Mathematica Pannonica 19/1 (2008), 99–105

INDEPENDENT-TYPE STRUCTURES AND THE NUMBER OF CLOSED SUB-SETS OF A SPACE

Franco Obersnel

Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, via A. Valerio 12/1, I-34127 Trieste, Italia

Received: March 2008

MSC 2000: 54 A 25

Keywords: Independent families, dyadic systems, cardinal functions.

Abstract: Three different notions of an independent family of sets are considered, and it is shown that they are all equivalent under certain conditions. In particular it is proved that in a compact space X in which there is a dyadic system of size τ there exists also an independent matrix of closed subsets of size $\tau \times 2^{\tau}$. The cardinal function $M(X,\kappa)$ counting the number of disjoint closed subsets of size larger than or equal to κ is introduced and some of its basic properties are studied.

1. Introduction

The notion of an independent family of sets is a well known tool from set theoretic combinatorics, already used in topology by Hausdorff and even before ([2]). To approach different kinds of problems, different notions of set independence have been defined. In [3], [4], [5] for instance, the idea of an independent collection of subsets of a set is used. In [6] the notion of an independent matrix is used (for example) to show that in ω^* there exists an *R*-point. In [1] the notion of a dyadic system is introduced and a strong use of this (generalized) concept is made in [7] to

E-mail address: obersnel@units.it

give a characterization of the spaces that can be mapped onto a Tykhonov cube.

Meeting these notions in so different contexts, it is natural to ask if these structures might have something in common. In Sec. 2 we establish that they are all equivalent under certain conditions.

As the existence of a dyadic system, an independent matrix or an independent family of closed sets implies the existence of many disjoint closed sets in a topological space X, these notions can be used to count the cardinalities of families of pairwise disjoint closed sets of a given cardinality. In Sec. 3 we introduce the cardinal function $M(X, \kappa)$, counting the number of the disjoint closed subsets of cardinality κ of a space X, and study some of its basic properties.

2. Independent families, independent matrices, dyadic systems

Definition 2.1. An independent family of subsets of a set X is a family $\mathcal{F} = \{F_{\alpha} : \alpha \in A\}$ such that, for any finite collection of elements $F_{\alpha_1}, F_{\alpha_2}, ..., F_{\alpha_n}$ and $F_{\beta_1}, F_{\beta_2}, ..., F_{\beta_m}$, with distinct indices $\alpha_1, \alpha_2, ..., \alpha_n$, $\beta_1, \beta_2, ..., \beta_m$, we have

$$\bigcap_{i=1}^{n} F_{\alpha_{i}} \cap \bigcap_{i=1}^{m} (X \setminus F_{\beta_{i}}) \neq \emptyset.$$

Definition 2.2. An indexed family $\{A_j^i : i \in I, j \in J\}$ of closed subsets of a space X is called an $I \times J$ independent matrix if

(1) for all distinct $j_0, j_1 \in J$ and fixed $i \in I$, $A_{j_0}^i \cap A_{j_1}^i = \emptyset$;

(2) for any choice of finitely many rows $T = \{i_0, i_1, \ldots, i_n\}$, and for any function $f: T \to J$,

$$\bigcap \{A_{f(i)}^i : i \in T\} \neq \emptyset.$$

Definition 2.3. A dyadic system in a topological space X is a family of pairs of closed sets $\{\{A^0_{\alpha}, A^1_{\alpha}\} : \alpha \in A\}$ such that

(1) $A^0_{\alpha} \cap A^1_{\alpha} = \emptyset$ for any α ;

(2) for any choice of finitely many α , say $T = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and for any function $f: T \to 2$ we have

$$\bigcap \{A_{\alpha}^{f(\alpha)} : \alpha \in T\} \neq \emptyset.$$

It is easily seen that a dyadic system is an $I \times 2$ independent matrix. Moreover it is clear that if $\mathcal{F} = \{F_{\alpha} : \alpha \in A\}$ is an independent family

100

of clopen sets in a space X then the system $\{\{F_{\alpha}, X \setminus F_{\alpha}\} : \alpha \in A\}$ is dyadic. Also, if there is a dyadic system of size κ in a space X, then there is an independent family of the same size (for, if $\mathcal{D} = \{\{D_{\alpha}^{0}, D_{\alpha}^{1}\} : \alpha < \kappa\}$ is the dyadic system, both $\{D_{\alpha}^{0} : \alpha < \kappa\}$ and $\{D_{\alpha}^{1} : \alpha < \kappa\}$ are independent families of closed sets in X). Finally, if you are given an independent matrix $\{A_{j}^{i} : i \in I, j \in J\}$, fixing any two columns j_{0} and j_{1} gives the dyadic system (of size |I|) $\mathcal{D} = \{\{D_{i}^{0}, D_{i}^{1}\} : i \in I\}$ where $D_{i}^{0} = A_{j_{0}}^{i}$ and $D_{i}^{1} = A_{j_{1}}^{i}$. So we can state the following. **Proposition 2.1.** In any topological space X

(1) if there is an $I \times J$ independent matrix, then there is also a

(1) if there is an $I \times J$ independent matrix, then there is also a dyadic system of size |I|, and an independent family of closed sets of the same size;

(2) if there is a dyadic system of size κ , then there is an independent family of size κ and also an independent matrix of size $\kappa \times 2$;

(3) if there is an independent family of clopen sets of size κ , then there is a dyadic system of the same size and also an independent matrix of size $\kappa \times 2$.

It is evident that the existence of an independent matrix with a large number of rows is stronger than the existence of a simple dyadic system or an independent family. The following result, however, allows us to produce large matrices starting from a dyadic system in a compact space.

Theorem 2.1. Let X be a compact space and suppose that there exists in X a dyadic system $\mathcal{D} = \{\{A^0_\alpha, A^1_\alpha\} : \alpha < \tau\}$. Then there is in X a $\tau \times 2^{\tau}$ independent matrix of closed sets.

Proof. Pick a family D of τ pairwise disjoint subsets of τ , each of cardinality τ . Put $D = \{d_{\alpha} : \alpha < \tau\}$. For any fixed $d_{\alpha} \in D$ consider the set ${}^{d_{\alpha}2}$ of the functions from d_{α} to 2. We clearly have $|{}^{d_{\alpha}2}| = 2^{\tau}$, so there exists a bijection $f_{\alpha} : 2^{\tau} \to {}^{d_{\alpha}2}$. Now, for any $\alpha \in \tau$ and any $\beta \in 2^{\tau}$ set $B_{\beta}^{\alpha} = \bigcap A_{\gamma}^{f_{\alpha}(\beta)(\gamma)}$.

$$B^{\alpha}_{\beta} = \bigcap_{\gamma \in d_{\alpha}} A^{f_{\alpha}(\beta)}_{\gamma}$$

Note that B^{α}_{β} is a nonempty closed subset of X. Indeed pick any finite collection of elements of d_{α} , say $\gamma_1, \gamma_2, \ldots, \gamma_n$; since \mathcal{D} is a dyadic system, $A^{f_{\alpha}(\beta)(\gamma_1)}_{\gamma_1} \cap A^{f_{\alpha}(\beta)(\gamma_2)}_{\gamma_2} \cap \ldots \cap A^{f_{\alpha}(\beta)(\gamma_n)}_{\gamma_n} \neq \emptyset.$

Since the space X is compact, B^{α}_{β} is not empty.

Let us show that the family $\{B^{\alpha}_{\beta} : \alpha < \tau, \beta < 2^{\tau}\}$ is an independent matrix of closed subsets of X. Fix α and pick $\beta_1 \neq \beta_2$. We must check

F. Obersnel

that $B^{\alpha}_{\beta_1} \cap B^{\alpha}_{\beta_2} = \emptyset$. Since $\beta_1 \neq \beta_2$ we have $f_{\alpha}(\beta_1) \neq f_{\alpha}(\beta_2)$, so there exists a $\gamma' \in d_{\alpha}$ such that

$$f_{\alpha}(\beta_1)(\gamma') = |1 - f_{\alpha}(\beta_2)(\gamma')|.$$

Therefore $\emptyset = A^0_{\gamma'} \cap A^1_{\gamma'} \supset B^{\alpha}_{\beta_1} \cap B^{\alpha}_{\beta_2}$ and the claim is proved.

Now pick any finite subset F of τ , say $F = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$, and pick any function $g: F \to 2^{\tau}$. We must check that $\bigcap_{1 \leq i \leq n} B_{g(\alpha_i)}^{\alpha_i} \neq \emptyset$. Note that $d_{\alpha_1}, d_{\alpha_2}, \ldots, d_{\alpha_n}$ are pairwise disjoint. Put $d = \bigcup_{1 \leq i \leq n} d_{\alpha_i}$ and $h = \bigcup_{1 \leq i \leq n} f_{\alpha_i}(g(\alpha_i))$ (note that $h \in {}^d 2$). We have

$$\bigcap_{\leq i \leq n} B_{g(\alpha_i)}^{\alpha_i} = \bigcap_{1 \leq i \leq n} \bigcap_{\gamma \in d_{\alpha_i}} A_{\gamma}^{f_{\alpha_i}(g(\alpha_i))(\gamma)} = \bigcap_{\gamma \in d} A_{\gamma}^{h(\gamma)} \neq \emptyset,$$

where the last inequality is true since \mathcal{D} is dyadic. \Diamond

3. The number of disjoint closed subsets in a space

Suppose that in a space X there exists a $\kappa \times \lambda$ independent matrix $\{A^{\alpha}_{\beta} : \alpha < \kappa, \beta < \lambda\}$. Then we have at least λ closed pairwise disjoint subsets each of cardinality larger than or equal to λ . In fact, consider any row $\{A^{\alpha'}_{\beta} : \beta < \lambda\}$, where α' is fixed. All of its elements are pairwise disjoint. Moreover, since any fixed $A^{\alpha'}_{\beta}$ meets all the $A^{\alpha''}_{\beta}$ for a fixed $\alpha'' \neq \alpha'$ and for all β , and these are pairwise disjoint, we have that $|A^{\alpha'}_{\beta}| \geq \lambda$. In particular (Th. 2.1) if there is a dyadic system of size τ in a compact space X, then there is a $\tau \times 2^{\tau}$ independent matrix, so that there are at least 2^{τ} pairwise disjoint closed subsets of size larger than or equal to 2^{τ} . We state this observation in the following.

Proposition 3.1. Let X be a compact space. If there exists a dyadic system of size τ in X, then there are at least 2^{τ} pairwise disjoint closed subsets of size larger than or equal to 2^{τ} .

The following well-known fact can be helpful to find a dyadic system in a given space.

Proposition 3.2. Let X be any topological space and assume that there exists a continuous map $f: X \to I^{\tau}$ (or $f: X \to 2^{\tau}$) onto. Then there is a dyadic system of size τ in X.

Proof. Let $\mathcal{A} = \{\{A^0_{\alpha}, A^1_{\alpha}\} : \alpha < \tau\}$, where $A^i_{\alpha} = \{h \in 2^{\tau} : h(\alpha) = i\}$ for i = 0, 1. It is straightforward to check that \mathcal{A} is a dyadic system in 2^{τ} . Put $\mathcal{D} = \{\{f^{-1}(A^0_{\alpha}), f^{-1}(A^1_{\alpha})\} : \alpha < \tau\}$. Since f^{-1} preserves intersections and f is onto \mathcal{D} is dyadic in X. \diamond

102

1

It is also possible to prove [7] that, in a compact space X, the existence of a dyadic system of size τ is equivalent to the existence of a continuous surjection $f: X \to I^{\tau}$.

Example 3.1. In the unit interval I there are \mathfrak{c} pairwise disjoint closed sets of size \mathfrak{c} .

The existence of a countable dyadic system in I can be easily proved by using a construction similar to that one of the triadic Cantor set. Subdivide the unit interval into three equal parts and call A_1^l the left subinterval, A_1^r the right subinterval. Divide now both A_1^l and A_1^r into three equal parts. Call A_2^l the union of the left subinterval in A_1^l and the left subinterval in A_1^r . Call A_2^r the union of the right subinterval in A_1^l and the right subinterval in A_1^r . Suppose you have defined all A_k^l and A_k^r for k < n. Subdivide each subinterval of size $\frac{1}{3^{n-1}}$ into three equal parts. Call A_n^l the union of all the left pieces and A_n^r the union of all the right pieces. By induction over ω you get a countable family of pairs of closed sets $\mathcal{D} = \{\{A_n^l, A_n^r\} : n < \omega\}$. It is straightforward to check that \mathcal{D} is a dyadic system. By Prop. 3.1 we conclude that in I there are at least \mathfrak{c} pairwise disjoint closed subsets of size larger than or equal to \mathfrak{c} .

Example 3.2. In $\beta\omega$ and in ω^* there are 2^c pairwise disjoint closed subsets of size 2^c. In particular there are 2^c disjoint copies of $\beta\omega$.

To apply Prop. 3.1 we need to construct a dyadic system of size \mathfrak{c} in $\beta\omega$. Since the space $2^{\mathfrak{c}}$ is separable there exists a countable dense set $D \subset 2^c$. Let $f : \omega \to D$ be a bijection. Let $f^{\beta} : \beta\omega \to 2^c$ be its Stone–Čech extension. f^{β} is onto. By Prop. 3.2 there exists in X a dyadic system of size \mathfrak{c} . Let $\{K_{\alpha} : \alpha < 2^c\}$ be a family of pairwise disjoint closed subsets of $\beta\omega$ of size $2^{\mathfrak{c}}$. Clearly $\{K_{\alpha} \cap \omega^* : \alpha < 2^c\}$ are $2^{\mathfrak{c}}$ pairwise disjoint closed subsets of ω^* of size $2^{\mathfrak{c}}$.

Prop. 3.1 suggests the definition of a cardinal function that counts the number of large disjoint closed subsets of a space.

Definition 3.1. For any space X and any cardinal number κ we define $M(X, \kappa) = \sup\{|\mathcal{F}| : (F \in \mathcal{F} \Rightarrow F \subset X \text{ closed } |F| \ge \kappa)$

$$(F, G \in \mathcal{F} \Rightarrow F \cap G = \emptyset) \big\}.$$

With this new terminology we can write the statements in Examples 3.1 and 3.2 as follows:

$$M(I, \mathfrak{c}) = \mathfrak{c}.$$

 $M(\beta\omega, 2^{\mathfrak{c}}) = 2^{\mathfrak{c}}.$

We now list some properties of $M(X, \kappa)$. We recall that o(X) denotes the cardinality of the topology of the space X.

F. Obersnel

Proposition 3.3. (1) For any space X and any cardinal number κ , $M(X, \kappa) \leq |X|$ and $M(X, \kappa) \leq o(X)$.

(2) For any cardinal numbers κ and λ with $\kappa \leq \lambda$, $M(X, \kappa) \geq M(X, \lambda)$.

(3) Suppose that X is a completely regular locally compact space, and call αX its one-point compactification. Then, for any cardinal number κ , $M(\alpha X, \kappa) \leq M(X, \kappa)$, and the inequality can be strict.

(4) $M(X,\kappa)$ is not monotone with respect to the first parameter. However, if $A \subseteq X$ is a closed subset, then $M(A,\kappa) \leq M(X,\kappa)$ for any κ .

(5) Let $f: X \to Y$ be a continuous onto function. Then $M(X, \kappa) \ge M(Y, \kappa)$.

(6) Let X and Y be any spaces. Then $M(X \times Y, \kappa) \ge M(X, \kappa) \cdot M(Y, \kappa)$ and the inequality can be strict.

(7) Let $X = \prod_{\alpha < \tau} X_{\alpha}$, with $|X_{\alpha}| \geq 2$ for all $\alpha < \tau$. Then $M(X, \kappa) \geq \sup\{M(X_{\alpha}, \kappa) : \alpha < \tau\}$. Moreover, if $\kappa \leq 2^{\tau}$, then we also have $M(X, \kappa) \geq 2^{\tau}$. Finally, suppose that there is an X_{β} such that $\kappa \leq |X_{\beta}|$. Then we have $M(X, \kappa) \geq \sup\{|X_{\alpha}| : \alpha < \tau, \alpha \neq \beta\}$.

Proof. To explain the claim in (3) consider $X = \omega$ with its one-point compactification $\alpha X = \omega + 1$. We clearly have $M(X, \omega) = \omega$ and $M(\alpha X, \omega) = 1$, since any infinite closed set of ω has ω as a limit point.

It is not difficult to obtain an example where the inequality in (6) is strict. Note that if $\kappa \leq |X|$ then $M(X \times Y, \kappa) \geq |Y|$. Take X, Y and κ such that $\kappa \leq |X|$ and $|Y| > M(X, \kappa) \cdot M(Y, \kappa)$; then $M(X \times Y, \kappa) > M(X, \kappa) \cdot M(Y, \kappa)$.

To explain the claims in (7) notice that it is possible to embed 2^{τ} into X, and in the compact space 2^{τ} there exists a dyadic system of cardinality τ (see Prop. 3.2). Hence, by Prop. 3.1 there are at least 2^{τ} disjoint compact subsets of X of size larger than or equal to 2^{τ} , or $M(X, 2^{\tau}) \geq 2^{\tau}$.

We recall that the index of a space is the cardinal function $i(X) = \sup\{\tau : \exists f : X \to I^{\tau} \text{onto}\}.$

Let X be any space. Suppose that $i(X) \ge \kappa$, then there is a continuous surjection $f: X \to I^{\kappa}$. Since, by Prop. 3.2, $M(I^{\kappa}, 2^{\kappa}) = 2^{\kappa}$, by (5) in Prop. 3.3 $M(X, 2^{\kappa}) \ge 2^{\kappa}$. Therefore we can state the following: **Proposition 3.4.** Let X be any space. If $i(X) \ge \kappa$, then

$$M(X, 2^{\kappa}) \ge M(X, 2^{i(X)}) \ge 2^{i(X)} \ge 2^{\kappa}.$$

104

It is often the case that $M(X, \kappa) = |X|$ for any $\kappa \leq |X|$. However, easy examples show that $M(X, \kappa)$ can be any number between 1 and |X|. For instance, for any cardinal number τ with $\operatorname{cof}(\tau) \neq \omega$ we have $M(\tau, \tau) = 1$, because two unbounded closed sets of τ cannot be disjoint. Also $M(\mu, \tau) = \tau$ for any $\mu < \tau$.

Example 3.3. A space X for which $M(X, \omega) = \omega_2$, $M(X, \omega_1) = \omega_1$ and $M(X, \omega_2) = 1$.

Let Y be a discrete space of cardinality ω_1 . Let Z be the one-point Lindelöfization of a discrete space D of cardinality ω_2 , i.e. $Z = D \cup \{\infty\}$ where the neighbourhoods of ∞ are all sets of the form $\{\infty\} \cup C$, with $D \setminus C$ countable. The disjoint union $X = Y \cup Z$ is the desired space.

References

- EFIMOV, B. A.: Extremally disconnected compact spaces and absolutes, *Trans. Moscow Math. Soc.* 23 (1970), 243–285.
- [2] FICHTENHOLZ, G. and KANTOROVITCH, L.: Sur les operations linéaires dans l'espace des fonctions bornées, *Studia Math.* 5 (1934), 69–98.
- [3] HODEL, R. E.: Ultrafilters, independent collections, and applications to topology, *Topology Appl.* 28 (1988), 181–193.
- [4] KUNEN, K.: Ultrafilters and independent sets, Trans. Amer. Math. Soc. bf 172 (1972), 299–306.
- [5] KUNEN, K.: Weak P-points in N^{*}, in: Topology (Proc. Fourth Colloq., Budapest, 1978), Vol II, 741–749, Colloq. Math. Soc. János Bolyai 23, 1980.
- [6] VAN MILL, J.: An introduction to $\beta \omega$, in: Handbook of Set-Theoretic Topology, 503–567, North Holland, 1984.
- [7] SAPIROVSKII, B. D.: Maps onto Tikhonov cubes, *Russian Math. Surveys* 35:3 (1980), 145–156.