \subset P$ and symmetric if $\top(P)=P$.

For a collection \mathcal{Q} of relations on X, we write $\mathcal{Q}^{\top}:=\{\top(Q) \mid Q \in$ $\in \mathcal{Q}\}$ and we say that \mathcal{Q} is symmetric if $\mathcal{Q}=\mathcal{Q}^{\top}$. The relation $P \circ Q$ is called the composition of relations P and Q.

For $x \in X$ and $E \subset X$ we set $P[x]:=\{y \in X \mid(x, y) \in P\}$ and $P[E]:=\bigcup_{x \in E} P[x]$.

We recall the usual terminology from the theory of quasi-uniform spaces (see, e.g., [6], [14], [13]):

A filter \mathcal{Q} consisting of reflexive relations on X is a

- Local Quasi-uniformity if $\forall x \in X, \forall Q \in \mathcal{Q}, \exists P \in \mathcal{Q}$ such that $P \circ P[x] \subset Q[x]$.
- Local Uniformity if \mathcal{Q} is a symmetric local quasi-uniformity.
- Quasi-Uniformity if $\forall Q \in \mathcal{Q} \quad \exists P \in \mathcal{Q}$ such that $P \circ P \subset Q$.
- Uniformity if \mathcal{Q} is a symmetric quasi-uniformity.

If \mathcal{Q} is a quasi-uniformity, the filter \mathcal{Q}^{\top} is a quasi-uniformity too. However, if \mathcal{Q} is a local quasi-uniformity, then \mathcal{Q}^{\top} may not be a local quasiuniformity. A local quasi-uniformity \mathcal{Q} is called bilocal quasi-uniformity if \mathcal{Q}^{\top} is a local quasi-uniformity as well (cf. [2]).

The pair (X, \mathcal{Q}) is called a local quasi-uniform space (a local uniform space, a quasi-uniform space, a uniform space) when \mathcal{Q} is a local
quasi-uniformity (a local uniformity, a quasi-uniformity, a uniformity) and the members of \mathcal{Q} are called entourages. ${ }^{1}$

Every uniform type structure \mathcal{Q} induces in X the topology $\tau_{\mathcal{Q}}$ for which

$$
\{Q[x] \mid Q \in \mathcal{Q}\}=\mathcal{N}_{\tau_{\mathcal{Q}}}(x), \forall x \in X
$$

For a quasi-uniformity \mathcal{Q} the topologies $\tau_{\mathcal{Q}}$ and $\tau_{\mathcal{Q}^{\top}}$ may be distinct.
A uniform type structure \mathcal{Q} is called compatible with a topology τ if $\tau_{\mathcal{Q}}=\tau$.

We say that a (local) quasi-uniformity \mathcal{Q} is
(1) weakly locally symmetric at $x \in X$ if for every $Q \in \mathcal{Q}$ there is a symmetric entourage $S \in \mathcal{Q}$ such that $S[x] \subset Q[x]$;
(2) weakly locally symmetric or point-symmetric if \mathcal{Q} is weakly locally symmetric at x for every $x \in X$;
(3) locally symmetric at $x \in X$ if for every $Q \in \mathcal{Q}$ there is a symmetric entourage $S \in \mathcal{Q}$ such that $S \circ S[x] \subset Q[x]$;
(4) locally symmetric if $Q \in \mathcal{Q}$ is locally symmetric at x for every $x \in X$.

Let X be a set and $\left(\mathcal{Q}_{i}\right)_{i \in I}$ be a non-empty family of uniform type structures in X. For this family, in the partially ordered set of all filters over $X \times X$, always exist the least upper bound $\vee_{i \in I} \mathcal{Q}_{i}$ and the greatest lower bound $\wedge_{i \in I} \mathcal{Q}_{i}$. They are uniform type structures of the same type of \mathcal{Q}_{i} (see [1] or [3]). Moreover $\left\{\cap_{i \in J} Q_{i} \mid Q_{i} \in \mathcal{Q}_{i}, J\right.$ finite $\left.\subset I\right\}$ is a base of $\vee_{i \in I} \mathcal{Q}_{i}$.

For a given bilocal quasi-uniformity \mathcal{Q} we denote $\mathcal{Q}^{\vee}=\mathcal{Q} \vee \mathcal{Q}^{\top}$ and $\mathcal{Q}_{\wedge}=\mathcal{Q} \wedge \mathcal{Q}^{\top}$. It is known that \mathcal{Q}^{\vee} is the coarsest local uniformity containing \mathcal{Q} and \mathcal{Q}_{\wedge} is the finest local uniformity contained into \mathcal{Q}.

A local quasi-uniform space (X, \mathcal{Q}) is called precompact if $\forall Q \in \mathcal{Q}$ $\exists F$ finite $\subset X$ such that $X=Q[F]$.

If (X, \mathcal{P}) and (Y, \mathcal{Q}) are local quasi-uniform spaces and $\mathcal{F} \subset Y^{X}$ is a non-empty family of mappings, then \mathcal{F} is called $(\mathcal{P}, \mathcal{Q})$-uniformly equicontinuous if
$\forall Q \in \mathcal{Q}, \exists P \in \mathcal{P}$ such that $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \in Q, \forall\left(x_{1}, x_{2}\right) \in P, \quad \forall f \in \mathcal{F}$.
Proposition 1.1. Let X and Y be nonempty sets, $\mathcal{F} \subset Y^{X}$ a nonempty family of mappings, $\left(\mathcal{P}_{i}\right)_{i \in I}$ a nonempty family of local quasi-uniformities on X and $\left(\mathcal{Q}_{i}\right)_{i \in I}$ a nonempty family of local quasi-uniformities on Y. Assume that $\forall i \in I, \mathcal{F}$ is $\left(\mathcal{P}_{i}, \mathcal{Q}_{i}\right)$-uniformly equicontinuous. Then:

[^0]a) \mathcal{F} is $\left(\vee_{i \in I} \mathcal{P}_{i}, \vee_{i \in I} \mathcal{Q}_{i}\right)$-uniformly equicontinuous.
b) \mathcal{F} is $\left(\wedge_{i \in I} \mathcal{P}_{i}, \wedge_{i \in I} \mathcal{Q}_{i}\right)$-uniformly equicontinuous.

1.2. Uniform type semigroups and monoids

A semigroup is a pair $(X,+)$, where X is a non-empty set and $+: X \times X \rightarrow X$ is an associative binary operation. A monoid is a triplet $(X,+, \theta)$, where $(X,+)$ is a semigroup which has the neutral element θ. If $(X,+)$ is a semigroup (monoid) in $X \times X$ we define a semigroup operation componentwise.

As usual, for non-empty subsets A, B of a semigroup $A+B$ will stand for their algebraic or Minkowski sum $\{a+b \mid a \in A, b \in B\}$.

A monoid (semigroup) X which is also a topological space is called a topological monoid if + is continuous with respect to the product topology in $X \times X$ and the topology of X.

A monoid (semigroup) X equipped with a local quasi-uniformity (bilocal quasi-uniformity, quasi-uniformity, local uniformity, uniformity) \mathcal{Q} is called a local quasi-uniform (bilocal quasi-uniform, quasi-uniform, local uniform, uniformity) monoid (semigroup) if + is uniformly continuous with respect to the product quasi-uniformity $\mathcal{Q} \otimes \mathcal{Q}$ and \mathcal{Q}.
Lemma 1.2. Let $(X,+, \theta)$ be a monoid, \mathcal{Q} be a local quasi-uniformity.
a) The following statements are equivalent:
(i) (X, \mathcal{Q}) is a local quasi-uniform monoid.
(ii) $\forall Q \in \mathcal{Q} \exists P \in \mathcal{Q}$ such that $P+P \subset Q$.
b) If (X, \mathcal{Q}) is a bilocal quasi-uniform monoid, then $\left(X, \mathcal{Q}^{\top}\right)$ also is.
c) If (X, \mathcal{Q}) is a (bilocal) quasi-uniform monoid, then $\left(X, \mathcal{Q}^{\vee}\right)$ is a (local) uniform monoid.

1.3. Uniform type conoids

A conoid is an Abelian monoid $(X,+, \theta)$ for which an external operation

$$
m: X \times \mathbb{R}_{+} \rightarrow X, m(x, \alpha)=x \cdot \alpha
$$

is defined with the properties:
A. $1 \quad\left(x_{1}+x_{2}\right) \cdot \alpha=x_{1} \cdot \alpha+x_{2} \cdot \alpha \quad \forall x_{1}, x_{2} \in X, \quad \forall \alpha \in \mathbb{R}_{+} ;$
A. $2\left(x \cdot \alpha_{1}\right) \cdot \alpha_{2}=x \cdot\left(\alpha_{1} \cdot \alpha_{2}\right) \quad \forall x \in X, \quad \forall \alpha_{1}, \alpha_{2} \in \mathbb{R}_{+}$;
$A .3 x \cdot\left(\alpha_{1}+\alpha_{2}\right)=x \cdot \alpha_{1}+x \cdot \alpha_{2} \quad \forall x \in X, \quad \forall \alpha_{1}, \alpha_{2} \in \mathbb{R}_{+} ;$
$A .4 \quad x \cdot 1=x \quad \forall x \in X$.

In the literature a conoid is also called an abstract convex cone [16], a cone [9], a semi-vector space [15], or a semilinear space [7], [8], [17], etc. In [1] the conoids were introduced to develop a integration scheme in quasi-uniform spaces, these structures also have been studies in [4].

If $(X,+, \theta, m)$ is a conoid then in $X \times X$ we define a conoid structure componentwise.

Let $(X,+, \theta, m)$ be a conoid, K be a non-empty subset of $X, \alpha \in \mathbb{R}_{+}$ and A non-empty subset of \mathbb{R}_{+}. We write

$$
K \cdot \alpha:=\{x \cdot \alpha-x \in K\} \quad \text { and } \quad K \cdot A:=\{x \cdot \alpha-x \in K, \alpha \in A\} .
$$

Let $(X,+, \theta, m)$ be a conoid, K be a subset of X and b be an element of $X . K$ is called:
(1) Convex if either K is empty, or $K \cdot \alpha+K \cdot(1-\alpha) \subset K$, for every $\alpha \in[0,1]$.
(2) Balanced if either K is empty, or $K \cdot[0,1] \subset K$.

Remark 1.3. Let $(X,+, \theta, m)$ be a conoid.
(1) X itself is convex, balanced and radial.
(2) If K is a non-empty convex subset of X, then $K \cdot(\alpha+\beta)=$ $=K \cdot \alpha+K \cdot \beta, \alpha, \beta \in \mathbb{R}_{+}$.
(3) The intersection of any non-empty family of convex (balanced) subsets of a conoid is convex (balanced).

As usual, we denote $\operatorname{co}(K)$ the convex hull of a subset $K \subset X$.
Definition 1.4. A conoid $(X,+, \theta, m)$ equipped with a local quasiuniformity (bilocal quasi-uniformity, quasi-uniformity, local uniformity, uniformity) \mathcal{Q} is called a local quasi-uniform (bilocal quasi-uniform, quasiuniform, local uniform, uniform) conoid if $(X,+, \theta, \mathcal{Q})$ is a local quasiuniform monoid. It is denoted by $(X,+, \theta, m, \mathcal{Q})$.

Therefore a local quasi-uniform conoid is simply a local quasiuniform monoid which algebraically is a conoid.

We shall say that a local quasi-uniform conoid $(X,+, \theta, m, \mathcal{Q})$ is

- locally convex if \mathcal{Q} admits a base consisting of convex entourages;
- locally balanced if \mathcal{Q} admits a base consisting of balanced entourages.
Remark 1.5. Let $(X,+, \theta, m, \mathcal{Q})$ a bilocal quasi-uniform conoid.
(1) $\left(X,+, \theta, m, \mathcal{Q}^{\top}\right)$ is a bilocal quasi-uniform conoid (see 1.2).
(2) $\left(X,+, \theta, m, \mathcal{Q}_{\wedge}\right),\left(X,+, \theta, m, \mathcal{Q}^{\vee}\right)$ are local uniform conoids (see 1.2).

For every $x \in X$, and for every $\alpha \in \mathbb{R}_{+}$we will consider the mappings

$$
\begin{array}{rllccccc}
m_{x}: & \mathbb{R}_{+} & \rightarrow & X & \text { and } & m_{\alpha}: & X & \rightarrow
\end{array} X
$$

Denoting by \mathcal{E}_{+}the usual uniformity on \mathbb{R}_{+}, we say that the external operation of a local quasi-uniform conoid $(X,+, \theta, m, \mathcal{Q})$ is

- $U C_{\ell}$ if m_{x} is $\left(\mathcal{E}_{+}, \mathcal{Q}\right)$-uniformly continuous $\forall x \in X$;
- $U C_{r}$ if m_{α} is \mathcal{Q}-uniformly continuous $\forall \alpha \in \mathbb{R}_{+}$;
- $C_{\ell, 0}$ if m_{x} is $\left(\mathfrak{e}, \tau_{\mathcal{Q}}\right)$-continuous at $0 \forall x \in X$;
- C_{ℓ} if m_{x} is $\left(\mathfrak{e}, \tau_{\mathcal{Q}}\right)$-continuous on $\mathbb{R}_{+} \forall x \in X$;

- C_{r} if m_{α} is $\tau_{\mathcal{Q}}$-continuous on $X \forall \alpha \in \mathbb{R}_{+}$;
- $J C_{(\theta, 0)}$ if m is $\left(\tau \otimes \mathfrak{e}, \tau_{\mathcal{Q}}\right)$-continuous at $(\theta, 0)$;
- $J C$ if m is $\left(\tau_{\mathcal{Q}} \otimes \mathfrak{e}, \tau_{\mathcal{Q}}\right)$-continuous everywhere.

Let $(X,+, \theta, m)$ be a conoid. A local quasi-uniformity \mathcal{Q} on X is called homogeneous if

$$
Q \cdot \alpha \in \mathcal{Q} \quad \forall Q \in \mathcal{Q}, \quad \forall \alpha>0
$$

Proposition 1.6. Let $(X,+, \theta, m, \mathcal{Q})$ be a bilocal quasi-uniform conoid such that m is $C_{\ell, 0}$. The following statements are valid:
a) m_{x} is $\left(\mathfrak{e}, \tau_{\mathcal{Q}}\right)$-right-continuous $\forall x \in X$.
b) If \mathcal{Q}^{\top} is weakly locally symmetric at θ, then m_{x} is $\left(\mathfrak{e}, \tau_{\mathcal{Q}^{\top}}\right)$ continuous at $0 \forall x \in X$.
c) If m_{x} is $\left(\mathfrak{e}, \tau_{\mathcal{Q}^{\top}}\right)$ - continuous at $0 \forall x \in X$, then m is $U C_{\ell}$.
d) If \mathcal{Q}^{\top} is weakly locally symmetric at θ, then m is $U C_{\ell}$.
e) If \mathcal{Q} is a uniformity, then m is $C_{\ell, 0}$ if and only if m is $U C_{\ell}$.

Proof. a) Fix $x \in X$ and $\alpha \in \mathbb{R}_{+}, \alpha>0$ and $Q \in \mathcal{Q}$. Since + is $\left(\tau_{\mathcal{Q}} \otimes \tau_{\mathcal{Q}}, \tau_{\mathcal{Q}}\right)$-continuous at $(x \cdot \alpha, \theta)$ and $x \cdot \alpha=x \cdot \alpha+\theta$, there exists $R \in \mathcal{Q}$ such that $R[x \cdot \alpha]+R[\theta] \subset Q[x \cdot \alpha]$.

Since m_{x} is $\left(\mathfrak{e}, \tau_{\mathcal{Q}}\right)$-continuous at 0 there exists $\varepsilon>0$ such that $x \cdot t \in R[\theta] \quad \forall t \in[0, \varepsilon[$. Then:
$x \cdot(\alpha+t)=x \cdot \alpha+x \cdot t \in R[x \cdot \alpha]+R[\theta] \subset Q[x \cdot \alpha] \quad \forall t \in[0, \varepsilon[$
and the $\left(\mathfrak{e}, \tau_{\mathcal{Q}}\right)$-right-continuity of m_{x} at α is proved.
b) Obvious.
c) Fix $x \in X$. Since (X, \mathcal{Q}) is a bilocal quasi-uniform semigroup, there exists $R \in \mathcal{Q}$ such that $R+R \subset Q$. Since m_{x} is $\left(\mathfrak{e}, \tau_{\mathcal{Q}} \vee \tau_{\mathcal{Q}^{\top}}\right)$ continuous at 0 there exists $\varepsilon>0$ such that

$$
m_{x}([0, \varepsilon[) \subset R[\theta] \cap T(R)[\theta],
$$

i.e.,

$$
\begin{equation*}
(\theta, x \cdot t) \in R \quad \text { and } \quad(x \cdot t, \theta) \in R, \forall t \in[0, \varepsilon[. \tag{*}
\end{equation*}
$$

Take $\alpha, \beta \in \mathbb{R}_{+}$with $|\alpha-\beta|<\varepsilon$ and let us show that $(x \cdot \alpha, x \cdot \beta) \in Q$.
If $\alpha<\beta$, then $\beta=\alpha+t$ with $t:=\beta-\alpha \in[0, \varepsilon[$. This and $(*)$ imply:
$(x \cdot \alpha, x \cdot \beta)=(x \cdot \alpha+\theta, x \cdot \alpha+x \cdot t)=(x \cdot \alpha, x \cdot \alpha)+(\theta, x \cdot t) \in R+R \subset Q$. If $\alpha>\beta$, then $\alpha=\beta+t$ with $t:=\alpha-\beta \in[0, \varepsilon[$. This and $(*)$ imply: $(x \cdot \alpha, x \cdot \beta)=(x \cdot t+x \cdot \beta, \theta+x \cdot \beta)=(x \cdot t, \theta)+(x \cdot \beta, x \cdot \beta) \in R+R \subset Q$. Consequently,

$$
\alpha, \beta \in \mathbb{R}^{+},|\alpha-\beta|<\varepsilon \Gamma \Rightarrow(x \cdot \alpha, x \cdot \beta) \in Q
$$

and so, m_{x} is $\left(\mathcal{E}^{+}, \mathcal{Q}\right)$ - uniformly continuous.
d) Follows from b) and c).
e) Follows from d). \diamond

2. Uniform type hyperspaces

Let X be a nonempty set and $\mathcal{P}_{0}(X)$ be the collection of all nonempty subsets of X. For each relation Q on X, set

$$
\begin{aligned}
Q^{+} & =\left\{(A, B) \in \mathcal{P}_{0}(X) \times \mathcal{P}_{0}(X) \mid B \subset Q[A]\right\}, \\
Q^{-} & =\left\{(A, B) \in \mathcal{P}_{0}(X) \times \mathcal{P}_{0}(X) \mid A \subset \top(Q)[B]\right\}, \\
Q^{*} & :=Q^{+} \cap Q^{-}
\end{aligned}
$$

Remark 2.1. Let P, Q be relations on X, then:
(1) $\top\left(Q^{-}\right)=(\top(Q))^{+}$and $\top\left(Q^{+}\right)=(\top(Q))^{-}$.
(2) $(P \cup Q)^{+}=P^{+} \cup Q^{+}$.
(3) $(P \cup Q)^{-}=P^{-} \cup Q^{-}$.
(4) $(P \cap Q)^{+} \subset P^{+} \cap Q^{+}$.
(5) $(P \cap Q)^{-} \subset P^{-} \cap Q^{-}$.
(6) $(P \cap Q)^{*} \subset P^{*} \cap Q^{*}$.

For a local quasi-uniformity \mathcal{Q} on X let

- \mathcal{Q}^{+}be the filter generated by $\left\{Q^{+} \mid Q \in \mathcal{Q}\right\}$,
- \mathcal{Q}^{-}be the filter generated by $\left\{Q^{-} \mid Q \in \mathcal{Q}\right\}$,
- $\mathcal{Q}^{*}:=\mathcal{Q}^{+} \vee \mathcal{Q}^{-}$.

Remark 2.2. If (X, \mathcal{Q}) is a local quasi-uniform space, then
(1) $\left(\mathcal{Q}^{-}\right)^{\top}=\left(\mathcal{Q}^{\top}\right)^{+}$, and $\left(\mathcal{Q}^{+}\right)^{\top}=\left(\mathcal{Q}^{\top}\right)^{-}$;
(2) $\left(\mathcal{Q}^{*}\right)^{\top}=\left(\mathcal{Q}^{\top}\right)^{*}$.

Proposition 2.3. Let (X, \mathcal{Q}) be a quasi-uniform space. The following statements are true:
(a) (cf. $[5,10]) \mathcal{Q}^{+}, \mathcal{Q}^{-}$and \mathcal{Q}^{*} are quasi-uniformities.
(b) If \mathcal{Q} is a uniformity, then \mathcal{Q}^{+}and \mathcal{Q}^{-}are conjugate quasiuniformities, and \mathcal{Q}^{*} is a uniformity on $\mathcal{P}_{0}(X)$.
Proof. (a) Fix $\mathfrak{P} \in \mathcal{Q}^{+}$. There exists $P \in \mathcal{Q}$ such that $P^{+} \subset \mathfrak{P}$. Since \mathcal{Q} is a quasi-uniformity there is $Q \in \mathcal{Q}$ such that $Q \circ Q \subset P$. Let us show that $Q^{+} \circ Q^{+} \subset P^{+}$:

Take $(A, B) \in Q^{+} \circ Q^{+}$. There is a C such that $(A, C) \in Q^{+}$and $(C, B) \in Q^{+}$. For each $b \in B$ there is $c \in C$ such that $(c, b) \in Q$ and there is $a \in A$ such that $(a, c) \in Q$. It follows that $(a, b) \in Q \circ Q \subset P$ and so, $b \in P[a] \subset P[A]$. Hence $B \subset P[A]$ and $(A, B) \in P^{+}$.

The other cases are analogous.
(b) Follows from Rem. 2.1(1). \diamond

The quasi-uniformities \mathcal{Q}^{+}and \mathcal{Q}^{-}are called, respectively, the upper and lower Hausdorff quasi-uniformities on $\mathcal{P}_{0}(X)$ associated with \mathcal{Q}.

The quasi-uniformity \mathcal{Q}^{*} is called Hausdorff (or Bourbaki) quasiuniformity on $\mathcal{P}_{0}(X)$ associated with \mathcal{Q}.

The next proposition shows that an analogue of Prop. 2.3(a) is not true for bilocal quasi-uniformities.
Proposition 2.4. Let (X, \mathcal{Q}) be a bilocal quasi-uniform space. Then:
a) \mathcal{Q}^{+}may not be a local quasi-uniformity on $\mathcal{P}_{0}(X)$.
b) \mathcal{Q}^{-}may not be a local quasi-uniformity on $\mathcal{P}_{0}(X)$.
c) \mathcal{Q}^{*} may not be a local quasi-uniformity on $\mathcal{P}_{0}(X)$.

Proof. Let $X=\left\{0,1, \frac{1}{2}, \ldots \frac{1}{n}, \ldots\right\}$ and

$$
Q_{n}=\Delta \cup\left\{\left(0, \frac{1}{i}\right): i \geq n\right\} \cup\left\{\left(\frac{1}{i+1}, \frac{1}{i}\right): i \geq n\right\}
$$

First we will see that $\mathcal{Q}_{0}=\left\{Q_{n}: n \in \mathbb{N}\right\}$ is base of a bilocal quasiuniformity \mathcal{Q} (cf. [1]).

- $Q_{n+1} \subset Q_{n}$, for each $n \in \mathbb{N}$, therefore \mathcal{Q} is a filter base on $X \times X$.
- $\Delta \subset Q_{n}$, for every $n \in \mathbb{N}$.
- Observe that:

$$
Q_{n}[0]=\left\{0, \frac{1}{n}, \frac{1}{n+1} \ldots\right\} \text { and } Q_{n} \circ Q_{n}[0]=\left\{0, \frac{1}{n}, \frac{1}{n+1} \ldots\right\}
$$

hence $Q_{n} \circ Q_{n}[0]=Q_{n}[0], n=1,2, \ldots$. Now, let $n \geq 1$ and $k \geq 1$, we have that:

$$
Q_{k} \circ Q_{k}\left[\frac{1}{k}\right]=\left\{\frac{1}{k}\right\} \text { hence } Q_{k} \circ Q_{k}\left[\frac{1}{k}\right] \subset Q_{n}\left[\frac{1}{k}\right] .
$$

- Notice that:

$$
\top\left(Q_{n}\right)=\Delta \cup\left\{\left(\frac{1}{i}, 0\right): i \geq n\right\} \cup\left\{\left(\frac{1}{i}, \frac{1}{i+1}\right): i \geq n\right\}, \quad n=1,2,3 \ldots
$$

Observe that: $-\top\left(Q_{n}\right)[0]=\{0\}$ and $\top\left(Q_{n}\right) \circ \top\left(Q_{n}\right)[0]=\{0\}$ hence $\top\left(Q_{n}\right) \circ \top\left(Q_{n}\right)[0]=\top\left(Q_{n}\right)[0], n=1,2, \ldots$ and for $n, k \in \mathbb{N}$ we have: $\top\left(Q_{k+1}\right) \circ \top\left(Q_{k+1}\right)\left[\frac{1}{k}\right]=\left\{\frac{1}{k}\right\}$ hence $\top\left(Q_{k+1}\right) \circ \top\left(Q_{k+1}\right)\left[\frac{1}{k}\right] \subset \top\left(Q_{n}\right)\left[\frac{1}{k}\right]$.
a) Let $A=\left\{\frac{1}{3}, \frac{1}{6}, \ldots, \frac{1}{3 n}, \ldots\right\}$, let us see that

$$
Q_{m}^{+} \circ Q_{m}^{+}[A] \not \subset Q_{1}^{+}[A], \forall m \in \mathbb{N}
$$

with

$$
Q_{1}^{+}[A]=\mathcal{P}_{0}\left(\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \ldots, \frac{1}{3 n-1}, \frac{1}{3 n}, \ldots\right\}\right) \cup \emptyset .
$$

We have:

$$
\left\{\begin{array}{l}
\left(A,\left\{\frac{1}{3 m-1}\right\}\right) \in Q_{m}^{+} \\
\left(\left\{\frac{1}{3 m-1}\right\},\left\{\frac{1}{3 m-2}\right\}\right) \in Q_{m}^{+}
\end{array} .\right.
$$

Therefore $\left\{\frac{1}{3 m-2}\right\} \in Q_{m}^{+} \circ Q_{m}^{+}[A] \forall m \in \mathbb{N}$, but $\left\{\frac{1}{3 m-2}\right\} \notin Q_{1}^{+}[A]$.
b) Let $A=\left\{\frac{1}{3}, \frac{1}{6}, \ldots, \frac{1}{3 n}, \ldots\right\}$, let we us see that $Q_{m}^{-} \circ Q_{m}^{-}[A] \not \subset Q_{1}^{-}[A], \forall m \in \mathbb{N}$
with

$$
Q_{1}^{-}[A]=\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \ldots, \frac{1}{3 n-1}, \frac{1}{3 n}, \ldots\right\}
$$

Consider

$$
B_{m}=\left\{\frac{1}{3 k}: 1 \leq k<m\right\} \cup\left\{\frac{1}{3 k-2}: k \geq m\right\}
$$

and

$$
C_{m}=\left\{\frac{1}{3 k}: 1 \leq k<m\right\} \cup\left\{\frac{1}{3 m-1}, \frac{1}{3 m+2}, \frac{1}{3 m+5}, \ldots\right\} .
$$

We have

$$
\left\{\begin{array}{l}
\left(A, C_{m}\right) \in Q_{m}^{-} \\
\left(C_{m}, B_{m}\right) \in Q_{m}^{-}
\end{array}\right.
$$

hence $B_{m} \in Q_{m}^{-} \circ Q_{m}^{-}[A], \forall m \in \mathbb{N}$, but $B_{m} \notin Q_{1}^{-}[A]$.
c) Let $A=\left\{\frac{1}{3}, \frac{1}{6}, \ldots, \frac{1}{3 n}, \ldots\right\}$, then by a) and b) we have

$$
\begin{aligned}
Q_{1}^{*}[A] & =\left(Q_{1}^{+} \cap Q_{1}^{-}\right)[A] \subset Q_{1}^{+}[A] \cap Q_{1}^{-}[A]= \\
& =\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \ldots, \frac{1}{3 n-1}, \frac{1}{3 n}, \ldots\right\}
\end{aligned}
$$

Let C_{m} and B_{m} the sets defined in b$)$. We have also

$$
\left\{\begin{array}{l}
\left(A, C_{m}\right) \in Q_{m}^{+} \cap Q_{m}^{-} \\
\left(C_{m}, B_{m}\right) \in Q_{m}^{+} \cap Q_{m}^{-}
\end{array},\right.
$$

hence $B_{m} \in\left(Q_{m}^{+} \cap Q_{m}^{-}\right) \circ\left(Q_{m}^{+} \cap Q_{m}^{-}\right)[A], \forall m \in \mathbb{N}$, but $B_{m} \notin Q_{1}^{*}[A]$. \diamond
Taking into account Rem. 2.1 it is easy to prove the following:
Proposition 2.5. Let \mathcal{Q} and \mathcal{P} be quasi-uniformity on X. Then:
(1) $\mathcal{P}^{*} \vee \mathcal{Q}^{*} \subset(\mathcal{P} \vee \mathcal{Q})^{*}$.
(2) $(\mathcal{P} \wedge \mathcal{Q})^{*} \subset \mathcal{P}^{*} \wedge \mathcal{Q}^{*}$.
(3) If the set $\{P \cup Q \mid P \in \mathcal{P}, Q \in \mathcal{Q}\}$ is a quasi-uniform base of $\mathcal{Q} \wedge \mathcal{P}$, then
(a) $\left\{(P \cup Q)^{+} \mid P^{+} \in \mathcal{P}^{+}, Q^{+} \in \mathcal{Q}^{+}\right\}=\left\{P^{+} \cup Q^{+} \mid P^{+} \in \mathcal{P}^{+}\right.$, $\left.Q^{+} \in \mathcal{Q}^{+}\right\}$and both are quasi-uniform bases. Consequently, $\mathcal{Q}^{+} \wedge \mathcal{P}^{+}=(\mathcal{Q} \wedge \mathcal{P})^{+}$.
(b) $\left\{(P \cup Q)^{-} \mid P^{-} \in \mathcal{P}^{-}, Q^{-} \in \mathcal{Q}^{-}\right\}=\left\{P^{-} \cup Q^{-} \mid P^{-} \in \mathcal{P}^{-}\right.$, $\left.Q^{-} \in \mathcal{Q}^{-}\right\}$and both are quasi-uniform bases. Consequently, $\mathcal{Q}^{-} \wedge \mathcal{P}^{-}=(\mathcal{Q} \wedge \mathcal{P})^{-}$.
(c) $\left\{(P \cup Q)^{*} \mid P^{*} \in \mathcal{P}^{*}, Q^{*} \in \mathcal{Q}^{*}\right\}=\left\{P^{*} \cup Q^{*} \mid P^{*} \in \mathcal{P}^{*}, Q^{*} \in \mathcal{Q}^{*}\right\}$ are quasi-uniform bases and $\mathcal{Q}^{*} \wedge \mathcal{P}^{*}=(\mathcal{Q} \wedge \mathcal{P})^{*}$.
(4) In particular, we have
(a) $\left(\mathcal{Q}^{*}\right)^{\vee} \subset\left(\mathcal{Q}^{\vee}\right)^{*}$.
(b) $\left(\mathcal{Q}_{\wedge}\right)^{*} \subset\left(\mathcal{Q}^{*}\right)_{\wedge}$.
(c) When $\{T(Q) \cup Q \mid Q \in \mathcal{Q}\}$ is base of \mathcal{Q}_{\wedge} then $\left(\mathcal{Q}^{*}\right)_{\wedge}=\left(\mathcal{Q}_{\wedge}\right)^{*}$.

The following proposition shows that the local symmetry is preserved for singletons.
Proposition 2.6. Let (X, \mathcal{Q}) be a weakly locally symmetric quasi-uniform space. Then:
a) $\left(\mathcal{P}_{0}(X), \mathcal{Q}^{-}\right)$is weakly locally symmetric at $\{x\}, \forall x \in X$;
b) $\left(\mathcal{P}_{0}(X), \mathcal{Q}^{+}\right)$is weakly locally symmetric at $\{x\}, \forall x \in X$;
c) $\left(\mathcal{P}_{0}(X), \mathcal{Q}^{*}\right)$ is weakly locally symmetric at $\{x\}, \forall x \in X$.

Proof. a) Fix $\mathfrak{Q} \in \mathcal{Q}^{-}$. There exists $Q \in \mathcal{Q}$ such that $Q^{-} \subset \mathfrak{Q}$. For a $x \in X$ there is a symmetric entourage $S \in \mathcal{Q}$ such that $S[x] \subset Q[x]$.

Let $B \in S^{-}[\{x\}]$, then there is a $b \in B$ such that

$$
(x, b) \in S \text { hence }(x, b) \in Q \text {. }
$$

Therefore $(\{x\}, B) \in Q^{-}$and so $B \in Q^{-}[\{x\}]$.
b) Is analogous to a).
c) Follows from a) and b) because the supremum of a family of weakly locally symmetric quasi-uniformities is weakly locally symmetric. \diamond

Proposition 2.7. Let (X, \mathcal{Q}) be a locally symmetric quasi-uniform space. We have:
a) $\left(\mathcal{P}_{0}(X), \mathcal{Q}^{-}\right)$is locally symmetric at $\{x\}, \forall x \in X$.
b) $\left(\mathcal{P}_{0}(X), \mathcal{Q}^{+}\right)$is locally symmetric at $\{x\}, \forall x \in X$.
c) $\left(\mathcal{P}_{0}(X), \mathcal{Q}^{*}\right)$ is locally symmetric at $\{x\}, \forall x \in X$.

Proof. a) Fix $\mathfrak{Q} \in \mathcal{Q}^{-}$. There exists $Q \in \mathcal{Q}$ such that $Q^{-} \subset \mathfrak{Q}$. For a $x \in X$ there is a symmetric entourage $S \in \mathcal{Q}$ such that $S \circ S[x] \subset Q[x]$.

Let $B \in S^{-} \circ S^{-}[\{x\}]$, then there is a $C \subset X$ such that

$$
(\{x\}, C) \in S^{-} \text {and }(C, B) \in S^{-}
$$

Then for each $c \in C$ there is a $b \in B$ such that

$$
(x, c) \in S \text { and }(c, b) \in S
$$

Hence, there is $b \in B$ such that $(x, b) \in S \circ S$ then $(x, b) \in Q$.
Therefore $(\{x\}, B) \in Q^{-}$and so $B \in Q^{-}[\{x\}]$.
b) Is analogous to a).
c) Follows from a) and b) because the supremum of family of locally symmetric quasi-uniformities is weakly locally symmetric. \diamond

2.1. Hyperspaces with algebraic structures

If $(X,+, \theta)$ is a monoid, then $\mathcal{P}_{0}(X)$ is a monoide as well with respect to the internal operation

$$
\begin{array}{cccc}
+: & \mathcal{P}_{0}(X) \times \mathcal{P}_{0}(X) & \rightarrow & \mathcal{P}_{0}(X) \\
(A, B) & \mapsto & A+B
\end{array}
$$

and the neutral element $\{\theta\}$.
Theorem 2.8. Let $(X,+, \theta, \mathcal{Q})$ be a quasi-uniform monoid, then $\left(\mathcal{P}_{0}(X),+,\{\theta\}, \mathcal{Q}^{-}\right),\left(\mathcal{P}_{0}(X),+,\{\theta\}, \mathcal{Q}^{+}\right)$and $\left(\mathcal{P}_{0}(X),+,\{\theta\}, \mathcal{Q}^{*}\right)$ are quasi-uniform monoids.
Proof. Fix $\mathfrak{Q} \in \mathcal{Q}^{+}$. There exists $Q \in \mathcal{Q}$ such that $Q^{+} \subset \mathfrak{Q}$. Since + is uniformly continuous, there is a entourage P such that $P+P \subset Q$. Observe that:

- if $\left(A_{1}, B_{1}\right) \in Q^{+}$then $B_{1} \subset P\left[A_{1}\right]$;
- if $\left(A_{2}, B_{2}\right) \in Q^{+}$then $B_{2} \subset P\left[A_{2}\right]$.

Then

$$
B_{1}+B_{2} \subset P\left[A_{1}\right]+P\left[A_{2}\right] \subset P\left[A_{1}+A_{2}\right] \subset Q\left[B_{1}+B_{2}\right] .
$$

Hence

$$
P^{+}+P^{+} \subset Q^{+} .
$$

In the same way it is easy to see that + is also uniformly continuous with respect to \mathcal{Q}^{-}.

Since + is uniformly continuous with respect \mathcal{Q}^{+}and \mathcal{Q}^{-}, by Prop. 1.1 it is also uniformly continuous with respect to $\mathcal{Q}^{*} . \diamond$

Let $(X,+, \theta, m)$ be a conoid. The external operation m can be extended to $\mathcal{P}_{0}(X)$ in a natural manner:

$$
\begin{array}{cccc}
m: & \mathcal{P}_{0}(X) \times \mathbb{R}_{+} & \rightarrow & \mathcal{P}_{0}(X) \\
(A, \alpha) & \mapsto & A \cdot \alpha
\end{array}
$$

The structure $\left(\mathcal{P}_{0}(X),+,\{\theta\}, m\right)$ may not be a conoid, because, in general, property $A .3$ may fail.

Denote $\mathcal{P}_{c}(X)$ be the collection of all convex members of $\mathcal{P}_{0}(X)$. By Rem. $1.3(2)$ the structure $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m\right)$ is a conoid. This is an important example of conoid. Observe that, since $X+X=X$, this conoid is not cancellative provided $X \neq\{\theta\}$.

Let \mathcal{Q} be a quasi-uniformity in a conoid $(X,+, \theta, m)$. We denote $\mathcal{Q}_{c}^{+}, \mathcal{Q}^{-}{ }_{c}$ and \mathcal{Q}_{c}^{*} the induced quasi-uniformities on $\mathcal{P}_{c}(X)$ by the quasiuniformities $\mathcal{Q}^{+}, \mathcal{Q}^{-}$and \mathcal{Q}^{*}.

The following result is a particular case of Th. 2.8.
Corollary 2.9. Let $(X,+, \theta, m, \mathcal{Q})$ be a quasi-uniform conoid, then $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right),\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{+}\right)$and $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right)$ are quasi-uniform conoids.
Proposition 2.10. Let $(X,+, \theta, m)$ be a conoid, and \mathcal{Q} be a quasiuniformity on X.
a) If \mathcal{Q} is locally convex, then $\mathcal{Q}_{c}^{-}, \mathcal{Q}_{c}^{+}$and \mathcal{Q}_{c}^{+}are locally convex.
b) If \mathcal{Q} is locally balanced, then $\mathcal{Q}_{c}^{-}, \mathcal{Q}_{c}^{+}$and \mathcal{Q}_{c}^{+}are locally balanced.
Proof. a) Fix $\mathfrak{P} \in \mathcal{Q}_{c}^{+}$. There exists a convex $P \in \mathcal{Q}$ such that $P^{+} \subset \mathfrak{P}$. Fix $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right) \in P^{+}$, we have that $B_{1} \subset P\left[A_{1}\right]$ and $B_{2} \subset P\left[A_{2}\right]$.

For each $b_{1} \in B_{1}, b_{2} \in B_{2}$ there is a $a_{1} \in A_{1}, a_{2} \in A_{2}$ such that

$$
\left(a_{1}, b_{1}\right) \in P \text { and }\left(a_{2}, b_{2}\right) \in P
$$

since P is a convex entourage then

$$
\left(a_{1} \cdot \alpha+a_{2} \cdot \beta, b_{1} \cdot \alpha+b_{2} \cdot \beta\right) \in P \text { with } \alpha+\beta=1
$$

Therefore $b_{1} \cdot \alpha+b_{2} \cdot \beta \in P\left[a_{1} \cdot \alpha+a_{2} \cdot \beta\right] \Rightarrow B_{1} \cdot \alpha+B_{2} \cdot \beta \in P\left[A_{1} \cdot \alpha+A_{2} \cdot \beta\right]$. Then

$$
\left(A_{1}, B_{1}\right) \cdot \alpha+\left(A_{2}, B_{2}\right) \cdot \beta \in P^{+} \text {with } \alpha+\beta=1
$$

In a similar way we can prove that the lower quasi-uniformity \mathcal{Q}_{c}^{-}, is locally convex too.

Since $\mathcal{Q}_{c}^{*}=\mathcal{Q}_{c}^{+} \vee \mathcal{Q}_{c}^{-}$, then \mathcal{Q}_{c}^{*} has also a base consisting of convex sets.
b) Now we will prove that if P is a balanced entourage then P^{+}is also balanced. Let $(A, B) \in P^{+}$, then

$$
\begin{aligned}
& B \subset P[A] \Rightarrow \quad \forall b \in B \exists a \in A \text { such that } \\
& (a, b) \in P \Rightarrow(a \cdot t, b \cdot t) \in P, \forall t \in[0,1]
\end{aligned}
$$

hence $B \cdot t \subset P[A \cdot t]$ with $t \in[0,1]$.
In a similar way we can prove that the lower quasi-uniformity is locally balanced too.

Since $\mathcal{Q}_{c}^{*}=\mathcal{Q}_{c}^{+} \vee \mathcal{Q}_{c}^{-}$, then \mathcal{Q}_{c}^{*} has also a base consisting of balanced sets. \diamond

In the following propositions we study the stability of the partial continuity of the action on the hyperspace $\mathcal{P}_{c}(X)$.

We begin with the maps $m_{\alpha}: \mathcal{P}_{c}(X) \rightarrow \mathcal{P}_{c}(X)$.
Proposition 2.11. Let $(X,+, \theta, m)$ be a conoid and \mathcal{Q} be a quasiuniformity for which m is $C_{r, \theta}$. Then m is $C_{r,\{\theta\}}$ in the conoids $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right),\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{+}\right)$and $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right)$.
Proof. Fix $Q \in \mathcal{Q}$ and $\alpha \in \mathbb{R}_{+}$. Since m_{α} is $\tau_{\mathcal{Q}^{-}}$continuous at θ, there is a $P \in \mathcal{Q}$ such that $P[\theta] \cdot \alpha \subset Q[\theta]$. Let $B \subset P^{-}[\{\theta\}]$, then there is $b \in B$ such that

$$
(\theta, b) \in P \Rightarrow(\theta, b \cdot \alpha) \in Q \Rightarrow\{\theta\} \subset \top(Q)[b \cdot \alpha] .
$$

Thus $B \cdot \alpha \in Q^{-}[\{\theta\}]$.
In the same way we can prove that m_{α} is $\tau_{\mathcal{Q}_{c}^{+-}}$continuous at $\{\theta\}$, and using the previous results and Prop. 1.1 we can conclude that m is also $C_{r,\{\theta\}}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right) . \diamond$
Proposition 2.12. Let $(X,+, \theta, m)$ be a conoid and \mathcal{Q} be a quasiuniformity for which m is $U C_{r}$. Then m is $U C_{r}$ in the conoids $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right),\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{+}\right)$and $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right)$.
Proof. Fix $Q \in \mathcal{Q}$ and $\alpha \in \mathbb{R}_{+}$. Since m_{α} is \mathcal{Q}-uniformly continuous, there is a entourage P such that $P \cdot \alpha \subset Q$.

If $B \subset P[A]$ then for each $b \in B$ there is a $a \in A$ such that

$$
(a, b) \in P \Rightarrow(a \cdot \alpha, b \cdot \alpha) \in Q \Rightarrow b \cdot \alpha \subset Q[a \cdot \alpha]
$$

then

$$
b \cdot \alpha \subset \bigcup_{a \in A} Q[a \cdot \alpha]=Q[A \cdot \alpha] .
$$

Hence $B \cdot \alpha \subset Q[A \cdot \alpha]$. Thus $P^{+} \cdot \alpha \subset Q^{+}$.

The case $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right)$is analogous, and using the previous results and Prop. 1.1, we can prove that m is $U C_{r}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right) . \diamond$

Now we study the maps $m_{A}: \mathbb{R}_{+} \rightarrow \mathcal{P}_{c}(X), A \in \mathcal{P}_{c}(X)$.
Proposition 2.13. Let $(X,+, \theta, m)$ be a conoid and \mathcal{Q} a quasi-uniformity on X. If m is $C_{\ell, 0}$ then
a) m is $C_{\ell, 0}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right)$.
b) If (X, \mathcal{Q}) is a locally balanced, precompact quasi-uniform space, then:
i) m is $C_{\ell, 0}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{+}\right)$;
ii) m is $C_{\ell, 0}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right)$.

Proof. a) Let A be a non-empty convex subset of X, and fix $Q \in \mathcal{Q}$. Let $x \in A$. As m_{x} is $\tau_{\mathcal{Q}}$-continuous at 0 , there is $\varepsilon>0$ such that $(\theta, x \cdot t) \in Q$, $\forall t \in[0, \varepsilon[$. Then

$$
\{\theta\} \subset \top(Q)[A \cdot t], \forall t \in[0, \varepsilon[
$$

hence

$$
A \cdot t \in Q^{-}[\{\theta\}], \forall t \in[0, \varepsilon[
$$

b) i) Let A be a convex subset of X. Fix $P \in \mathcal{Q}$. There is a balanced entourage Q such that $Q \circ Q \subset P$. Since (X, \mathcal{Q}) is precompact, there is a finite subset $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset X$ such that $A \subset \bigcup_{i=1}^{n} Q\left[x_{i}\right]$.

Since for $i \leq n$ the map $m_{x_{i}}$ is continuous, there is $\left.\varepsilon_{x_{i}} \in\right] 0,1[$ such that

$$
\left(\theta, x_{i} \cdot t\right) \in Q, \forall t \in\left[0, \varepsilon_{x_{i}}[.\right.
$$

Put $\varepsilon=\min \left\{\varepsilon_{x_{i}} \mid 1 \leq i \leq n\right\}$.
For all $x \in A$, there is $i \leq n$ such that $\left(x_{i}, x\right) \in Q$. Since \mathcal{Q} is balanced,

$$
\left(x_{i} \cdot t, x \cdot t\right) \in Q, \forall t \in[0, \varepsilon] \subset[0,1] .
$$

Since $m_{x_{i}}$ is continuous, $\left(\theta, x_{i} \cdot t\right) \in Q, \forall t \in[0, \varepsilon] \subset\left[0, \varepsilon_{x_{i}}\right]$. Thus

$$
\forall x \in A, \forall t \in[0, \varepsilon], \quad(\theta, x \cdot t) \in Q \circ Q \subset P
$$

and so, $A \cdot t \subset P[\{\theta\}]$ and $A \cdot t \in P^{+}[\{\theta\}]$.
ii) This item is a consequence of the last statements and Prop.1.1. \diamond Proposition 2.14. Let $(X,+, \theta, m, \mathcal{Q})$ be a uniform conoid.
a) m is $C_{\ell, 0}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right)$if and only if m is $U C_{\ell}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right)$.
b) m is $C_{\ell, 0}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{+}\right)$if and only if m is $U C_{\ell}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{+}\right)$.
c) m is $C_{\ell, 0}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right)$ if and only if m is $U C_{\ell}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right)$.

Proof. The statements follow from Prop. 1.6(e). \diamond
Corollary 2.15. Let $(X,+, \theta, m, \mathcal{Q})$ be a uniform conoid. If m is $C_{\ell, 0}$, then
a) m is $U C_{\ell}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right)$.
b) If (X, \mathcal{Q}) is a locally balanced, precompact quasi-uniform space, then:
i) m is $U C_{\ell}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{+}\right)$;
ii) m is $U C_{\ell}$ in $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right)$.

Proof. The statements follows from Props. 2.13 and 2.14. \diamond
At last we study the joint continuity of the action

$$
m: \mathcal{P}_{c}(X) \times \mathbb{R}_{+} \rightarrow \mathcal{P}_{c}(X)
$$

Proposition 2.16. Let $(X,+, \theta, m)$ be a conoid and \mathcal{Q} a quasi-uniformity on X for which m is $J C_{(\theta, 0)}$. Then m is $J C_{(\{\theta\}, 0)}$ in the conoids $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{-}\right),\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{+}\right)$and $\left(\mathcal{P}_{c}(X),+,\{\theta\}, m, \mathcal{Q}_{c}^{*}\right)$. Proof. Fix $Q \in \mathcal{Q}$. Since m is continuous at $(\theta, 0)$, there are $P \in \mathcal{Q}$ and $\varepsilon>0$ such that

$$
P[\theta] \cdot t \subset Q[\theta], \quad \forall t \in[0, \varepsilon[.
$$

Let $B \subset P^{-}[\{\theta\}]$. There is $b \in B$ such that

$$
(\theta, b) \in P \Rightarrow(\theta, b \cdot t) \in Q \Rightarrow\{\theta\} \subset \top(Q)[b \cdot t], \forall t \in[0, \varepsilon[.
$$

Thus

$$
B \cdot t \subset Q^{-}[\{\theta\}], \forall t \in[0, \varepsilon[.
$$

The others cases are analogous. \diamond
Open questions 2.17. Let $(X,+, m, \mathcal{Q})$ be a quasi-uniform conoid.
(1) If m is C_{r} in $(X,+, m, \mathcal{Q})$ can we say that m is C_{r}

$$
\left(\mathcal{P}_{c}(X),+, m, \mathcal{Q}_{c}^{-}\right),\left(\mathcal{P}_{c}(X),+, m, \mathcal{Q}_{c}^{+}\right) \text {or }\left(\mathcal{P}_{c}(X),+, m, \mathcal{Q}_{c}^{*}\right) ?
$$

(2) If m is $J C$ in $(X,+, m, \mathcal{Q})$ can we say that m is $J C$ in

$$
\left(\mathcal{P}_{c}(X),+, m, \mathcal{Q}_{c}^{-}\right),\left(\mathcal{P}_{c}(X),+, m, \mathcal{Q}_{c}^{+}\right) \text {or }\left(\mathcal{P}_{c}(X),+, m, \mathcal{Q}_{c}^{*}\right) ?
$$

References

[1] ABREU, T.: Integration on Quasi-uniform Conoids, Thesis Doctoral, Vigo, 2005.
[2] ABREU, T. and CORBACHO, E.: Uniform Type Structures, Tekné, Polytechical Studies Review, 2005, Vol II, no. 4, 149-161.
[3] ABREU, T. and CORBACHO, E.: Lattices on Uniform Type Structures, Communication on International Workshop on Topological Groups, Pamplona, Spain, 2005.
[4] ABREU, T., CORBACHO, E. and TARIELADZE, V.: Uniform Type Conoids, Communication on International congress of Mathematicians, Madrid, Spain, 2006.
[5] BERTHIAUME, G.: On Quasi-Uniformities in Hyperspaces, Proc. AMS 66, 2 (1977), 335-343.
[6] FLETCHER, P. and LINDGREN, W.: Quasi-uniform spaces, Lecture Notes in Pure ans Applied Mathematics, 77, Marcel Dekker, Inc., New York, 1982.
[7] GODINI, G.: On normed almost linear spaces, Math. Ann. 279 (1988), 449-455.
[8] HUH, W.: Some properties of pseudonormable semilinear spaces, J. Korean Math. Soc. 11 (1974), 77-85.
[9] KEIMAL K. and ROTH, W.: Ordered cones and approximation, Lecture Notes in Mathematics, 1517, 1992.
[10] KÜNZI, H. and RYSER, C.: The Bourbaki quasi-uniformity, Topology Proc. 20 (1995), 161-183.
[11] KÜNZI, H. and ROMAGUERA, S.: Quasi-Metric Spaces, Quasi-Metric Hyperspaces and Uniform Local Compactness, Rend. Inst. Mat. Univ. Trieste XXX (1999), 133-144.
[12] KÜNZI, H., ROMAGUERA, S. and SÁNCHEZ-GRANERO, M. A.: On Uniformly Locally Compact Quasi-Uniform Hyperspaces, Czech. Math. Journal 54 (129) (2004), 215-228.
[13] KÜNZI, H.: Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymetric Topology, in: Handbook of the history of general topology, 3, Hist. Topol., Kluwer Acad. Publ., Dordrecht, 2001, 3, 853-968.
[14] MURDESHWAR, M. G. and NAIMPALLY, S. A.: Quasi-Uniform Topological Spaces, Noordhoff, 1966.
[15] PAP, E.: Integration of functions with values in complete semi-vector space, Lecture Notes in Math. 794 (1980), 340-347.
[16] URBANSKI, R.: A generalization of the Minkowski-Radstrom-Hormander theorem, Bull. L'Acad. Pol. Sci. 24 (9) (1976), 709-715.
[17] WORTH, R. E.: Boundaries of semilinear spaces and semialgebras, Trans. Amer. Math. Soc. 148 (1970), 99-119.

[^0]: ${ }^{1}$ Some authors use the term "vicinity" instead of entourage.

