Mathematica Pannonica

19/2 (2008), 155–170

UNIFORM TYPE HYPERSPACES

Teresa Abreu

Escola Superior de Gestão, Instituto Politécnico do Cávado e do Ave. Barcelos. Portugal

Eusebio Corbacho

Departamento de Matematica Aplicada 1, E. T. S. E. de Telecomunicacion, Universidad de Vigo, Vigo, Spain

Vaja Tarieladze

Niko Muskhelishvili Institute of Computational Mathematics, Tbilisi–0193, Georgia

Received: October 2007

MSC 2000: Primary 22 A 10; secondary 46 A 99

Keywords: Local quasi-uniform conoid, quasi-uniform conoid, quasi-uniform hyperspace.

Abstract: If (X, Q) is a quasi-uniform space, then in the hyperspace $\mathcal{P}_0(X)$ of all non-empty subsets of X we investigate the several quasi-uniformities related with the Bourbaki–Hausdorff quasi-uniformity ([5], [10], [11], [12]). We show that if (X, Q) is a quasi-uniform monoid (conoid), then $\mathcal{P}_0(X)$ with respect to the corresponding algebraic operations and quasi-uniformities is again a quasiuniform monoid (conoid). Moreover, it is demonstrated that if (X, Q) is a quasi-uniform conoid, then in case of the hyperspace $\mathcal{P}_c(X)$ of all non-empty convex subsets of X the scalar multiplication on positive real numbers has some nice continuity properties.

The authors are partially supported by PAI project (Junta de Andalucia, SPAIN, 2008) and by the MEC-FEDER grants MTM 2007-61284 and MTM 2007-65726 (MEC, Spain, 2007).

E-mail addresses: tabreu@ipca.pt, corbacho@uvigo.es, tar@gw.acnet.ge, visit01@uvigo.es

1. Preliminary concepts

1.1. Uniform type spaces

 \mathbb{R} will denote the set of real numbers and $\mathbb{R}_+ := [0, \infty[$. The set \mathbb{R} and its subsets (including \mathbb{R}_+ and the unit segment [0, 1]) will be supposed to be endowed with the usual topology \mathfrak{e} .

For a topological space (X, τ) we denote by $\mathcal{N}_{\tau}(x)$ the collection of all neighborhoods of a point $x \in X$. For the considered topologies and topological spaces no separation axioms are required in advance.

Fix a non-empty set X, a subset of $X \times X$ is called a *(binary)* relation on X. The relations will be denoted by P, Q, R, etc. We write: $\Delta_X := \{(x, x) \in X \times X \mid x \in X\},\$

$$\top(P) := \{ (y, x) \in X \times X \mid (x, y) \in P \},\$$

 $P \circ Q := \{(x, y) \in X \times X \mid \exists z \in X \text{ such that } (x, z) \in Q, (z, y) \in P\}.$ The relation $\top(P)$ is called *the converse relation* of P. Instead of $\top(P)$ the notation P^{-1} also is used. A relation P is called reflexive if $\Delta_X \subset P$ and symmetric if $\top(P) = P$.

For a collection \mathcal{Q} of relations on X, we write $\mathcal{Q}^{\top} := \{\top(Q) \mid Q \in \mathcal{Q}\}$ and we say that \mathcal{Q} is *symmetric* if $\mathcal{Q} = \mathcal{Q}^{\top}$. The relation $P \circ Q$ is called the *composition* of relations P and Q.

For $x \in X$ and $E \subset X$ we set $P[x] := \{y \in X \mid (x, y) \in P\}$ and $P[E] := \bigcup_{x \in E} P[x].$

We recall the usual terminology from the theory of quasi-uniform spaces (see, e.g., [6], [14], [13]):

A filter \mathcal{Q} consisting of reflexive relations on X is a

• Local Quasi-uniformity if $\forall x \in X, \ \forall Q \in \mathcal{Q}, \ \exists P \in \mathcal{Q}$ such that $P \circ P[x] \subset Q[x]$.

• Local Uniformity if Q is a symmetric local quasi-uniformity.

- Quasi-Uniformity if $\forall Q \in \mathcal{Q} \quad \exists P \in \mathcal{Q} \text{ such that } P \circ P \subset Q.$
- Uniformity if Q is a symmetric quasi-uniformity.

If \mathcal{Q} is a quasi-uniformity, the filter \mathcal{Q}^{\top} is a quasi-uniformity too. However, if \mathcal{Q} is a local quasi-uniformity, then \mathcal{Q}^{\top} may not be a local quasiuniformity. A local quasi-uniformity \mathcal{Q} is called *bilocal quasi-uniformity* if \mathcal{Q}^{\top} is a local quasi-uniformity as well (cf. [2]).

The pair (X, \mathcal{Q}) is called a local quasi-uniform space (a local uniform space, a quasi-uniform space, a uniform space) when \mathcal{Q} is a local

156

quasi-uniformity (a local uniformity, a quasi-uniformity, a uniformity) and the members of Q are called entourages.¹

Every uniform type structure \mathcal{Q} induces in X the topology $\tau_{\mathcal{Q}}$ for which

$$\{Q[x] \mid Q \in \mathcal{Q}\} = \mathcal{N}_{\tau_{\mathcal{Q}}}(x), \ \forall x \in X.$$

For a quasi-uniformity \mathcal{Q} the topologies $\tau_{\mathcal{Q}}$ and $\tau_{\mathcal{Q}^{\top}}$ may be distinct.

A uniform type structure Q is called *compatible with a topology* τ if $\tau_Q = \tau$.

We say that a (local) quasi-uniformity \mathcal{Q} is

(1) weakly locally symmetric at $x \in X$ if for every $Q \in \mathcal{Q}$ there is a symmetric entourage $S \in \mathcal{Q}$ such that $S[x] \subset Q[x]$;

(2) weakly locally symmetric or point-symmetric if \mathcal{Q} is weakly locally symmetric at x for every $x \in X$;

(3) locally symmetric at $x \in X$ if for every $Q \in \mathcal{Q}$ there is a symmetric entourage $S \in \mathcal{Q}$ such that $S \circ S[x] \subset Q[x]$;

(4) locally symmetric if $Q \in \mathcal{Q}$ is locally symmetric at x for every $x \in X$.

Let X be a set and $(\mathcal{Q}_i)_{i\in I}$ be a non-empty family of uniform type structures in X. For this family, in the partially ordered set of all filters over $X \times X$, always exist the least upper bound $\bigvee_{i\in I} \mathcal{Q}_i$ and the greatest lower bound $\wedge_{i\in I} \mathcal{Q}_i$. They are uniform type structures of the same type of \mathcal{Q}_i (see [1] or [3]). Moreover $\{\bigcap_{i\in J} \mathcal{Q}_i \mid \mathcal{Q}_i \in \mathcal{Q}_i, J \text{ finite } \subset I\}$ is a base of $\bigvee_{i\in I} \mathcal{Q}_i$.

For a given bilocal quasi-uniformity \mathcal{Q} we denote $\mathcal{Q}^{\vee} = \mathcal{Q} \vee \mathcal{Q}^{\top}$ and $\mathcal{Q}_{\wedge} = \mathcal{Q} \wedge \mathcal{Q}^{\top}$. It is known that \mathcal{Q}^{\vee} is the *coarsest local uniformity* containing \mathcal{Q} and \mathcal{Q}_{\wedge} is the *finest local uniformity* contained into \mathcal{Q} .

A local quasi-uniform space (X, \mathcal{Q}) is called *precompact* if $\forall Q \in \mathcal{Q}$ $\exists F$ finite $\subset X$ such that X = Q[F].

If (X, \mathcal{P}) and (Y, \mathcal{Q}) are local quasi-uniform spaces and $\mathcal{F} \subset Y^X$ is a non-empty family of mappings, then \mathcal{F} is called $(\mathcal{P}, \mathcal{Q})$ -uniformly equicontinuous if

 $\forall Q \in \mathcal{Q}, \exists P \in \mathcal{P} \text{ such that } (f(x_1), f(x_2)) \in Q, \forall (x_1, x_2) \in P, \forall f \in \mathcal{F}.$ **Proposition 1.1.** Let X and Y be nonempty sets, $\mathcal{F} \subset Y^X$ a nonempty family of mappings, $(\mathcal{P}_i)_{i \in I}$ a nonempty family of local quasi-uniformities on X and $(\mathcal{Q}_i)_{i \in I}$ a nonempty family of local quasi-uniformities on Y. Assume that $\forall i \in I, \mathcal{F}$ is $(\mathcal{P}_i, \mathcal{Q}_i)$ -uniformly equicontinuous. Then:

¹Some authors use the term "vicinity" instead of entourage.

- a) \mathcal{F} is $(\vee_{i \in I} \mathcal{P}_i, \vee_{i \in I} \mathcal{Q}_i)$ -uniformly equicontinuous.
- b) \mathcal{F} is $(\wedge_{i \in I} \mathcal{P}_i, \wedge_{i \in I} \mathcal{Q}_i)$ -uniformly equicontinuous.

1.2. Uniform type semigroups and monoids

A semigroup is a pair (X, +), where X is a non-empty set and +: $X \times X \to X$ is an associative binary operation. A monoid is a triplet $(X, +, \theta)$, where (X, +) is a semigroup which has the neutral element θ . If (X, +) is a semigroup (monoid) in $X \times X$ we define a semigroup operation componentwise.

As usual, for non-empty subsets A, B of a semigroup A + B will stand for their algebraic or Minkowski sum $\{a + b \mid a \in A, b \in B\}$.

A monoid (semigroup) X which is also a topological space is called a topological monoid if + is continuous with respect to the product topology in $X \times X$ and the topology of X.

A monoid (semigroup) X equipped with a local quasi-uniformity (bilocal quasi-uniformity, quasi-uniformity, local uniformity, uniformity) Q is called a local quasi-uniform (bilocal quasi-uniform, quasi-uniform, local uniform, uniformity) monoid (semigroup) if + is uniformly continuous with respect to the product quasi-uniformity $Q \otimes Q$ and Q.

Lemma 1.2. Let $(X, +, \theta)$ be a monoid, \mathcal{Q} be a local quasi-uniformity. a) The following statements are equivalent:

- (i) (X, \mathcal{Q}) is a local quasi-uniform monoid.
- (ii) $\forall Q \in \mathcal{Q} \exists P \in \mathcal{Q} \text{ such that } P + P \subset Q.$
- b) If (X, \mathcal{Q}) is a bilocal quasi-uniform monoid, then (X, \mathcal{Q}^{\top}) also is.
- c) If (X, \mathcal{Q}) is a (bilocal) quasi-uniform monoid, then (X, \mathcal{Q}^{\vee}) is a (local) uniform monoid.

1.3. Uniform type conoids

A *conoid* is an Abelian monoid $(X, +, \theta)$ for which an external operation

$$m: X \times \mathbb{R}_+ \to X, \ m(x, \alpha) = x \cdot \alpha$$

is defined with the properties:

 $\begin{array}{lll} A.1 & (x_1 + x_2) \cdot \alpha = x_1 \cdot \alpha + x_2 \cdot \alpha & \forall x_1, x_2 \in X, \quad \forall \alpha \in \mathbb{R}_+; \\ A.2 & (x \cdot \alpha_1) \cdot \alpha_2 = x \cdot (\alpha_1 \cdot \alpha_2) & \forall x \in X, \quad \forall \alpha_1, \alpha_2 \in \mathbb{R}_+; \\ A.3 & x \cdot (\alpha_1 + \alpha_2) = x \cdot \alpha_1 + x \cdot \alpha_2 & \forall x \in X, \quad \forall \alpha_1, \alpha_2 \in \mathbb{R}_+; \\ A.4 & x \cdot 1 = x & \forall x \in X. \end{array}$

In the literature a conoid is also called an *abstract convex cone* [16], a *cone* [9], a *semi-vector space* [15], or a *semilinear space* [7], [8], [17], etc. In [1] the conoids were introduced to develop a integration scheme in quasi-uniform spaces, these structures also have been studies in [4].

If $(X, +, \theta, m)$ is a conoid then in $X \times X$ we define a conoid structure componentwise.

Let $(X, +, \theta, m)$ be a conoid, K be a non-empty subset of $X, \alpha \in \mathbb{R}_+$ and A non-empty subset of \mathbb{R}_+ . We write

 $K \cdot \alpha := \{x \cdot \alpha - x \in K\}$ and $K \cdot A := \{x \cdot \alpha - x \in K, \alpha \in A\}$. Let $(X, +, \theta, m)$ be a conoid, K be a subset of X and b be an element of X. K is called:

(1) Convex if either K is empty, or $K \cdot \alpha + K \cdot (1 - \alpha) \subset K$, for every $\alpha \in [0, 1]$.

(2) Balanced if either K is empty, or $K \cdot [0, 1] \subset K$.

Remark 1.3. Let $(X, +, \theta, m)$ be a conoid.

(1) X itself is convex, balanced and radial.

(2) If K is a non-empty convex subset of X, then $K \cdot (\alpha + \beta) = K \cdot \alpha + K \cdot \beta, \alpha, \beta \in \mathbb{R}_+$.

(3) The intersection of any non-empty family of convex (balanced) subsets of a conoid is convex (balanced).

As usual, we denote co(K) the convex hull of a subset $K \subset X$.

Definition 1.4. A conoid $(X, +, \theta, m)$ equipped with a local quasiuniformity (bilocal quasi-uniformity, quasi-uniformity, local uniformity, uniformity) Q is called a *local quasi-uniform* (*bilocal quasi-uniform*, *quasiuniform*, *local uniform*, *uniform*) conoid if $(X, +, \theta, Q)$ is a local quasiuniform monoid. It is denoted by $(X, +, \theta, m, Q)$.

Therefore a local quasi-uniform conoid is simply a local quasiuniform monoid which algebraically is a conoid.

We shall say that a local quasi-uniform conoid $(X, +, \theta, m, Q)$ is

• *locally convex* if Q admits a base consisting of convex entourages;

• locally balanced if Q admits a base consisting of balanced entourages.

Remark 1.5. Let $(X, +, \theta, m, Q)$ a bilocal quasi-uniform conoid.

(1) $(X, +, \theta, m, \mathcal{Q}^{\top})$ is a bilocal quasi-uniform conoid (see 1.2).

(2) $(X, +, \theta, m, \mathcal{Q}_{\wedge}), (X, +, \theta, m, \mathcal{Q}^{\vee})$ are local uniform conoids (see 1.2).

For every $x \in X$, and for every $\alpha \in \mathbb{R}_+$ we will consider the mappings T. Abreu, E. Corbacho and V. Tarieladze

Denoting by \mathcal{E}_+ the usual uniformity on \mathbb{R}_+ , we say that the external operation of a local quasi-uniform conoid $(X, +, \theta, m, \mathcal{Q})$ is

- UC_{ℓ} if m_x is $(\mathcal{E}_+, \mathcal{Q})$ -uniformly continuous $\forall x \in X$;
- UC_r if m_{α} is \mathcal{Q} -uniformly continuous $\forall \alpha \in \mathbb{R}_+$;
- $C_{\ell,0}$ if m_x is (\mathfrak{e}, τ_Q) -continuous at $0 \ \forall x \in X$;
- C_{ℓ} if m_x is $(\mathfrak{e}, \tau_{\mathcal{Q}})$ -continuous on $\mathbb{R}_+ \quad \forall x \in X$;
- $C_{r,\theta}$ if m_{α} is $\tau_{\mathcal{Q}}$ -continuous at $\theta \ \forall \alpha \in \mathbb{R}_+$;
- C_r if m_{α} is $\tau_{\mathcal{Q}}$ -continuous on $X \ \forall \alpha \in \mathbb{R}_+$;
- $JC_{(\theta,0)}$ if m is $(\tau \otimes \mathfrak{e}, \tau_Q)$ -continuous at $(\theta, 0)$;
- JC if m is $(\tau_Q \otimes \mathfrak{e}, \tau_Q)$ -continuous everywhere.

Let $(X, +, \theta, m)$ be a conoid. A local quasi-uniformity Q on X is called *homogeneous* if

$$Q \cdot \alpha \in \mathcal{Q} \qquad \forall Q \in \mathcal{Q}, \quad \forall \alpha > 0.$$

Proposition 1.6. Let $(X, +, \theta, m, Q)$ be a bilocal quasi-uniform conoid such that m is $C_{\ell,0}$. The following statements are valid:

a) m_x is (\mathfrak{e}, τ_Q) -right-continuous $\forall x \in X$.

b) If \mathcal{Q}^{\top} is weakly locally symmetric at θ , then m_x is $(\mathfrak{e}, \tau_{\mathcal{Q}^{\top}})$ continuous at $0 \ \forall x \in X$.

c) If m_x is $(\mathfrak{e}, \tau_{\mathcal{Q}^{\top}})$ - continuous at $0 \ \forall x \in X$, then m is UC_{ℓ} .

d) If \mathcal{Q}^{\top} is weakly locally symmetric at θ , then m is UC_{ℓ} .

e) If \mathcal{Q} is a uniformity, then m is $C_{\ell,0}$ if and only if m is UC_{ℓ} .

Proof. a) Fix $x \in X$ and $\alpha \in \mathbb{R}_+$, $\alpha > 0$ and $Q \in Q$. Since + is $(\tau_Q \otimes \tau_Q, \tau_Q)$ -continuous at $(x \cdot \alpha, \theta)$ and $x \cdot \alpha = x \cdot \alpha + \theta$, there exists $R \in Q$ such that $R[x \cdot \alpha] + R[\theta] \subset Q[x \cdot \alpha]$.

Since m_x is (\mathbf{e}, τ_Q) -continuous at 0 there exists $\varepsilon > 0$ such that $x \cdot t \in R[\theta] \quad \forall t \in [0, \varepsilon[$. Then:

 $x \cdot (\alpha + t) = x \cdot \alpha + x \cdot t \in R[x \cdot \alpha] + R[\theta] \subset Q[x \cdot \alpha] \quad \forall t \in [0, \varepsilon[$ and the $(\mathfrak{e}, \tau_{\mathcal{Q}})$ -right-continuity of m_x at α is proved.

b) Obvious.

c) Fix $x \in X$. Since (X, \mathcal{Q}) is a bilocal quasi-uniform semigroup, there exists $R \in \mathcal{Q}$ such that $R + R \subset Q$. Since m_x is $(\mathfrak{e}, \tau_{\mathcal{Q}} \lor \tau_{\mathcal{Q}^{\top}})$ continuous at 0 there exists $\varepsilon > 0$ such that

$$m_x([0,\varepsilon[) \subset R[\theta] \cap T(R)[\theta]),$$

i.e.,

(*)
$$(\theta, x \cdot t) \in R$$
 and $(x \cdot t, \theta) \in R, \forall t \in [0, \varepsilon[.$

160

Take $\alpha, \beta \in \mathbb{R}_+$ with $|\alpha - \beta| < \varepsilon$ and let us show that $(x \cdot \alpha, x \cdot \beta) \in Q$. If $\alpha < \beta$, then $\beta = \alpha + t$ with $t := \beta - \alpha \in [0, \varepsilon[$. This and (*)

 $\begin{array}{l} (x \cdot \alpha, x \cdot \beta) = (x \cdot \alpha + \theta, x \cdot \alpha + x \cdot t) = (x \cdot \alpha, x \cdot \alpha) + (\theta, x \cdot t) \in R + R \subset Q. \\ \text{If } \alpha > \beta, \text{ then } \alpha = \beta + t \text{ with } t := \alpha - \beta \in [0, \varepsilon[. \text{ This and } (*) \text{ imply:} \\ (x \cdot \alpha, x \cdot \beta) = (x \cdot t + x \cdot \beta, \theta + x \cdot \beta) = (x \cdot t, \theta) + (x \cdot \beta, x \cdot \beta) \in R + R \subset Q. \\ \text{Consequently,} \end{array}$

$$\alpha, \beta \in \mathbb{R}^+, \ |\alpha - \beta| < \varepsilon \; \Gamma \Rightarrow (x \cdot \alpha, x \cdot \beta) \in Q$$

and so, m_x is $(\mathcal{E}^+, \mathcal{Q})$ - uniformly continuous.

- d) Follows from b) and c).
- e) Follows from d). \Diamond

2. Uniform type hyperspaces

Let X be a nonempty set and $\mathcal{P}_0(X)$ be the collection of all nonempty subsets of X. For each relation Q on X, set

$$Q^{+} = \{ (A, B) \in \mathcal{P}_{0}(X) \times \mathcal{P}_{0}(X) \mid B \subset Q[A] \},\$$

$$Q^{-} = \{ (A, B) \in \mathcal{P}_{0}(X) \times \mathcal{P}_{0}(X) \mid A \subset \top(Q)[B] \},\$$

$$Q^{*} := Q^{+} \cap Q^{-}.$$

Remark 2.1. Let P, Q be relations on X, then:

(1) $\top (Q^{-}) = (\top (Q))^{+}$ and $\top (Q^{+}) = (\top (Q))^{-}$. (2) $(P \cup Q)^{+} = P^{+} \cup Q^{+}$. (3) $(P \cup Q)^{-} = P^{-} \cup Q^{-}$. (4) $(P \cap Q)^{+} \subset P^{+} \cap Q^{+}$. (5) $(P \cap Q)^{-} \subset P^{-} \cap Q^{-}$. (6) $(P \cap Q)^{*} \subset P^{*} \cap Q^{*}$. For a local quasi-uniformity \mathcal{Q} on X let • \mathcal{Q}^{+} be the filter generated by $\{Q^{+} \mid Q \in \mathcal{Q}\}$,

- \mathcal{Q}^- be the filter generated by $\{Q^- | Q \in \mathcal{Q}\},\$
- $\mathcal{Q}^* := \mathcal{Q}^+ \vee \mathcal{Q}^-.$

Remark 2.2. If (X, \mathcal{Q}) is a local quasi-uniform space, then

(1)
$$(\mathcal{Q}^{-})_{-}^{\top} = (\mathcal{Q}_{-}^{\top})^{+}$$
, and $(\mathcal{Q}^{+})^{\top} = (\mathcal{Q}^{\top})^{-}$

$$(2) \ (\mathcal{Q}^*)^{\perp} = (\mathcal{Q}^{\perp})^*$$

Proposition 2.3. Let (X, Q) be a quasi-uniform space. The following statements are true:

;

(a) (cf. [5, 10]) \mathcal{Q}^+ , \mathcal{Q}^- and \mathcal{Q}^* are quasi-uniformities.

(b) If \mathcal{Q} is a uniformity, then \mathcal{Q}^+ and \mathcal{Q}^- are conjugate quasiuniformities, and \mathcal{Q}^* is a uniformity on $\mathcal{P}_0(X)$.

Proof. (a) Fix $\mathfrak{P} \in \mathcal{Q}^+$. There exists $P \in \mathcal{Q}$ such that $P^+ \subset \mathfrak{P}$. Since \mathcal{Q} is a quasi-uniformity there is $Q \in \mathcal{Q}$ such that $Q \circ Q \subset P$. Let us show that $Q^+ \circ Q^+ \subset P^+$:

Take $(A, B) \in Q^+ \circ Q^+$. There is a C such that $(A, C) \in Q^+$ and $(C, B) \in Q^+$. For each $b \in B$ there is $c \in C$ such that $(c, b) \in Q$ and there is $a \in A$ such that $(a, c) \in Q$. It follows that $(a, b) \in Q \circ Q \subset P$ and so, $b \in P[a] \subset P[A]$. Hence $B \subset P[A]$ and $(A, B) \in P^+$.

The other cases are analogous.

(b) Follows from Rem. 2.1(1). \Diamond

The quasi-uniformities \mathcal{Q}^+ and \mathcal{Q}^- are called, respectively, the *up*per and *lower Hausdorff quasi-uniformities* on $\mathcal{P}_0(X)$ associated with \mathcal{Q} .

The quasi-uniformity \mathcal{Q}^* is called *Hausdorff (or Bourbaki) quasi-uniformity* on $\mathcal{P}_0(X)$ associated with \mathcal{Q} .

The next proposition shows that an analogue of Prop. 2.3(a) is not true for bilocal quasi-uniformities.

Proposition 2.4. Let (X, Q) be a bilocal quasi-uniform space. Then:

- a) \mathcal{Q}^+ may not be a local quasi-uniformity on $\mathcal{P}_0(X)$.
- b) \mathcal{Q}^- may not be a local quasi-uniformity on $\mathcal{P}_0(X)$.
- c) \mathcal{Q}^* may not be a local quasi-uniformity on $\mathcal{P}_0(X)$.

Proof. Let $X = \{0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\}$ and

$$Q_n = \Delta \cup \left\{ \left(0, \frac{1}{i}\right) : i \ge n \right\} \cup \left\{ \left(\frac{1}{i+1}, \frac{1}{i}\right) : i \ge n \right\}.$$

First we will see that $\mathcal{Q}_0 = \{Q_n : n \in \mathbb{N}\}$ is base of a bilocal quasiuniformity \mathcal{Q} (cf. [1]).

- $Q_{n+1} \subset Q_n$, for each $n \in \mathbb{N}$, therefore \mathcal{Q} is a filter base on $X \times X$.
- $\Delta \subset Q_n$, for every $n \in \mathbb{N}$.
- Observe that:

$$Q_n[0] = \left\{ 0, \frac{1}{n}, \frac{1}{n+1} \dots \right\}$$
 and $Q_n \circ Q_n[0] = \left\{ 0, \frac{1}{n}, \frac{1}{n+1} \dots \right\}$

hence $Q_n \circ Q_n[0] = Q_n[0], n = 1, 2, \dots$ Now, let $n \ge 1$ and $k \ge 1$, we have that:

 $Q_k \circ Q_k \left[\frac{1}{k}\right] = \left\{\frac{1}{k}\right\}$ hence $Q_k \circ Q_k \left[\frac{1}{k}\right] \subset Q_n \left[\frac{1}{k}\right]$.

• Notice that:

$$\top(Q_n) = \Delta \cup \left\{ \left(\frac{1}{i}, 0\right) : i \ge n \right\} \cup \left\{ \left(\frac{1}{i}, \frac{1}{i+1}\right) : i \ge n \right\}, \quad n = 1, 2, 3 \dots$$

Observe that: $-\top(Q_n)[0] = \{0\}$ and $\top(Q_n) \circ \top(Q_n)[0] = \{0\}$ hence $\top(Q_n) \circ \top(Q_n)[0] = \top(Q_n)[0], n = 1, 2, \dots$ and for $n, k \in \mathbb{N}$ we have: $\top(Q_{k+1}) \circ \top(Q_{k+1}) \left[\frac{1}{k}\right] = \left\{\frac{1}{k}\right\}$ hence $\top(Q_{k+1}) \circ \top(Q_{k+1}) \left[\frac{1}{k}\right] \subset \top(Q_n) \left[\frac{1}{k}\right]$. a) Let $A = \left\{\frac{1}{3}, \frac{1}{6}, \dots, \frac{1}{3n}, \dots\right\}$, let us see that $Q_m^+ \circ Q_m^+[A] \not\subset Q_1^+[A], \forall m \in \mathbb{N}$

with

$$Q_1^+[A] = \mathcal{P}_0\left(\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \dots, \frac{1}{3n-1}, \frac{1}{3n}, \dots\right\}\right) \cup \emptyset.$$

We have:

$$\begin{cases} \left(A, \left\{\frac{1}{3m-1}\right\}\right) \in Q_m^+ \\ \left(\left\{\frac{1}{3m-1}\right\}, \left\{\frac{1}{3m-2}\right\}\right) \in Q_m^+ \end{cases}$$

Therefore $\left\{\frac{1}{3m-2}\right\} \in Q_m^+ \circ Q_m^+[A] \ \forall m \in \mathbb{N}, \ \text{but } \left\{\frac{1}{3m-2}\right\} \notin Q_1^+[A].$

b) Let
$$A = \{\frac{1}{3}, \frac{1}{6}, \dots, \frac{1}{3n}, \dots\}$$
, let we us see that
 $Q_m^- \circ Q_m^-[A] \not\subset Q_1^-[A], \ \forall m \in \mathbb{N}$

with

$$Q_1^{-}[A] = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \dots, \frac{1}{3n-1}, \frac{1}{3n}, \dots\right\}$$

Consider

$$B_m = \left\{ \frac{1}{3k} : 1 \le k < m \right\} \cup \left\{ \frac{1}{3k - 2} : k \ge m \right\}$$

and

$$C_m = \left\{\frac{1}{3k} : 1 \le k < m\right\} \cup \left\{\frac{1}{3m-1}, \frac{1}{3m+2}, \frac{1}{3m+5}, \dots\right\}.$$

We have

$$\begin{cases} (A, C_m) \in Q_m^- \\ (C_m, B_m) \in Q_m^- \end{cases}$$

,

hence
$$B_m \in Q_m^- \circ Q_m^-[A]$$
, $\forall m \in \mathbb{N}$, but $B_m \notin Q_1^-[A]$.
c) Let $A = \{\frac{1}{3}, \frac{1}{6}, \dots, \frac{1}{3n}, \dots\}$, then by a) and b) we have
 $Q_1^*[A] = (Q_1^+ \cap Q_1^-)[A] \subset Q_1^+[A] \cap Q_1^-[A] =$
 $= \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \dots, \frac{1}{3n-1}, \frac{1}{3n}, \dots\right\}$

Let C_m and B_m the sets defined in b). We have also

T. Abreu, E. Corbacho and V. Tarieladze

$$\begin{cases} (A, C_m) \in Q_m^+ \cap Q_m^- \\ (C_m, B_m) \in Q_m^+ \cap Q_m^- \end{cases}$$

hence $B_m \in (Q_m^+ \cap Q_m^-) \circ (Q_m^+ \cap Q_m^-)[A], \forall m \in \mathbb{N}$, but $B_m \notin Q_1^*[A]$. Taking into account Rem. 2.1 it is easy to prove the following:

Proposition 2.5. Let \mathcal{Q} and \mathcal{P} be quasi-uniformity on X. Then:

- (1) $\mathcal{P}^* \vee \mathcal{Q}^* \subset (\mathcal{P} \vee \mathcal{Q})^*$.
- (2) $(\mathcal{P} \wedge \mathcal{Q})^* \subset \mathcal{P}^* \wedge \mathcal{Q}^*$.

(3) If the set $\{P \cup Q \mid P \in \mathcal{P}, Q \in \mathcal{Q}\}$ is a quasi-uniform base of $\mathcal{Q} \land \mathcal{P}$, then

- (a) $\{(P \cup Q)^+ | P^+ \in \mathcal{P}^+, Q^+ \in \mathcal{Q}^+\} = \{P^+ \cup Q^+ | P^+ \in \mathcal{P}^+, Q^+ \in \mathcal{Q}^+\}$ and both are quasi-uniform bases. Consequently, $\mathcal{Q}^+ \wedge \mathcal{P}^+ = (\mathcal{Q} \wedge \mathcal{P})^+.$
- (b) $\{(P \cup Q)^- | P^- \in \mathcal{P}^-, Q^- \in \mathcal{Q}^-\} = \{P^- \cup Q^- | P^- \in \mathcal{P}^-, Q^- \in \mathcal{Q}^-\}$ and both are quasi-uniform bases. Consequently, $\mathcal{Q}^- \wedge \mathcal{P}^- = (\mathcal{Q} \wedge \mathcal{P})^-.$
- (c) $\{(P \cup Q)^* | P^* \in \mathcal{P}^*, Q^* \in \mathcal{Q}^*\} = \{P^* \cup Q^* | P^* \in \mathcal{P}^*, Q^* \in \mathcal{Q}^*\}$ are quasi-uniform bases and $\mathcal{Q}^* \wedge \mathcal{P}^* = (\mathcal{Q} \wedge \mathcal{P})^*$.
- (4) In particular, we have
 - (a) $(\mathcal{Q}^*)^{\vee} \subset (\mathcal{Q}^{\vee})^*$.
 - (b) $(\mathcal{Q}_{\wedge})^* \subset (\mathcal{Q}^*)_{\wedge}.$
 - (c) When $\{\top(Q) \cup Q \mid Q \in Q\}$ is base of Q_{\wedge} then $(Q^*)_{\wedge} = (Q_{\wedge})^*$.

The following proposition shows that the local symmetry is preserved for singletons.

Proposition 2.6. Let (X, \mathcal{Q}) be a weakly locally symmetric quasi-uniform space. Then:

a) $(\mathcal{P}_0(X), \mathcal{Q}^-)$ is weakly locally symmetric at $\{x\}, \forall x \in X$;

- b) $(\mathcal{P}_0(X), \mathcal{Q}^+)$ is weakly locally symmetric at $\{x\}, \forall x \in X;$
- c) $(\mathcal{P}_0(X), \mathcal{Q}^*)$ is weakly locally symmetric at $\{x\}, \forall x \in X$.

Proof. a) Fix $\mathfrak{Q} \in \mathcal{Q}^-$. There exists $Q \in \mathcal{Q}$ such that $Q^- \subset \mathfrak{Q}$. For a $x \in X$ there is a symmetric entourage $S \in \mathcal{Q}$ such that $S[x] \subset Q[x]$.

Let $B \in S^{-}[\{x\}]$, then there is a $b \in B$ such that

 $(x,b) \in S$ hence $(x,b) \in Q$.

Therefore $(\{x\}, B) \in Q^-$ and so $B \in Q^-[\{x\}]$.

b) Is analogous to a).

c) Follows from a) and b) because the supremum of a family of weakly locally symmetric quasi-uniformities is weakly locally symmetric. \Diamond

Proposition 2.7. Let (X, \mathcal{Q}) be a locally symmetric quasi-uniform space. We have:

- a) $(\mathcal{P}_0(X), \mathcal{Q}^-)$ is locally symmetric at $\{x\}, \forall x \in X$.
- b) $(\mathcal{P}_0(X), \mathcal{Q}^+)$ is locally symmetric at $\{x\}, \forall x \in X$.
- c) $(\mathcal{P}_0(X), \mathcal{Q}^*)$ is locally symmetric at $\{x\}, \forall x \in X$.

Proof. a) Fix $\mathfrak{Q} \in \mathcal{Q}^-$. There exists $Q \in \mathcal{Q}$ such that $Q^- \subset \mathfrak{Q}$. For a $x \in X$ there is a symmetric entourage $S \in \mathcal{Q}$ such that $S \circ S[x] \subset Q[x]$.

Let $B \in S^{-} \circ S^{-}[\{x\}]$, then there is a $C \subset X$ such that

$$(\{x\}, C) \in S^-$$
 and $(C, B) \in S^-$

Then for each $c \in C$ there is a $b \in B$ such that

 $(x,c) \in S$ and $(c,b) \in S$.

Hence, there is $b \in B$ such that $(x, b) \in S \circ S$ then $(x, b) \in Q$.

Therefore $(\{x\}, B) \in Q^-$ and so $B \in Q^-[\{x\}]$.

b) Is analogous to a).

c) Follows from a) and b) because the supremum of family of locally symmetric quasi-uniformities is weakly locally symmetric. \Diamond

2.1. Hyperspaces with algebraic structures

If $(X, +, \theta)$ is a monoid, then $\mathcal{P}_0(X)$ is a monoide as well with respect to the internal operation

$$\begin{array}{rccc} +: & \mathcal{P}_0(X) \times \mathcal{P}_0(X) & \to & \mathcal{P}_0(X) \\ & & (A,B) & \mapsto & A+B \end{array}$$

and the neutral element $\{\theta\}$.

Theorem 2.8. Let $(X, +, \theta, \mathcal{Q})$ be a quasi-uniform monoid, then $(\mathcal{P}_0(X), +, \{\theta\}, \mathcal{Q}^-), (\mathcal{P}_0(X), +, \{\theta\}, \mathcal{Q}^+)$ and $(\mathcal{P}_0(X), +, \{\theta\}, \mathcal{Q}^*)$ are quasi-uniform monoids.

Proof. Fix $\mathfrak{Q} \in \mathcal{Q}^+$. There exists $Q \in \mathcal{Q}$ such that $Q^+ \subset \mathfrak{Q}$. Since + is uniformly continuous, there is a entourage P such that $P + P \subset Q$. Observe that:

• if $(A_1, B_1) \in Q^+$ then $B_1 \subset P[A_1];$

• if
$$(A_2, B_2) \in Q^+$$
 then $B_2 \subset P[A_2]$.

Then

$$B_1 + B_2 \subset P[A_1] + P[A_2] \subset P[A_1 + A_2] \subset Q[B_1 + B_2].$$

Hence

$$P^+ + P^+ \subset Q^+.$$

In the same way it is easy to see that + is also uniformly continuous with respect to Q^{-} .

Since + is uniformly continuous with respect Q^+ and Q^- , by Prop. 1.1 it is also uniformly continuous with respect to Q^* .

Let $(X, +, \theta, m)$ be a conoid. The external operation m can be extended to $\mathcal{P}_0(X)$ in a natural manner:

$$\begin{array}{rccc} m: & \mathcal{P}_0(X) \times \mathbb{R}_+ & \to & \mathcal{P}_0(X) \\ & & (A, \alpha) & \mapsto & A \cdot \alpha \end{array}$$

The structure $(\mathcal{P}_0(X), +, \{\theta\}, m)$ may not be a conoid, because, in general, property A.3 may fail.

Denote $\mathcal{P}_c(X)$ be the collection of all convex members of $\mathcal{P}_0(X)$. By Rem. 1.3(2) the structure $(\mathcal{P}_c(X), +, \{\theta\}, m)$ is a *conoid*. This is an important example of conoid. Observe that, since X + X = X, this conoid is not cancellative provided $X \neq \{\theta\}$.

Let \mathcal{Q} be a quasi-uniformity in a conoid $(X, +, \theta, m)$. We denote \mathcal{Q}_c^+ , \mathcal{Q}_c^- and \mathcal{Q}_c^* the induced quasi-uniformities on $\mathcal{P}_c(X)$ by the quasiuniformities \mathcal{Q}^+ , \mathcal{Q}^- and \mathcal{Q}^* .

The following result is a particular case of Th. 2.8.

Corollary 2.9. Let $(X, +, \theta, m, Q)$ be a quasi-uniform conoid, then $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-), (\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)$ and $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*)$ are quasi-uniform conoids.

Proposition 2.10. Let $(X, +, \theta, m)$ be a conoid, and Q be a quasiuniformity on X.

a) If \mathcal{Q} is locally convex, then \mathcal{Q}_c^- , \mathcal{Q}_c^+ and \mathcal{Q}_c^+ are locally convex.

b) If Q is locally balanced, then Q_c^- , Q_c^+ and Q_c^+ are locally balanced.

Proof. a) Fix $\mathfrak{P} \in \mathcal{Q}_c^+$. There exists a convex $P \in \mathcal{Q}$ such that $P^+ \subset \mathfrak{P}$. Fix $(A_1, B_1), (A_2, B_2) \in P^+$, we have that $B_1 \subset P[A_1]$ and $B_2 \subset P[A_2]$.

For each $b_1 \in B_1, b_2 \in B_2$ there is a $a_1 \in A_1, a_2 \in A_2$ such that $(a_1, b_1) \in P$ and $(a_2, b_2) \in P$,

since P is a convex entourage then

 $(a_1 \cdot \alpha + a_2 \cdot \beta, b_1 \cdot \alpha + b_2 \cdot \beta) \in P \text{ with } \alpha + \beta = 1.$ Therefore $b_1 \cdot \alpha + b_2 \cdot \beta \in P[a_1 \cdot \alpha + a_2 \cdot \beta] \Rightarrow B_1 \cdot \alpha + B_2 \cdot \beta \in P[A_1 \cdot \alpha + A_2 \cdot \beta].$ Then

 $(A_1, B_1) \cdot \alpha + (A_2, B_2) \cdot \beta \in P^+$ with $\alpha + \beta = 1$.

In a similar way we can prove that the lower quasi-uniformity \mathcal{Q}_c^- , is locally convex too.

Since $Q_c^* = Q_c^+ \vee Q_c^-$, then Q_c^* has also a base consisting of convex sets.

b) Now we will prove that if P is a balanced entourage then P^+ is also balanced. Let $(A, B) \in P^+$, then

$$B \subset P[A] \Rightarrow \forall b \in B \exists a \in A \text{ such that} (a, b) \in P \Rightarrow (a \cdot t, b \cdot t) \in P, \forall t \in [0, 1],$$

hence $B \cdot t \subset P[A \cdot t]$ with $t \in [0, 1]$.

In a similar way we can prove that the lower quasi-uniformity is locally balanced too.

Since $Q_c^* = Q_c^+ \vee Q_c^-$, then Q_c^* has also a base consisting of balanced sets. \diamond

In the following propositions we study the stability of the partial continuity of the action on the hyperspace $\mathcal{P}_c(X)$.

We begin with the maps $m_{\alpha} : \mathcal{P}_c(X) \to \mathcal{P}_c(X)$.

Proposition 2.11. Let $(X, +, \theta, m)$ be a conoid and \mathcal{Q} be a quasiuniformity for which m is $C_{r,\theta}$. Then m is $C_{r,\{\theta\}}$ in the conoids $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-), (\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+) \text{ and } (\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*).$ **Proof.** Fix $Q \in \mathcal{Q}$ and $\alpha \in \mathbb{R}_+$. Since m_α is $\tau_{\mathcal{Q}^-}$ continuous at θ , there is a $P \in \mathcal{Q}$ such that $P[\theta] \cdot \alpha \subset Q[\theta]$. Let $B \subset P^-[\{\theta\}]$, then there is $b \in B$ such that

$$(\theta, b) \in P \Rightarrow (\theta, b \cdot \alpha) \in Q \Rightarrow \{\theta\} \subset \top(Q)[b \cdot \alpha].$$

Thus $B \cdot \alpha \in Q^{-}[\{\theta\}].$

In the same way we can prove that m_{α} is $\tau_{\mathcal{Q}_c^+}$ - continuous at $\{\theta\}$, and using the previous results and Prop. 1.1 we can conclude that m is also $C_{r,\{\theta\}}$ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*)$.

Proposition 2.12. Let $(X, +, \theta, m)$ be a conoid and \mathcal{Q} be a quasiuniformity for which m is UC_r . Then m is UC_r in the conoids $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-), (\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)$ and $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_d^*)$. **Proof.** Fix $Q \in \mathcal{Q}$ and $\alpha \in \mathbb{R}_+$. Since m_α is \mathcal{Q} -uniformly continuous, there is a entourage P such that $P \cdot \alpha \subset Q$.

If $B \subset P[A]$ then for each $b \in B$ there is a $a \in A$ such that $(a,b) \in P \Rightarrow (a \cdot \alpha, b \cdot \alpha) \in Q \Rightarrow b \cdot \alpha \subset Q[a \cdot \alpha],$

then

$$b \cdot \alpha \subset \bigcup_{a \in A} Q[a \cdot \alpha] = Q[A \cdot \alpha]$$

Hence $B \cdot \alpha \subset Q[A \cdot \alpha]$. Thus $P^+ \cdot \alpha \subset Q^+$.

The case $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)$ is analogous, and using the previous results and Prop. 1.1, we can prove that m is UC_r in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*)$.

Now we study the maps $m_A : \mathbb{R}_+ \to \mathcal{P}_c(X), A \in \mathcal{P}_c(X)$.

Proposition 2.13. Let $(X, +, \theta, m)$ be a conoid and Q a quasi-uniformity on X. If m is $C_{\ell,0}$ then

a) m is $C_{\ell,0}$ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)$.

b) If (X, \mathcal{Q}) is a locally balanced, precompact quasi-uniform space, then:

i) m is $C_{\ell,0}$ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+);$

ii) m is $C_{\ell,0}$ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*)$.

Proof. a) Let A be a non-empty convex subset of X, and fix $Q \in \mathcal{Q}$. Let $x \in A$. As m_x is τ_Q -continuous at 0, there is $\varepsilon > 0$ such that $(\theta, x \cdot t) \in Q$, $\forall t \in [0, \varepsilon]$. Then

$$\{\theta\} \subset \top(Q)[A \cdot t], \ \forall t \in [0, \varepsilon[$$

hence

$$A \cdot t \in Q^{-}[\{\theta\}], \ \forall t \in [0, \varepsilon[.$$

b) i) Let A be a convex subset of X. Fix $P \in \mathcal{Q}$. There is a balanced entourage Q such that $Q \circ Q \subset P$. Since (X, \mathcal{Q}) is precompact, there is a finite subset $F = \{x_1, x_2, \ldots, x_n\} \subset X$ such that $A \subset \bigcup_{i=1}^n Q[x_i]$.

Since for $i \leq n$ the map m_{x_i} is continuous, there is $\varepsilon_{x_i} \in]0, 1[$ such that

$$(\theta, x_i \cdot t) \in Q, \forall t \in [0, \varepsilon_{x_i}].$$

Put $\varepsilon = \min\{\varepsilon_{x_i} \mid 1 \le i \le n\}.$

For all $x \in A$, there is $i \leq n$ such that $(x_i, x) \in Q$. Since \mathcal{Q} is balanced,

$$(x_i \cdot t, x \cdot t) \in Q, \forall t \in [0, \varepsilon] \subset [0, 1]$$

Since m_{x_i} is continuous, $(\theta, x_i \cdot t) \in Q, \forall t \in [0, \varepsilon] \subset [0, \varepsilon_{x_i}]$. Thus $\forall x \in A, \forall t \in [0, \varepsilon], \quad (\theta, x \cdot t) \in Q \circ Q \subset P$,

and so, $A \cdot t \subset P[\{\theta\}]$ and $A \cdot t \in P^+[\{\theta\}]$.

ii) This item is a consequence of the last statements and Prop. 1.1. \diamond **Proposition 2.14.** Let $(X, +, \theta, m, Q)$ be a uniform conoid.

a) m is $C_{\ell,0}$ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)$ if and only if m is UC_ℓ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)$.

b) m is $C_{\ell,0}$ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)$ if and only if m is UC_ℓ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)$.

c) m is $C_{\ell,0}$ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*)$ if and only if m is UC_ℓ in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*)$.

Proof. The statements follow from Prop. 1.6(e). \Diamond

Corollary 2.15. Let $(X, +, \theta, m, Q)$ be a uniform conoid. If m is $C_{\ell,0}$, then

a) m is UC_{ℓ} in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)$.

b) If (X, \mathcal{Q}) is a locally balanced, precompact quasi-uniform space, then:

i) m is UC_{ℓ} in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+);$

ii) m is UC_{ℓ} in $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*)$.

Proof. The statements follows from Props. 2.13 and 2.14. \Diamond

At last we study the joint continuity of the action

 $m: \mathcal{P}_c(X) \times \mathbb{R}_+ \to \mathcal{P}_c(X).$

Proposition 2.16. Let $(X, +, \theta, m)$ be a conoid and \mathcal{Q} a quasi-uniformity on X for which m is $JC_{(\theta,0)}$. Then m is $JC_{(\{\theta\},0)}$ in the conoids $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-), (\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+) \text{ and } (\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^*).$ **Proof.** Fix $Q \in \mathcal{Q}$. Since m is continuous at $(\theta, 0)$, there are $P \in \mathcal{Q}$ and $\varepsilon > 0$ such that

$$P[\theta] \cdot t \subset Q[\theta], \quad \forall t \in [0, \varepsilon[.$$

Let $B \subset P^{-}[\{\theta\}]$. There is $b \in B$ such that

 $(\theta, b) \in P \Rightarrow (\theta, b \cdot t) \in Q \Rightarrow \{\theta\} \subset \top(Q)[b \cdot t], \ \forall t \in [0, \varepsilon[.$

Thus

$$B \cdot t \subset Q^{-}[\{\theta\}], \ \forall t \in [0, \varepsilon[.$$

The others cases are analogous. \Diamond

Open questions 2.17. Let $(X, +, m, \mathcal{Q})$ be a quasi-uniform conoid.

(1) If m is C_r in $(X, +, m, \mathcal{Q})$ can we say that m is C_r

$$(\mathcal{P}_c(X), +, m, \mathcal{Q}_c^-), \ (\mathcal{P}_c(X), +, m, \mathcal{Q}_c^+) \text{ or } (\mathcal{P}_c(X), +, m, \mathcal{Q}_c^*)?$$

(2) If m is JC in
$$(X, +, m, \mathcal{Q})$$
 can we say that m is JC in
 $(\mathcal{P}_c(X), +, m, \mathcal{Q}_c^-), \ (\mathcal{P}_c(X), +, m, \mathcal{Q}_c^+) \text{ or } (\mathcal{P}_c(X), +, m, \mathcal{Q}_c^*)?$

References

- [1] ABREU, T.: Integration on Quasi-uniform Conoids, Thesis Doctoral, Vigo, 2005.
- [2] ABREU, T. and CORBACHO, E.: Uniform Type Structures, Tekné, Polytechical Studies Review, 2005, Vol II, no. 4, 149–161.
- [3] ABREU, T. and CORBACHO, E.: Lattices on Uniform Type Structures, Communication on International Workshop on Topological Groups, Pamplona, Spain, 2005.

- [4] ABREU, T., CORBACHO, E. and TARIELADZE, V.: Uniform Type Conoids, Communication on International congress of Mathematicians, Madrid, Spain, 2006.
- [5] BERTHIAUME, G.: On Quasi-Uniformities in Hyperspaces, Proc. AMS 66, 2 (1977), 335–343.
- [6] FLETCHER, P. and LINDGREN, W.: Quasi-uniform spaces, Lecture Notes in Pure ans Applied Mathematics, 77, Marcel Dekker, Inc., New York, 1982.
- [7] GODINI, G.: On normed almost linear spaces, Math. Ann. 279 (1988), 449–455.
- [8] HUH, W.: Some properties of pseudonormable semilinear spaces, J. Korean Math. Soc. 11 (1974), 77–85.
- [9] KEIMAL K. and ROTH, W.: Ordered cones and approximation, Lecture Notes in Mathematics, 1517, 1992.
- [10] KÜNZI, H. and RYSER, C.: The Bourbaki quasi-uniformity, Topology Proc. 20 (1995), 161–183.
- [11] KÜNZI, H. and ROMAGUERA, S.: Quasi-Metric Spaces, Quasi-Metric Hyperspaces and Uniform Local Compactness, *Rend. Inst. Mat. Univ. Trieste* XXX (1999), 133–144.
- [12] KÜNZI, H., ROMAGUERA, S. and SÁNCHEZ-GRANERO, M. A.: On Uniformly Locally Compact Quasi-Uniform Hyperspaces, *Czech. Math. Journal* 54 (129) (2004), 215–228.
- [13] KÜNZI, H.: Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymetric Topology, in: Handbook of the history of general topology, 3, Hist. Topol., Kluwer Acad. Publ., Dordrecht, 2001, 3, 853–968.
- [14] MURDESHWAR, M. G. and NAIMPALLY, S. A.: Quasi-Uniform Topological Spaces, Noordhoff, 1966.
- [15] PAP, E.: Integration of functions with values in complete semi-vector space, Lecture Notes in Math. 794 (1980), 340–347.
- [16] URBANSKI, R.: A generalization of the Minkowski–Radstrom–Hormander theorem, Bull. L'Acad. Pol. Sci. 24 (9) (1976), 709–715.
- [17] WORTH, R. E.: Boundaries of semilinear spaces and semialgebras, Trans. Amer. Math. Soc. 148 (1970), 99–119.