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1. Preliminary concepts

1.1. Uniform type spaces

R will denote the set of real numbers and R+ := [0,∞[. The set
R and its subsets (including R+ and the unit segment [0, 1]) will be
supposed to be endowed with the usual topology e.

For a topological space (X, τ) we denote by Nτ (x) the collection of
all neighborhoods of a point x ∈ X. For the considered topologies and
topological spaces no separation axioms are required in advance.

Fix a non-empty set X, a subset of X × X is called a (binary)
relation on X. The relations will be denoted by P , Q, R, etc. We write:

∆X := {(x, x) ∈ X × X | x ∈ X},

⊤(P ) := {(y, x) ∈ X × X | (x, y) ∈ P},

P ◦ Q := {(x, y) ∈ X × X | ∃z ∈ X such that (x, z) ∈ Q, (z, y) ∈ P}.

The relation ⊤(P ) is called the converse relation of P . Instead of ⊤(P )
the notation P−1 also is used. A relation P is called reflexive if ∆X ⊂ P

and symmetric if ⊤(P ) = P.

For a collection Q of relations on X, we write Q⊤ := {⊤(Q) |Q ∈
∈ Q} and we say that Q is symmetric if Q = Q⊤. The relation P ◦ Q is
called the composition of relations P and Q.

For x ∈ X and E ⊂ X we set P [x] := {y ∈ X | (x, y) ∈ P} and
P [E] :=

⋃

x∈E

P [x].

We recall the usual terminology from the theory of quasi-uniform
spaces (see, e.g.,[6], [14], [13]):

A filter Q consisting of reflexive relations on X is a
• Local Quasi-uniformity if ∀x ∈ X, ∀Q ∈ Q, ∃P ∈ Q such that

P ◦ P [x] ⊂ Q[x].
• Local Uniformity if Q is a symmetric local quasi-uniformity.
• Quasi-Uniformity if ∀Q ∈ Q ∃P ∈ Q such that P ◦ P ⊂ Q.

• Uniformity if Q is a symmetric quasi-uniformity.
If Q is a quasi-uniformity, the filter Q⊤ is a quasi-uniformity too. How-
ever, if Q is a local quasi-uniformity, then Q⊤ may not be a local quasi-
uniformity. A local quasi-uniformity Q is called bilocal quasi-uniformity
if Q⊤ is a local quasi-uniformity as well (cf. [2]).

The pair (X,Q) is called a local quasi-uniform space (a local uni-
form space, a quasi-uniform space, a uniform space) when Q is a local
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quasi-uniformity (a local uniformity, a quasi-uniformity, a uniformity)
and the members of Q are called entourages.1

Every uniform type structure Q induces in X the topology τQ for
which

{Q[x] |Q ∈ Q} = NτQ(x), ∀x ∈ X.

For a quasi-uniformity Q the topologies τQ and τQ⊤ may be distinct.
A uniform type structure Q is called compatible with a topology τ

if τQ = τ.

We say that a (local) quasi-uniformity Q is
(1) weakly locally symmetric at x ∈ X if for every Q ∈ Q there is a

symmetric entourage S ∈ Q such that S[x] ⊂ Q[x];
(2) weakly locally symmetric or point-symmetric if Q is weakly lo-

cally symmetric at x for every x ∈ X;
(3) locally symmetric at x ∈ X if for every Q ∈ Q there is a

symmetric entourage S ∈ Q such that S ◦ S[x] ⊂ Q[x];
(4) locally symmetric if Q ∈ Q is locally symmetric at x for every

x ∈ X.
Let X be a set and (Qi)i∈I be a non-empty family of uniform type

structures in X. For this family, in the partially ordered set of all filters
over X ×X, always exist the least upper bound ∨i∈IQi and the greatest
lower bound ∧i∈IQi. They are uniform type structures of the same type
of Qi (see [1] or [3]). Moreover {∩i∈JQi | Qi ∈ Qi, J finite ⊂ I} is a base
of ∨i∈IQi.

For a given bilocal quasi-uniformity Q we denote Q∨ = Q ∨ Q⊤

and Q∧ = Q ∧ Q⊤. It is known that Q∨ is the coarsest local uniformity
containing Q and Q∧ is the finest local uniformity contained into Q.

A local quasi-uniform space (X,Q) is called precompact if ∀Q ∈ Q
∃F finite ⊂ X such that X = Q[F ].

If (X,P) and (Y,Q) are local quasi-uniform spaces and F ⊂ Y X

is a non-empty family of mappings, then F is called (P,Q)-uniformly
equicontinuous if
∀Q ∈ Q, ∃P ∈ P such that (f(x1), f(x2)) ∈ Q, ∀(x1, x2) ∈ P, ∀f ∈ F .

Proposition 1.1. Let X and Y be nonempty sets, F ⊂ Y X a nonempty
family of mappings, (Pi)i∈I a nonempty family of local quasi-uniformities
on X and (Qi)i∈I a nonempty family of local quasi-uniformities on Y .
Assume that ∀i ∈ I, F is (Pi,Qi)-uniformly equicontinuous. Then:

1Some authors use the term “vicinity” instead of entourage.
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a) F is (∨i∈IPi,∨i∈IQi)-uniformly equicontinuous.
b) F is (∧i∈IPi,∧i∈IQi)-uniformly equicontinuous.

1.2. Uniform type semigroups and monoids

A semigroup is a pair (X, +), where X is a non-empty set and
+ : X ×X → X is an associative binary operation. A monoid is a triplet
(X, +, θ), where (X, +) is a semigroup which has the neutral element θ. If
(X, +) is a semigroup (monoid) in X×X we define a semigroup operation
componentwise.

As usual, for non-empty subsets A, B of a semigroup A + B will
stand for their algebraic or Minkowski sum {a + b | a ∈ A, b ∈ B}.

A monoid (semigroup) X which is also a topological space is called
a topological monoid if + is continuous with respect to the product topol-
ogy in X × X and the topology of X.

A monoid (semigroup) X equipped with a local quasi-uniformity
(bilocal quasi-uniformity, quasi-uniformity, local uniformity, uniformity)
Q is called a local quasi-uniform (bilocal quasi-uniform, quasi-uniform,
local uniform, uniformity) monoid (semigroup) if + is uniformly contin-
uous with respect to the product quasi-uniformity Q⊗Q and Q.

Lemma 1.2. Let (X, +, θ) be a monoid, Q be a local quasi-uniformity.
a) The following statements are equivalent:

(i) (X,Q) is a local quasi-uniform monoid.
(ii) ∀Q ∈ Q ∃P ∈ Q such that P + P ⊂ Q.

b) If (X,Q) is a bilocal quasi-uniform monoid, then (X,Q⊤) also is.
c) If (X,Q) is a (bilocal) quasi-uniform monoid, then (X,Q∨) is a

(local) uniform monoid.

1.3. Uniform type conoids

A conoid is an Abelian monoid (X, +, θ) for which an external op-
eration

m : X × R+ → X, m(x, α) = x · α

is defined with the properties:
A.1 (x1 + x2) · α = x1 · α + x2 · α ∀x1, x2 ∈ X, ∀α ∈ R+;
A.2 (x · α1) · α2 = x · (α1 · α2) ∀x ∈ X, ∀α1, α2 ∈ R+;
A.3 x · (α1 + α2) = x · α1 + x · α2 ∀x ∈ X, ∀α1, α2 ∈ R+;
A.4 x · 1 = x ∀x ∈ X.
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In the literature a conoid is also called an abstract convex cone [16], a
cone [9], a semi-vector space [15], or a semilinear space [7], [8], [17], etc.
In [1] the conoids were introduced to develop a integration scheme in
quasi-uniform spaces, these structures also have been studies in [4].

If (X, +, θ, m) is a conoid then in X×X we define a conoid structure
componentwise.

Let (X, +, θ, m) be a conoid, K be a non-empty subset of X, α∈R+

and A non-empty subset of R+. We write
K · α := {x · α — x ∈ K} and K · A := {x · α — x ∈ K, α ∈ A}.

Let (X, +, θ, m) be a conoid, K be a subset of X and b be an element of
X. K is called:

(1) Convex if either K is empty, or K · α + K · (1 − α) ⊂ K, for
every α ∈ [0, 1].

(2) Balanced if either K is empty, or K · [0, 1] ⊂ K.

Remark 1.3. Let (X, +, θ, m) be a conoid.
(1) X itself is convex, balanced and radial.
(2) If K is a non-empty convex subset of X, then K · (α + β) =

= K · α + K · β, α, β ∈ R+.
(3) The intersection of any non-empty family of convex (balanced)

subsets of a conoid is convex (balanced).
As usual, we denote co(K) the convex hull of a subset K ⊂ X.

Definition 1.4. A conoid (X, +, θ, m) equipped with a local quasi-
uniformity (bilocal quasi-uniformity, quasi-uniformity, local uniformity,
uniformity) Q is called a local quasi-uniform (bilocal quasi-uniform, quasi-
uniform, local uniform, uniform) conoid if (X, +, θ,Q) is a local quasi-
uniform monoid. It is denoted by (X, +, θ, m,Q).

Therefore a local quasi-uniform conoid is simply a local quasi-
uniform monoid which algebraically is a conoid.

We shall say that a local quasi-uniform conoid (X, +, θ, m,Q) is
• locally convex if Q admits a base consisting of convex entourages;
• locally balanced if Q admits a base consisting of balanced en-

tourages.

Remark 1.5. Let (X, +, θ, m,Q) a bilocal quasi-uniform conoid.
(1) (X, +, θ, m,Q⊤) is a bilocal quasi-uniform conoid (see 1.2).
(2) (X, +, θ, m,Q∧), (X, +, θ, m,Q∨) are local uniform conoids (see

1.2).

For every x ∈ X, and for every α ∈ R+ we will consider the map-
pings
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mx : R+ → X and mα : X → X

α 7→ x · α x 7→ x · α.

Denoting by E+ the usual uniformity on R+, we say that the external
operation of a local quasi-uniform conoid (X, +, θ, m,Q) is

• UCℓ if mx is (E+,Q)-uniformly continuous ∀x ∈ X;
• UCr if mα is Q-uniformly continuous ∀α ∈ R+;
• Cℓ,0 if mx is (e, τQ)-continuous at 0 ∀x ∈ X;
• Cℓ if mx is (e, τQ)-continuous on R+ ∀x ∈ X;
• Cr,θ if mα is τQ-continuous at θ ∀α ∈ R+;
• Cr if mα is τQ-continuous on X ∀α ∈ R+;
• JC(θ,0) if m is (τ ⊗ e, τQ)-continuous at (θ, 0);
• JC if m is (τQ ⊗ e, τQ)-continuous everywhere.

Let (X, +, θ, m) be a conoid. A local quasi-uniformity Q on X is
called homogeneous if

Q · α ∈ Q ∀Q ∈ Q, ∀α > 0.

Proposition 1.6. Let (X, +, θ, m,Q) be a bilocal quasi-uniform conoid
such that m is Cℓ,0. The following statements are valid:

a) mx is (e, τQ)-right-continuous ∀x ∈ X.
b) If Q⊤ is weakly locally symmetric at θ, then mx is (e, τQ⊤)-

continuous at 0 ∀x ∈ X.
c) If mx is (e, τQ⊤)- continuous at 0 ∀x ∈ X, then m is UCℓ.
d) If Q⊤ is weakly locally symmetric at θ, then m is UCℓ.
e) If Q is a uniformity, then m is Cℓ,0 if and only if m is UCℓ.

Proof. a) Fix x ∈ X and α ∈ R+, α > 0 and Q ∈ Q. Since + is
(τQ ⊗ τQ, τQ)-continuous at (x · α, θ) and x · α = x · α + θ, there exists
R ∈ Q such that R[x · α] + R[θ] ⊂ Q[x · α].

Since mx is (e, τQ)-continuous at 0 there exists ε > 0 such that
x · t ∈ R[θ] ∀t ∈ [0, ε[. Then:

x · (α + t) = x · α + x · t ∈ R[x · α] + R[θ] ⊂ Q[x · α] ∀t ∈ [0, ε[

and the (e, τQ)-right-continuity of mx at α is proved.
b) Obvious.
c) Fix x ∈ X. Since (X,Q) is a bilocal quasi-uniform semigroup,

there exists R ∈ Q such that R + R ⊂ Q. Since mx is (e, τQ ∨ τQ⊤)-
continuous at 0 there exists ε > 0 such that

mx([0, ε[) ⊂ R[θ] ∩ T (R)[θ],

i.e.,

(∗) (θ, x · t) ∈ R and (x · t, θ) ∈ R, ∀t ∈ [0, ε[.
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Take α, β ∈ R+ with |α − β| < ε and let us show that (x · α, x · β) ∈ Q.

If α < β, then β = α + t with t := β − α ∈ [0, ε[. This and (∗)
imply:
(x ·α, x ·β) = (x ·α+θ, x ·α+x · t) = (x ·α, x ·α)+(θ, x · t) ∈ R+R ⊂ Q.

If α > β, then α = β + t with t := α − β ∈ [0, ε[. This and (∗) imply:

(x ·α, x ·β) = (x · t+x ·β, θ+x ·β) = (x · t, θ)+(x ·β, x ·β) ∈ R+R ⊂ Q.

Consequently,

α, β ∈ R
+, |α − β| < ε Γ⇒ (x · α, x · β) ∈ Q

and so, mx is (E+,Q)- uniformly continuous.
d) Follows from b) and c).
e) Follows from d). ♦

2. Uniform type hyperspaces

Let X be a nonempty set and P0(X) be the collection of all non-
empty subsets of X. For each relation Q on X, set

Q+ = {(A, B) ∈ P0(X) × P0(X) |B ⊂ Q[A]},

Q− = {(A, B) ∈ P0(X) × P0(X) |A ⊂ ⊤(Q)[B]},

Q∗ : = Q+ ∩ Q−.

Remark 2.1. Let P, Q be relations on X, then:
(1) ⊤(Q−) = (⊤(Q))+ and ⊤(Q+) = (⊤(Q))−.
(2) (P ∪ Q)+ = P+ ∪ Q+.
(3) (P ∪ Q)− = P− ∪ Q−.
(4) (P ∩ Q)+ ⊂ P+ ∩ Q+.
(5) (P ∩ Q)− ⊂ P− ∩ Q−.
(6) (P ∩ Q)∗ ⊂ P ∗ ∩ Q∗.

For a local quasi-uniformity Q on X let
• Q+ be the filter generated by {Q+ |Q ∈ Q},
• Q− be the filter generated by {Q− |Q ∈ Q},
• Q∗ := Q+ ∨Q−.

Remark 2.2. If (X,Q) is a local quasi-uniform space, then
(1) (Q−)⊤ = (Q⊤)+, and (Q+)⊤ = (Q⊤)−;
(2) (Q∗)⊤ = (Q⊤)∗.

Proposition 2.3. Let (X,Q) be a quasi-uniform space. The following
statements are true:

(a) (cf. [5, 10]) Q+, Q− and Q∗ are quasi-uniformities.
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(b) If Q is a uniformity, then Q+ and Q− are conjugate quasi-
uniformities, and Q∗ is a uniformity on P0(X).

Proof. (a) Fix P ∈ Q+. There exists P ∈ Q such that P+ ⊂ P. Since
Q is a quasi-uniformity there is Q ∈ Q such that Q ◦ Q ⊂ P . Let us
show that Q+ ◦ Q+ ⊂ P+:

Take (A, B) ∈ Q+ ◦ Q+. There is a C such that (A, C) ∈ Q+ and
(C, B) ∈ Q+. For each b ∈ B there is c ∈ C such that (c, b) ∈ Q and
there is a ∈ A such that (a, c) ∈ Q. It follows that (a, b) ∈ Q ◦ Q ⊂ P

and so, b ∈ P [a] ⊂ P [A]. Hence B ⊂ P [A] and (A, B) ∈ P +.
The other cases are analogous.
(b) Follows from Rem. 2.1(1). ♦

The quasi-uniformities Q+ and Q− are called, respectively, the up-
per and lower Hausdorff quasi-uniformities on P0(X) associated with Q.

The quasi-uniformity Q∗ is called Hausdorff (or Bourbaki) quasi-
uniformity on P0(X) associated with Q.

The next proposition shows that an analogue of Prop. 2.3(a) is not
true for bilocal quasi-uniformities.

Proposition 2.4. Let (X,Q) be a bilocal quasi-uniform space. Then:
a) Q+ may not be a local quasi-uniformity on P0(X).
b) Q− may not be a local quasi-uniformity on P0(X).
c) Q∗ may not be a local quasi-uniformity on P0(X).

Proof. Let X = {0, 1, 1
2
, . . . 1

n
, . . .} and

Qn = ∆ ∪

{(

0,
1

i

)

: i ≥ n

}

∪

{(

1

i + 1
,
1

i

)

: i ≥ n

}

.

First we will see that Q0 = {Qn : n ∈ N} is base of a bilocal quasi-
uniformity Q (cf. [1]).

• Qn+1 ⊂ Qn, for each n ∈ N, therefore Q is a filter base on X×X.
• ∆ ⊂ Qn, for every n ∈ N.
• Observe that:

Qn[0] =

{

0,
1

n
,

1

n + 1
. . .

}

and Qn ◦Qn[0] =

{

0,
1

n
,

1

n + 1
. . .

}

hence Qn ◦ Qn[0] = Qn[0], n = 1, 2, . . . . Now, let n ≥ 1 and k ≥ 1, we
have that:

Qk ◦ Qk

[1

k

]

=
{1

k

}

hence Qk ◦ Qk

[1

k

]

⊂ Qn

[1

k

]

.

• Notice that:

⊤(Qn) = ∆ ∪

{

(1

i
, 0

)

: i ≥ n

}

∪

{

(1

i
,

1

i + 1

)

: i ≥ n

}

, n = 1, 2, 3 . . .
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Observe that: −⊤(Qn)[0] = {0} and ⊤(Qn) ◦ ⊤(Qn)[0] = {0} hence
⊤(Qn) ◦ ⊤(Qn)[0] = ⊤(Qn)[0], n = 1, 2, . . . and for n, k ∈ N we have:

⊤(Qk+1)◦⊤(Qk+1)
[1

k

]

=
{1

k

}

hence ⊤(Qk+1)◦⊤(Qk+1)
[1

k

]

⊂⊤(Qn)
[1

k

]

.

a) Let A = {1
3
, 1

6
, . . . , 1

3n
, . . . }, let us see that

Q+
m ◦ Q+

m[A] 6⊂ Q+
1 [A], ∀m ∈ N

with

Q+
1 [A] = P0

({

1

2
,
1

3
,
1

5
,
1

6
, . . . ,

1

3n − 1
,

1

3n
, . . .

})

∪ ∅.

We have:
{

(

A,
{

1
3m−1

})

∈ Q+
m

({

1
3m−1

}

,
{

1
3m−2

})

∈ Q+
m

.

Therefore
{

1
3m−2

}

∈ Q+
m ◦ Q+

m[A] ∀m ∈ N, but
{

1
3m−2

}

6∈ Q+
1 [A].

b) Let A = {1
3
, 1

6
, . . . , 1

3n
, . . .}, let we us see that

Q−
m ◦ Q−

m[A] 6⊂ Q−
1 [A], ∀m ∈ N

with

Q−
1 [A] =

{

1

2
,
1

3
,
1

5
,
1

6
, . . . ,

1

3n − 1
,

1

3n
, . . .

}

.

Consider

Bm =

{

1

3k
: 1 ≤ k < m

}

∪

{

1

3k − 2
: k ≥ m

}

and

Cm =

{

1

3k
: 1 ≤ k < m

}

∪

{

1

3m − 1
,

1

3m + 2
,

1

3m + 5
, . . . .

}

.

We have
{

(A, Cm) ∈ Q−
m

(Cm, Bm) ∈ Q−
m

,

hence Bm ∈ Q−
m ◦ Q−

m[A], ∀m ∈ N, but Bm 6∈ Q−
1 [A].

c) Let A = {1
3
, 1

6
, . . . , 1

3n
, . . . }, then by a) and b) we have

Q∗
1[A] = (Q+

1 ∩ Q−
1 )[A] ⊂ Q+

1 [A] ∩ Q−
1 [A] =

=

{

1

2
,
1

3
,
1

5
,
1

6
, . . . ,

1

3n − 1
,

1

3n
, . . .

}

Let Cm and Bm the sets defined in b). We have also
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{

(A, Cm) ∈ Q+
m ∩ Q−

m

(Cm, Bm) ∈ Q+
m ∩ Q−

m

,

hence Bm ∈ (Q+
m ∩ Q−

m) ◦ (Q+
m ∩ Q−

m)[A], ∀m ∈ N, but Bm 6∈ Q∗
1[A]. ♦

Taking into account Rem. 2.1 it is easy to prove the following:

Proposition 2.5. Let Q and P be quasi-uniformity on X. Then:
(1) P∗ ∨Q∗ ⊂ (P ∨Q)∗.
(2) (P ∧ Q)∗⊂P∗ ∧ Q∗.
(3) If the set {P ∪ Q |P ∈ P, Q ∈ Q} is a quasi-uniform base of

Q ∧ P, then
(a) {(P ∪ Q)+ |P+ ∈ P+, Q+ ∈ Q+}={P+ ∪ Q+ |P+ ∈ P+,

Q+ ∈ Q+} and both are quasi-uniform bases. Consequently,
Q+ ∧ P+ = (Q∧ P)+.

(b) {(P ∪ Q)− |P− ∈ P−, Q− ∈ Q−}={P− ∪ Q− |P− ∈ P−,
Q− ∈ Q−} and both are quasi-uniform bases. Consequently,
Q− ∧ P− = (Q∧ P)−.

(c) {(P ∪ Q)∗|P ∗∈P∗, Q∗∈Q∗}={P ∗ ∪ Q∗|P ∗∈P∗, Q∗∈Q∗}
are quasi-uniform bases and Q∗ ∧ P∗ = (Q ∧ P)∗.

(4) In particular, we have
(a) (Q∗)∨ ⊂ (Q∨)∗.

(b) (Q∧)∗ ⊂ (Q∗)∧.

(c) When {⊤(Q)∪Q |Q∈Q} is base of Q∧ then (Q∗)∧=(Q∧)∗.

The following proposition shows that the local symmetry is pre-
served for singletons.

Proposition 2.6. Let (X,Q) be a weakly locally symmetric quasi-uniform
space. Then:

a) (P0(X),Q−) is weakly locally symmetric at {x}, ∀x ∈ X;
b) (P0(X),Q+) is weakly locally symmetric at {x}, ∀x ∈ X;
c) (P0(X),Q∗) is weakly locally symmetric at {x}, ∀x ∈ X.

Proof. a) Fix Q ∈ Q−. There exists Q ∈ Q such that Q− ⊂ Q. For a
x ∈ X there is a symmetric entourage S ∈ Q such that S[x] ⊂ Q[x].

Let B ∈ S−[{x}], then there is a b ∈ B such that
(x, b) ∈ S hence (x, b) ∈ Q.

Therefore ({x}, B) ∈ Q− and so B ∈ Q−[{x}].
b) Is analogous to a).
c) Follows from a) and b) because the supremum of a family of

weakly locally symmetric quasi-uniformities is weakly locally symmet-
ric. ♦
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Proposition 2.7. Let (X,Q) be a locally symmetric quasi-uniform
space. We have:

a) (P0(X),Q−) is locally symmetric at {x}, ∀x ∈ X.
b) (P0(X),Q+) is locally symmetric at {x}, ∀x ∈ X.
c) (P0(X),Q∗) is locally symmetric at {x}, ∀x ∈ X.

Proof. a) Fix Q ∈ Q−. There exists Q ∈ Q such that Q− ⊂ Q. For a
x ∈ X there is a symmetric entourage S ∈ Q such that S ◦ S[x] ⊂ Q[x].

Let B ∈ S− ◦ S−[{x}], then there is a C ⊂ X such that

({x}, C) ∈ S− and (C, B) ∈ S−.

Then for each c ∈ C there is a b ∈ B such that
(x, c) ∈ S and (c, b) ∈ S.

Hence, there is b ∈ B such that (x, b) ∈ S ◦ S then (x, b) ∈ Q.
Therefore ({x}, B) ∈ Q− and so B ∈ Q−[{x}].
b) Is analogous to a).
c) Follows from a) and b) because the supremum of family of locally

symmetric quasi-uniformities is weakly locally symmetric. ♦

2.1. Hyperspaces with algebraic structures

If (X, +, θ) is a monoid, then P0(X) is a monoide as well with
respect to the internal operation

+ : P0(X) ×P0(X) → P0(X)
(A, B) 7→ A + B

and the neutral element {θ}.

Theorem 2.8. Let (X, +, θ, Q) be a quasi-uniform monoid, then
(P0(X), +, {θ},Q−), (P0(X), +, {θ},Q+) and (P0(X), +, {θ},Q∗) are
quasi-uniform monoids.

Proof. Fix Q ∈ Q+. There exists Q ∈ Q such that Q+ ⊂ Q. Since +
is uniformly continuous, there is a entourage P such that P + P ⊂ Q.
Observe that:

• if (A1, B1) ∈ Q+ then B1 ⊂ P [A1];
• if (A2, B2) ∈ Q+ then B2 ⊂ P [A2].

Then
B1 + B2 ⊂ P [A1] + P [A2] ⊂ P [A1 + A2] ⊂ Q[B1 + B2].

Hence
P+ + P+ ⊂ Q+.
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In the same way it is easy to see that + is also uniformly continuous with
respect to Q−.

Since + is uniformly continuous with respect Q+ and Q−, by
Prop. 1.1 it is also uniformly continuous with respect to Q∗. ♦

Let (X, +, θ, m) be a conoid. The external operation m can be
extended to P0(X) in a natural manner:

m : P0(X) × R+ → P0(X)
(A, α) 7→ A · α

The structure (P0(X), +, {θ}, m) may not be a conoid, because, in gen-
eral, property A.3 may fail.

Denote Pc(X) be the collection of all convex members of P0(X).
By Rem. 1.3(2) the structure (Pc(X), +, {θ}, m) is a conoid. This is an
important example of conoid. Observe that, since X + X = X, this
conoid is not cancellative provided X 6= {θ}.

Let Q be a quasi-uniformity in a conoid (X, +, θ, m). We denote
Q+

c , Q−
c and Q∗

c the induced quasi-uniformities on Pc(X) by the quasi-
uniformities Q+, Q− and Q∗.

The following result is a particular case of Th. 2.8.

Corollary 2.9. Let (X, +, θ, m, Q) be a quasi-uniform conoid, then
(Pc(X),+, {θ}, m,Q−

c ), (Pc(X),+, {θ}, m,Q+
c ) and (Pc(X),+, {θ}, m,Q∗

c)
are quasi-uniform conoids.

Proposition 2.10. Let (X, +, θ, m) be a conoid, and Q be a quasi-
uniformity on X.

a) If Q is locally convex, then Q−
c , Q+

c and Q+
c are locally convex.

b) If Q is locally balanced, then Q−
c , Q+

c and Q+
c are locally bal-

anced.
Proof. a) Fix P ∈ Q+

c . There exists a convex P ∈ Q such that P + ⊂ P.
Fix (A1, B1), (A2, B2) ∈ P+, we have that B1 ⊂ P [A1] and B2 ⊂ P [A2].

For each b1 ∈ B1, b2 ∈ B2 there is a a1 ∈ A1, a2 ∈ A2 such that
(a1, b1) ∈ P and (a2, b2) ∈ P,

since P is a convex entourage then
(a1 · α + a2 · β, b1 · α + b2 · β) ∈ P with α + β = 1.

Therefore b1 ·α+b2 ·β ∈ P [a1 ·α+a2 ·β] ⇒ B1 ·α+B2 ·β ∈ P [A1 ·α+A2 ·β].
Then

(A1, B1) · α + (A2, B2) · β ∈ P+ with α + β = 1.

In a similar way we can prove that the lower quasi-uniformity Q−
c , is

locally convex too.
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Since Q∗
c = Q+

c ∨Q−
c , then Q∗

c has also a base consisting of convex
sets.

b) Now we will prove that if P is a balanced entourage then P + is
also balanced. Let (A, B) ∈ P+, then

B ⊂ P [A] ⇒ ∀b ∈ B ∃a ∈ A such that

(a, b) ∈ P ⇒ (a · t, b · t) ∈ P, ∀t ∈ [0, 1],

hence B · t ⊂ P [A · t] with t ∈ [0, 1].
In a similar way we can prove that the lower quasi-uniformity is

locally balanced too.
Since Q∗

c = Q+
c ∨Q

−
c , then Q∗

c has also a base consisting of balanced
sets. ♦

In the following propositions we study the stability of the partial
continuity of the action on the hyperspace Pc(X).

We begin with the maps mα : Pc(X) → Pc(X).

Proposition 2.11. Let (X, +, θ, m) be a conoid and Q be a quasi-
uniformity for which m is Cr,θ. Then m is Cr,{θ} in the conoids
(Pc(X),+, {θ}, m,Q−

c ), (Pc(X),+, {θ}, m,Q+
c ) and (Pc(X),+, {θ}, m,Q∗

c).

Proof. Fix Q ∈ Q and α ∈ R+. Since mα is τQ- continuous at θ, there
is a P ∈ Q such that P [θ] · α ⊂ Q[θ]. Let B ⊂ P−[{θ}], then there is
b ∈ B such that

(θ, b) ∈ P ⇒ (θ, b · α) ∈ Q ⇒ {θ} ⊂ ⊤(Q)[b · α].

Thus B · α ∈ Q−[{θ}].
In the same way we can prove that mα is τQ+

c
- continuous at {θ},

and using the previous results and Prop. 1.1 we can conclude that m is
also Cr,{θ} in (Pc(X), +, {θ}, m,Q∗

c). ♦

Proposition 2.12. Let (X, +, θ, m) be a conoid and Q be a quasi-
uniformity for which m is UCr. Then m is UCr in the conoids
(Pc(X),+, {θ}, m,Q−

c ), (Pc(X),+, {θ}, m,Q+
c) and (Pc(X),+, {θ}, m,Q∗

c).

Proof. Fix Q ∈ Q and α ∈ R+. Since mα is Q-uniformly continuous,
there is a entourage P such that P · α ⊂ Q.

If B ⊂ P [A] then for each b ∈ B there is a a ∈ A such that
(a, b) ∈ P ⇒ (a · α, b · α) ∈ Q ⇒ b · α ⊂ Q[a · α],

then

b · α ⊂
⋃

a∈A

Q[a · α] = Q[A · α].

Hence B · α ⊂ Q[A · α]. Thus P+ · α ⊂ Q+.
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The case (Pc(X), +, {θ}, m,Q−
c ) is analogous, and using the

previous results and Prop. 1.1, we can prove that m is UCr in
(Pc(X), +, {θ}, m,Q∗

c). ♦

Now we study the maps mA : R+ → Pc(X), A ∈ Pc(X).

Proposition 2.13. Let (X, +, θ, m) be a conoid and Q a quasi-uniformity
on X. If m is Cℓ,0 then

a) m is Cℓ,0 in (Pc(X), +, {θ}, m,Q−
c ).

b) If (X,Q) is a locally balanced, precompact quasi-uniform space,
then:

i) m is Cℓ,0 in (Pc(X), +, {θ}, m,Q+
c );

ii) m is Cℓ,0 in (Pc(X), +, {θ}, m,Q∗
c).

Proof. a) Let A be a non-empty convex subset of X, and fix Q ∈ Q. Let
x ∈ A. As mx is τQ-continuous at 0, there is ε > 0 such that (θ, x ·t) ∈ Q,
∀t ∈ [0, ε[. Then

{θ} ⊂ ⊤(Q)[A · t], ∀t ∈ [0, ε[,

hence
A · t ∈ Q−[{θ}], ∀t ∈ [0, ε[.

b) i) Let A be a convex subset of X. Fix P ∈ Q. There is a balanced
entourage Q such that Q ◦ Q ⊂ P . Since (X,Q) is precompact, there is
a finite subset F = {x1, x2, . . . , xn} ⊂ X such that A ⊂

⋃n

i=1 Q[xi].
Since for i ≤ n the map mxi

is continuous, there is εxi
∈]0, 1[ such

that
(θ, xi · t) ∈ Q, ∀t ∈ [0, εxi

[.

Put ε = min{εxi
| 1 ≤ i ≤ n}.

For all x ∈ A, there is i ≤ n such that (xi, x) ∈ Q. Since Q is
balanced,

(xi · t, x · t) ∈ Q, ∀t ∈ [0, ε] ⊂ [0, 1].

Since mxi
is continuous, (θ, xi · t) ∈ Q, ∀t ∈ [0, ε] ⊂ [0, εxi

]. Thus
∀x ∈ A, ∀t ∈ [0, ε], (θ, x · t) ∈ Q ◦ Q ⊂ P,

and so, A · t ⊂ P [{θ}] and A · t ∈ P +[{θ}].
ii) This item is a consequence of the last statements and Prop. 1.1. ♦

Proposition 2.14. Let (X, +, θ, m,Q) be a uniform conoid.
a) m is Cℓ,0 in (Pc(X), +, {θ}, m,Q−

c ) if and only if m is UCℓ in
(Pc(X), +, {θ}, m,Q−

c ).
b) m is Cℓ,0 in (Pc(X), +, {θ}, m,Q+

c ) if and only if m is UCℓ in
(Pc(X), +, {θ}, m,Q+

c ).
c) m is Cℓ,0 in (Pc(X), +, {θ}, m,Q∗

c) if and only if m is UCℓ in
(Pc(X), +, {θ}, m,Q∗

c).
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Proof. The statements follow from Prop. 1.6(e). ♦

Corollary 2.15. Let (X, +, θ, m,Q) be a uniform conoid. If m is Cℓ,0,
then

a) m is UCℓ in (Pc(X), +, {θ}, m,Q−
c ).

b) If (X,Q) is a locally balanced, precompact quasi-uniform space,
then:

i) m is UCℓ in (Pc(X), +, {θ}, m,Q+
c );

ii) m is UCℓ in (Pc(X), +, {θ}, m,Q∗
c).

Proof. The statements follows from Props. 2.13 and 2.14. ♦

At last we study the joint continuity of the action
m : Pc(X) × R+ → Pc(X).

Proposition 2.16. Let (X, +, θ, m) be a conoid and Q a quasi-uni-
formity on X for which m is JC(θ,0). Then m is JC({θ},0) in the conoids
(Pc(X),+, {θ}, m,Q−

c ), (Pc(X),+, {θ}, m,Q+
c ) and (Pc(X),+, {θ},m,Q∗

c).

Proof. Fix Q ∈ Q. Since m is continuous at (θ, 0), there are P ∈ Q and
ε > 0 such that

P [θ] · t ⊂ Q[θ], ∀t ∈ [0, ε[.

Let B ⊂ P−[{θ}]. There is b ∈ B such that

(θ, b) ∈ P ⇒ (θ, b · t) ∈ Q ⇒ {θ} ⊂ ⊤(Q)[b · t], ∀t ∈ [0, ε[.

Thus
B · t ⊂ Q−[{θ}], ∀t ∈ [0, ε[.

The others cases are analogous. ♦

Open questions 2.17. Let (X, +, m,Q) be a quasi-uniform conoid.
(1) If m is Cr in (X, +, m,Q) can we say that m is Cr

(Pc(X), +, m,Q−
c ), (Pc(X), +, m,Q+

c ) or (Pc(X), +, m,Q∗
c)?

(2) If m is JC in (X, +, m,Q) can we say that m is JC in

(Pc(X), +, m,Q−
c ), (Pc(X), +, m,Q+

c ) or (Pc(X), +, m,Q∗
c)?
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Studies Review, 2005, Vol II, no. 4, 149–161.

[3] ABREU, T. and CORBACHO, E.: Lattices on Uniform Type Structures, Com-
munication on International Workshop on Topological Groups, Pamplona, Spain,
2005.



170 T. Abreu, E. Corbacho and V. Tarieladze: Uniform type hyperspaces

[4] ABREU, T., CORBACHO, E. and TARIELADZE, V.: Uniform Type Conoids,
Communication on International congress of Mathematicians, Madrid, Spain,
2006.

[5] BERTHIAUME, G.: On Quasi-Uniformities in Hyperspaces, Proc. AMS 66, 2
(1977), 335–343.

[6] FLETCHER, P. and LINDGREN, W.: Quasi-uniform spaces, Lecture Notes in
Pure ans Applied Mathematics, 77, Marcel Dekker, Inc., New York, 1982.

[7] GODINI, G.: On normed almost linear spaces, Math. Ann. 279 (1988), 449–455.

[8] HUH, W.: Some properties of pseudonormable semilinear spaces, J. Korean

Math. Soc. 11 (1974), 77–85.

[9] KEIMAL K. and ROTH, W.: Ordered cones and approximation, Lecture Notes
in Mathematics, 1517, 1992.
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