Mathematica Pannonica

19/1 (2008), 99-105

INDEPENDENT-TYPE STRUCTURES AND THE NUMBER OF CLOSED SUBSETS OF A SPACE

Franco Obersnel
Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, via A. Valerio 12/1, I-34127 Trieste, Italia

Received: March 2008
MSC 2000: 54 A 25
Keywords: Independent families, dyadic systems, cardinal functions.

Abstract

Three different notions of an independent family of sets are considered, and it is shown that they are all equivalent under certain conditions. In particular it is proved that in a compact space X in which there is a dyadic system of size τ there exists also an independent matrix of closed subsets of size $\tau \times 2^{\tau}$. The cardinal function $M(X, \kappa)$ counting the number of disjoint closed subsets of size larger than or equal to κ is introduced and some of its basic properties are studied.

1. Introduction

The notion of an independent family of sets is a well known tool from set theoretic combinatorics, already used in topology by Hausdorff and even before ([2]). To approach different kinds of problems, different notions of set independence have been defined. In [3], [4], [5] for instance, the idea of an independent collection of subsets of a set is used. In [6] the notion of an independent matrix is used (for example) to show that in ω^{*} there exists an R-point. In [1] the notion of a dyadic system is introduced and a strong use of this (generalized) concept is made in $[7]$ to

[^0]give a characterization of the spaces that can be mapped onto a Tykhonov cube.

Meeting these notions in so different contexts, it is natural to ask if these structures might have something in common. In Sec. 2 we establish that they are all equivalent under certain conditions.

As the existence of a dyadic system, an independent matrix or an independent family of closed sets implies the existence of many disjoint closed sets in a topological space X, these notions can be used to count the cardinalities of families of pairwise disjoint closed sets of a given cardinality. In Sec. 3 we introduce the cardinal function $M(X, \kappa)$, counting the number of the disjoint closed subsets of cardinality κ of a space X, and study some of its basic properties.

2. Independent families, independent matrices, dyadic systems

Definition 2.1. An independent family of subsets of a set X is a family $\mathcal{F}=\left\{F_{\alpha}: \alpha \in A\right\}$ such that, for any finite collection of elements $F_{\alpha_{1}}, F_{\alpha_{2}}, \ldots, F_{\alpha_{n}}$ and $F_{\beta_{1}}, F_{\beta_{2}}, \ldots, F_{\beta_{m}}$, with distinct indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$, we have

$$
\bigcap_{i=1}^{n} F_{\alpha_{i}} \cap \bigcap_{i=1}^{m}\left(X \backslash F_{\beta_{i}}\right) \neq \emptyset .
$$

Definition 2.2. An indexed family $\left\{A_{j}^{i}: i \in I, j \in J\right\}$ of closed subsets of a space X is called an $I \times J$ independent matrix if
(1) for all distinct $j_{0}, j_{1} \in J$ and fixed $i \in I, A_{j_{0}}^{i} \cap A_{j_{1}}^{i}=\emptyset$;
(2) for any choice of finitely many rows $T=\left\{i_{0}, i_{1}, \ldots, i_{n}\right\}$, and for any function $f: T \rightarrow J$,

$$
\bigcap\left\{A_{f(i)}^{i}: i \in T\right\} \neq \emptyset .
$$

Definition 2.3. A dyadic system in a topological space X is a family of pairs of closed sets $\left\{\left\{A_{\alpha}^{0}, A_{\alpha}^{1}\right\}: \alpha \in A\right\}$ such that
(1) $A_{\alpha}^{0} \cap A_{\alpha}^{1}=\emptyset$ for any α;
(2) for any choice of finitely many α, say $T=\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\}$ and for any function $f: T \rightarrow 2$ we have

$$
\bigcap\left\{A_{\alpha}^{f(\alpha)}: \alpha \in T\right\} \neq \emptyset
$$

It is easily seen that a dyadic system is an $I \times 2$ independent matrix. Moreover it is clear that if $\mathcal{F}=\left\{F_{\alpha}: \alpha \in A\right\}$ is an independent family
of clopen sets in a space X then the system $\left\{\left\{F_{\alpha}, X \backslash F_{\alpha}\right\}: \alpha \in A\right\}$ is dyadic. Also, if there is a dyadic system of size κ in a space X, then there is an independent family of the same size (for, if $\mathcal{D}=\left\{\left\{D_{\alpha}^{0}, D_{\alpha}^{1}\right\}\right.$: $: \alpha<\kappa\}$ is the dyadic system, both $\left\{D_{\alpha}^{0}: \alpha<\kappa\right\}$ and $\left\{D_{\alpha}^{1}: \alpha<\kappa\right\}$ are independent families of closed sets in X). Finally, if you are given an independent matrix $\left\{A_{j}^{i}: i \in I, j \in J\right\}$, fixing any two columns j_{0} and j_{1} gives the dyadic system (of size $|I|$) $\mathcal{D}=\left\{\left\{D_{i}^{0}, D_{i}^{1}\right\}: i \in I\right\}$ where $D_{i}^{0}=A_{j_{0}}^{i}$ and $D_{i}^{1}=A_{j_{1}}^{i}$. So we can state the following.
Proposition 2.1. In any topological space X
(1) if there is an $I \times J$ independent matrix, then there is also a dyadic system of size $|I|$, and an independent family of closed sets of the same size;
(2) if there is a dyadic system of size κ, then there is an independent family of size κ and also an independent matrix of size $\kappa \times 2$;
(3) if there is an independent family of clopen sets of size κ, then there is a dyadic system of the same size and also an independent matrix of size $\kappa \times 2$.

It is evident that the existence of an independent matrix with a large number of rows is stronger than the existence of a simple dyadic system or an independent family. The following result, however, allows us to produce large matrices starting from a dyadic system in a compact space.
Theorem 2.1. Let X be a compact space and suppose that there exists in X a dyadic system $\mathcal{D}=\left\{\left\{A_{\alpha}^{0}, A_{\alpha}^{1}\right\}: \alpha<\tau\right\}$. Then there is in X a $\tau \times 2^{\tau}$ independent matrix of closed sets.
Proof. Pick a family D of τ pairwise disjoint subsets of τ, each of cardinality τ. Put $D=\left\{d_{\alpha}: \alpha<\tau\right\}$. For any fixed $d_{\alpha} \in D$ consider the set ${ }^{d_{\alpha}} 2$ of the functions from d_{α} to 2 . We clearly have $\left.\right|^{d_{\alpha}} 2 \mid=2^{\tau}$, so there exists a bijection $f_{\alpha}: 2^{\tau} \rightarrow^{d_{\alpha}} 2$. Now, for any $\alpha \in \tau$ and any $\beta \in 2^{\tau}$ set

$$
B_{\beta}^{\alpha}=\bigcap_{\gamma \in d_{\alpha}} A_{\gamma}^{f_{\alpha}(\beta)(\gamma)}
$$

Note that B_{β}^{α} is a nonempty closed subset of X. Indeed pick any finite collection of elements of d_{α}, say $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$; since \mathcal{D} is a dyadic system,

$$
A_{\gamma_{1}}^{f_{\alpha}(\beta)\left(\gamma_{1}\right)} \cap A_{\gamma_{2}}^{f_{\alpha}(\beta)\left(\gamma_{2}\right)} \cap \ldots \cap A_{\gamma_{n}}^{f_{\alpha}(\beta)\left(\gamma_{n}\right)} \neq \emptyset .
$$

Since the space X is compact, B_{β}^{α} is not empty.
Let us show that the family $\left\{B_{\beta}^{\alpha}: \alpha<\tau, \beta<2^{\tau}\right\}$ is an independent matrix of closed subsets of X. Fix α and pick $\beta_{1} \neq \beta_{2}$. We must check
that $B_{\beta_{1}}^{\alpha} \cap B_{\beta_{2}}^{\alpha}=\emptyset$. Since $\beta_{1} \neq \beta_{2}$ we have $f_{\alpha}\left(\beta_{1}\right) \neq f_{\alpha}\left(\beta_{2}\right)$, so there exists a $\gamma^{\prime} \in d_{\alpha}$ such that

$$
f_{\alpha}\left(\beta_{1}\right)\left(\gamma^{\prime}\right)=\left|1-f_{\alpha}\left(\beta_{2}\right)\left(\gamma^{\prime}\right)\right|
$$

Therefore $\emptyset=A_{\gamma^{\prime}}^{0} \cap A_{\gamma^{\prime}}^{1} \supset B_{\beta_{1}}^{\alpha} \cap B_{\beta_{2}}^{\alpha}$ and the claim is proved.
Now pick any finite subset F of τ, say $F=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$, and pick any function $g: F \rightarrow 2^{\tau}$. We must check that $\bigcap_{1 \leq i \leq n} B_{g\left(\alpha_{i}\right)}^{\alpha_{i}} \neq \emptyset$. Note that $d_{\alpha_{1}}, d_{\alpha_{2}}, \ldots, d_{\alpha_{n}}$ are pairwise disjoint. Put $d=\bigcup_{1 \leq i \leq n} d_{\alpha_{i}}$ and $h=\bigcup_{1 \leq i \leq n} f_{\alpha_{i}}\left(g\left(\alpha_{i}\right)\right)$ (note that $h \in{ }^{d} 2$). We have

$$
\bigcap_{1 \leq i \leq n} B_{g\left(\alpha_{i}\right)}^{\alpha_{i}}=\bigcap_{1 \leq i \leq n} \bigcap_{\gamma \in d_{\alpha_{i}}} A_{\gamma}^{f_{\alpha_{i}}\left(g\left(\alpha_{i}\right)\right)(\gamma)}=\bigcap_{\gamma \in d} A_{\gamma}^{h(\gamma)} \neq \emptyset
$$

where the last inequality is true since \mathcal{D} is dyadic. \diamond

3. The number of disjoint closed subsets in a space

Suppose that in a space X there exists a $\kappa \times \lambda$ independent matrix $\left\{A_{\beta}^{\alpha}: \alpha<\kappa, \beta<\lambda\right\}$. Then we have at least λ closed pairwise disjoint subsets each of cardinality larger than or equal to λ. In fact, consider any row $\left\{A_{\beta}^{\alpha^{\prime}}: \beta<\lambda\right\}$, where α^{\prime} is fixed. All of its elements are pairwise disjoint. Moreover, since any fixed $A_{\beta}^{\alpha^{\prime}}$ meets all the $A_{\beta}^{\alpha^{\prime \prime}}$ for a fixed $\alpha^{\prime \prime} \neq \alpha^{\prime}$ and for all β, and these are pairwise disjoint, we have that $\left|A_{\beta}^{\alpha^{\prime}}\right| \geq \lambda$. In particular (Th. 2.1) if there is a dyadic system of size τ in a compact space X, then there is a $\tau \times 2^{\tau}$ independent matrix, so that there are at least 2^{τ} pairwise disjoint closed subsets of size larger than or equal to 2^{τ}. We state this observation in the following.
Proposition 3.1. Let X be a compact space. If there exists a dyadic system of size τ in X, then there are at least 2^{τ} pairwise disjoint closed subsets of size larger than or equal to 2^{τ}.

The following well-known fact can be helpful to find a dyadic system in a given space.
Proposition 3.2. Let X be any topological space and assume that there exists a continuous map $f: X \rightarrow I^{\tau}$ (or $f: X \rightarrow 2^{\tau}$) onto. Then there is a dyadic system of size τ in X.
Proof. Let $\mathcal{A}=\left\{\left\{A_{\alpha}^{0}, A_{\alpha}^{1}\right\}: \alpha<\tau\right\}$, where $A_{\alpha}^{i}=\left\{h \in 2^{\tau}: h(\alpha)=i\right\}$ for $i=0,1$. It is straightforward to check that \mathcal{A} is a dyadic system in 2^{τ}. Put $\mathcal{D}=\left\{\left\{f^{-1}\left(A_{\alpha}^{0}\right), f^{-1}\left(A_{\alpha}^{1}\right)\right\}: \alpha<\tau\right\}$. Since f^{-1} preserves intersections and f is onto \mathcal{D} is dyadic in $X . \diamond$

It is also possible to prove [7] that, in a compact space X, the existence of a dyadic system of size τ is equivalent to the existence of a continuous surjection $f: X \rightarrow I^{\tau}$.
Example 3.1. In the unit interval I there are \mathfrak{c} pairwise disjoint closed sets of size \boldsymbol{c}.

The existence of a countable dyadic system in I can be easily proved by using a construction similar to that one of the triadic Cantor set. Subdivide the unit interval into three equal parts and call A_{1}^{l} the left subinterval, A_{1}^{r} the right subinterval. Divide now both A_{1}^{l} and A_{1}^{r} into three equal parts. Call A_{2}^{l} the union of the left subinterval in A_{1}^{l} and the left subinterval in A_{1}^{r}. Call A_{2}^{r} the union of the right subinterval in A_{1}^{l} and the right subinterval in A_{1}^{r}. Suppose you have defined all A_{k}^{l} and A_{k}^{r} for $k<n$. Subdivide each subinterval of size $\frac{1}{3^{n-1}}$ into three equal parts. Call A_{n}^{l} the union of all the left pieces and A_{n}^{r} the union of all the right pieces. By induction over ω you get a countable family of pairs of closed sets $\mathcal{D}=\left\{\left\{A_{n}^{l}, A_{n}^{r}\right\}: n<\omega\right\}$. It is straightforward to check that \mathcal{D} is a dyadic system. By Prop. 3.1 we conclude that in I there are at least \mathfrak{c} pairwise disjoint closed subsets of size larger than or equal to \mathfrak{c}.
Example 3.2. In $\beta \omega$ and in ω^{*} there are $2^{\mathfrak{c}}$ pairwise disjoint closed subsets of size $2^{\mathfrak{c}}$. In particular there are $2^{\mathfrak{c}}$ disjoint copies of $\beta \omega$.

To apply Prop. 3.1 we need to construct a dyadic system of size \mathfrak{c} in $\beta \omega$. Since the space $2^{\mathfrak{c}}$ is separable there exists a countable dense set $D \subset 2^{c}$. Let $f: \omega \rightarrow D$ be a bijection. Let $f^{\beta}: \beta \omega \rightarrow 2^{c}$ be its Stone-Čech extension. f^{β} is onto. By Prop. 3.2 there exists in X a dyadic system of size \boldsymbol{c}. Let $\left\{K_{\alpha}: \alpha<2^{c}\right\}$ be a family of pairwise disjoint closed subsets of $\beta \omega$ of size $2^{\text {c }}$. Clearly $\left\{K_{\alpha} \cap \omega^{*}: \alpha<2^{c}\right\}$ are $2^{\text {c }}$ pairwise disjoint closed subsets of ω^{*} of size $2^{\text {c }}$.

Prop. 3.1 suggests the definition of a cardinal function that counts the number of large disjoint closed subsets of a space.
Definition 3.1. For any space X and any cardinal number κ we define $M(X, \kappa)=\sup \{|\mathcal{F}|:(F \in \mathcal{F} \Rightarrow F \subset X$ closed $|F| \geq \kappa)$

$$
(F, G \in \mathcal{F} \Rightarrow F \cap G=\emptyset)\}
$$

With this new terminology we can write the statements in Examples 3.1 and 3.2 as follows:

$$
\begin{aligned}
& M(I, \mathfrak{c})=\mathfrak{c} \\
& M\left(\beta \omega, 2^{\mathfrak{c}}\right)=2^{\mathfrak{c}}
\end{aligned}
$$

We now list some properties of $M(X, \kappa)$. We recall that $o(X)$ denotes the cardinality of the topology of the space X.

Proposition 3.3. (1) For any space X and any cardinal number κ, $M(X, \kappa) \leq|X|$ and $M(X, \kappa) \leq o(X)$.
(2) For any cardinal numbers κ and λ with $\kappa \leq \lambda, M(X, \kappa) \geq$ $\geq M(X, \lambda)$.
(3) Suppose that X is a completely regular locally compact space, and call αX its one-point compactification. Then, for any cardinal number $\kappa, M(\alpha X, \kappa) \leq M(X, \kappa)$, and the inequality can be strict.
(4) $M(X, \kappa)$ is not monotone with respect to the first parameter. However, if $A \subseteq X$ is a closed subset, then $M(A, \kappa) \leq M(X, \kappa)$ for any κ.
(5) Let $f: X \rightarrow Y$ be a continuous onto function. Then $M(X, \kappa) \geq$ $\geq M(Y, \kappa)$.
(6) Let X and Y be any spaces. Then $M(X \times Y, \kappa) \geq M(X, \kappa)$. - $M(Y, \kappa)$ and the inequality can be strict.
(7) Let $X=\prod_{\alpha<\tau} X_{\alpha}$, with $\left|X_{\alpha}\right| \geq 2$ for all $\alpha<\tau$. Then $M(X, \kappa) \geq \sup \left\{M\left(X_{\alpha}, \kappa\right): \alpha<\tau\right\}$. Moreover, if $\kappa \leq 2^{\tau}$, then we also have $M(X, \kappa) \geq 2^{\tau}$. Finally, suppose that there is an X_{β} such that $\kappa \leq\left|X_{\beta}\right|$. Then we have $M(X, \kappa) \geq \sup \left\{\left|X_{\alpha}\right|: \alpha<\tau, \alpha \neq \beta\right\}$.
Proof. To explain the claim in (3) consider $X=\omega$ with its one-point compactification $\alpha X=\omega+1$. We clearly have $M(X, \omega)=\omega$ and $M(\alpha X, \omega)=1$, since any infinite closed set of ω has ω as a limit point.

It is not difficult to obtain an example where the inequality in (6) is strict. Note that if $\kappa \leq|X|$ then $M(X \times Y, \kappa) \geq|Y|$. Take X, Y and κ such that $\kappa \leq|X|$ and $|Y|>M(X, \kappa) \cdot M(Y, \kappa)$; then $M(X \times Y, \kappa)>$ $>M(X, \kappa) \cdot M(Y, \kappa)$.

To explain the claims in (7) notice that it is possible to embed 2^{τ} into X, and in the compact space 2^{τ} there exists a dyadic system of cardinality τ (see Prop. 3.2). Hence, by Prop. 3.1 there are at least 2^{τ} disjoint compact subsets of X of size larger than or equal to 2^{τ}, or $M\left(X, 2^{\tau}\right) \geq 2^{\tau} . \diamond$

We recall that the index of a space is the cardinal function

$$
i(X)=\sup \left\{\tau: \exists f: X \rightarrow I^{\tau} \text { onto }\right\}
$$

Let X be any space. Suppose that $i(X) \geq \kappa$, then there is a continuous surjection $f: X \rightarrow I^{\kappa}$. Since, by Prop. 3.2, $M\left(I^{\kappa}, 2^{\kappa}\right)=2^{\kappa}$, by (5) in Prop. 3.3 $M\left(X, 2^{\kappa}\right) \geq 2^{\kappa}$. Therefore we can state the following: Proposition 3.4. Let X be any space. If $i(X) \geq \kappa$, then

$$
M\left(X, 2^{\kappa}\right) \geq M\left(X, 2^{i(X)}\right) \geq 2^{i(X)} \geq 2^{\kappa}
$$

It is often the case that $M(X, \kappa)=|X|$ for any $\kappa \leq|X|$. However, easy examples show that $M(X, \kappa)$ can be any number between 1 and $|X|$. For instance, for any cardinal number τ with $\operatorname{cof}(\tau) \neq \omega$ we have $M(\tau, \tau)=1$, because two unbounded closed sets of τ cannot be disjoint. Also $M(\mu, \tau)=\tau$ for any $\mu<\tau$.
Example 3.3. A space X for which $M(X, \omega)=\omega_{2}, M\left(X, \omega_{1}\right)=\omega_{1}$ and $M\left(X, \omega_{2}\right)=1$.

Let Y be a discrete space of cardinality ω_{1}. Let Z be the one-point Lindelöfization of a discrete space D of cardinality ω_{2}, i.e. $Z=D \cup\{\infty\}$ where the neighbourhoods of ∞ are all sets of the form $\{\infty\} \cup C$, with $D \backslash C$ countable. The disjoint union $X=Y \cup Z$ is the desired space.

References

[1] EFIMOV, B. A.: Extremally disconnected compact spaces and absolutes, Trans. Moscow Math. Soc. 23 (1970), 243-285.
[2] FICHTENHOLZ, G. and KANTOROVITCH, L.: Sur les operations linéaires dans l'espace des fonctions bornées, Studia Math. 5 (1934), 69-98.
[3] HODEL, R. E.: Ultrafilters, independent collections, and applications to topology, Topology Appl. 28 (1988), 181-193.
[4] KUNEN, K.: Ultrafilters and independent sets, Trans. Amer. Math. Soc. bf 172 (1972), 299-306.
[5] KUNEN, K.: Weak P-points in N^{*}, in: Topology (Proc. Fourth Colloq., Budapest, 1978), Vol II, 741-749, Colloq. Math. Soc. János Bolyai 23, 1980.
[6] VAN MILL, J.: An introduction to $\beta \omega$, in: Handbook of Set-Theoretic Topology, 503-567, North Holland, 1984.
[7] ŠAPIROVSKIĬ, B. D.: Maps onto Tikhonov cubes, Russian Math. Surveys 35:3 (1980), 145-156.

[^0]: E-mail address: obersnel@units.it

