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Abstract: Three different notions of an independent family of sets are con-
sidered, and it is shown that they are all equivalent under certain conditions.
In particular it is proved that in a compact space X in which there is a dyadic
system of size 7 there exists also an independent matrix of closed subsets of
size T x 27. The cardinal function M (X, k) counting the number of disjoint
closed subsets of size larger than or equal to x is introduced and some of its
basic properties are studied.

1. Introduction

The notion of an independent family of sets is a well known tool
from set theoretic combinatorics, already used in topology by Hausdorff
and even before ([2]). To approach different kinds of problems, different
notions of set independence have been defined. In [3], [4], [5] for instance,
the idea of an independent collection of subsets of a set is used. In [6]
the notion of an independent matrix is used (for example) to show that
in w* there exists an R-point. In [1] the notion of a dyadic system is
introduced and a strong use of this (generalized) concept is made in [7] to
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give a characterization of the spaces that can be mapped onto a Tykhonov
cube.

Meeting these notions in so different contexts, it is natural to ask if
these structures might have something in common. In Sec. 2 we establish
that they are all equivalent under certain conditions.

As the existence of a dyadic system, an independent matrix or an
independent family of closed sets implies the existence of many disjoint
closed sets in a topological space X, these notions can be used to count
the cardinalities of families of pairwise disjoint closed sets of a given car-
dinality. In Sec. 3 we introduce the cardinal function M (X, k), counting
the number of the disjoint closed subsets of cardinality s of a space X,
and study some of its basic properties.

2. Independent families, independent matrices,
dyadic systems

Definition 2.1. An independent family of subsets of a set X is a fam-
ily F = {F, : @ € A} such that, for any finite collection of elements
Fo , Fo,,.... Iy, and Fg,, Fg,, ..., F, , with distinct indices oy, o, ..., o,
0G1, B2y ..., Bm, We have

ﬂFaiﬂﬂ(X\ng)#w
=1 i=1

Definition 2.2. An indexed family {A%:i € I,j € J} of closed subsets
of a space X is called an I x J independent matrix if

(1) for all distinct jo, j1 € J and fixed i € I, A} N A% = 0;
(2) for any choice of finitely many rows T = {ig, i1, ...,,}, and for

any function f : T — J,
Definition 2.3. A dyadic system in a topological space X is a family of
pairs of closed sets {{A% AL} : « € A} such that

(1) AY N AL =0 for any «;

(2) for any choice of finitely many «, say T' = {1, ag,...a,} and
for any function f : T — 2 we have

ﬂ{A{;(o‘) caeT} #0.

It is easily seen that a dyadic system is an I x 2 independent matrix.
Moreover it is clear that if F = {F, : o € A} is an independent family
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of clopen sets in a space X then the system {{F,, X \ F,} : « € A} is
dyadic. Also, if there is a dyadic system of size x in a space X, then
there is an independent family of the same size (for, if D = {{DY, D!} :
@ < Kk} is the dyadic system, both {D? : o < k} and {D} : a < k}
are independent families of closed sets in X'). Finally, if you are given an
independent matrix {A% : i € I,j € J}, fixing any two columns j, and
J1 gives the dyadic system (of size |I|) D = {{D?,D}} : i € I} where
DY = A and Dj = A’ . So we can state the following.

Proposition 2.1. In any topological space X

(1) if there is an I x J independent matriz, then there is also a
dyadic system of size |I|, and an independent family of closed sets of the
same Size;

(2) if there is a dyadic system of size k, then there is an independent
family of size k and also an independent matriz of size k X 2;

(3) if there is an independent family of clopen sets of size k, then
there is a dyadic system of the same size and also an independent matriz
of size k X 2.

It is evident that the existence of an independent matrix with a
large number of rows is stronger than the existence of a simple dyadic
system or an independent family. The following result, however, allows
us to produce large matrices starting from a dyadic system in a compact
space.

Theorem 2.1. Let X be a compact space and suppose that there exists
in X a dyadic system D = {{A% AL} : a < 7}. Then there is in X a

T X 27 independent matriz of closed sets.

Proof. Pick a family D of 7 pairwise disjoint subsets of 7, each of
cardinality 7. Put D = {d,, : « < 7}. For any fixed d, € D consider the
set %2 of the functions from d, to 2. We clearly have |%2| = 27, so there

exists a bijection f, : 27 — %2, Now, for any a € 7 and any 3 € 27 set
[0 (B
B = ﬂ Af, B

YEda
Note that Bj is a nonempty closed subset of X. Indeed pick any finite
collection of elements of d,, say v1, 72, - - -, Vn; since D is a dyadic system,

fa(B)(n) A Afa(8)(2) fa(B)(n)
Al Azl ey oy AT £ ),

Since the space X is compact, Bj is not empty.
Let us show that the family { B§ : « < 7,8 < 27} is an independent
matrix of closed subsets of X. Fix a and pick 51 # (2. We must check
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that B N Bg, = 0. Since B # (> we have fo(B1) # fo(B2), so there
exists a v/ € d, such that
fa(B)(Y) =1 = fa(B2)(Y)].
Therefore () = Ag, N A,ly, D Bj N Bg, and the claim is proved.
Now pick any finite subset F' of 7, say F' = {1, as,...,a,}, and
pick any function g : ' — 27. We must check that (,,., By, # 0.
Note that dq,, da,, - - ., da, are pairwise disjoint. Put d = J,,,, da, and
h = <je, Ja;(g(c;)) (note that h € 92). We have
N Biiay = 1 () Ar = arm 20,
1<i<n 1<i<n y€dq, vyed

where the last inequality is true since D is dyadic. ¢

3. The number of disjoint closed subsets in a space

Suppose that in a space X there exists a k X A independent matrix
{AG 1 a <k, < A}. Then we have at least A closed pairwise disjoint
subsets each of cardinality larger than or equal to A. In fact, consider any
row {Ag/ : <A}, where o is fixed. All of its elements are pairwise dis-
joint. Moreover, since any fixed Ag' meets all the A%N for a fixed o # o/
and for all 3, and these are pairwise disjoint, we have that |Ag/| > A\
In particular (Th. 2.1) if there is a dyadic system of size T in a compact
space X, then there is a 7 X 27 independent matrix, so that there are at
least 27 pairwise disjoint closed subsets of size larger than or equal to 27.
We state this observation in the following.
Proposition 3.1. Let X be a compact space. If there exists a dyadic
system of size T in X, then there are at least 27 pairwise disjoint closed
subsets of size larger than or equal to 27.

The following well-known fact can be helpful to find a dyadic system
in a given space.
Proposition 3.2. Let X be any topological space and assume that there
exists a continuous map f : X — I™ (or f: X — 27) onto. Then there
is a dyadic system of size T in X.
Proof. Let A = {{A% Al}:a < 7}, where A', = {h € 27 : h(a) = i}
for « = 0,1. It is straightforward to check that A is a dyadic system
in 27. Put D = {{f71(A%), f71(A))} : @ < 7}. Since f~! preserves
intersections and f is onto D is dyadic in X. ¢
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It is also possible to prove [7] that, in a compact space X, the
existence of a dyadic system of size 7 is equivalent to the existence of a
continuous surjection f: X — 7.

Example 3.1. In the unit interval I there are ¢ pairwise disjoint closed
sets of size c.

The existence of a countable dyadic system in I can be easily proved
by using a construction similar to that one of the triadic Cantor set.
Subdivide the unit interval into three equal parts and call A! the left
subinterval, A} the right subinterval. Divide now both A} and Aj into
three equal parts. Call AL the union of the left subinterval in A} and the
left subinterval in A7. Call A% the union of the right subinterval in A
and the right subinterval in A7. Suppose you have defined all A and A7,
for k < n. Subdivide each subinterval of size 3%1 into three equal parts.
Call A!, the union of all the left pieces and A" the union of all the right
pieces. By induction over w you get a countable family of pairs of closed
sets D = {{Al A"} : n < w}. It is straightforward to check that D is a
dyadic system. By Prop. 3.1 we conclude that in I there are at least ¢
pairwise disjoint closed subsets of size larger than or equal to c.
Example 3.2. In fw and in w* there are 2¢ pairwise disjoint closed
subsets of size 2°. In particular there are 2¢ disjoint copies of Sw.

To apply Prop. 3.1 we need to construct a dyadic system of size
¢ in fw. Since the space 2° is separable there exists a countable dense
set D C 2°. Let f : w — D be a bijection. Let f? : fw — 2¢ be
its Stone-Cech extension. f? is onto. By Prop. 3.2 there exists in X
a dyadic system of size ¢. Let {K, : @ < 2°} be a family of pairwise
disjoint closed subsets of fw of size 2°. Clearly {K, Nw* : a < 2} are 2°
pairwise disjoint closed subsets of w* of size 2°.

Prop. 3.1 suggests the definition of a cardinal function that counts
the number of large disjoint closed subsets of a space.

Definition 3.1. For any space X and any cardinal number x we define
M(X, k) =sup{|F|: (F € F= F C X closed |F| > k)

(F,GG}":>FHG:®)}.
With this new terminology we can write the statements in Examples
3.1 and 3.2 as follows:
M(I,¢c)=rc.
M (fw,2°) = 2°.
We now list some properties of M (X, ). We recall that o(X) de-
notes the cardinality of the topology of the space X.
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Proposition 3.3. (1) For any space X and any cardinal number k,
M(X, k) < |X| and M(X,k) < o(X).

(2) For any cardinal numbers k and A with K < X\, M(X,k) >
> M(X,\).

(3) Suppose that X is a completely reqular locally compact space,
and call a X its one-point compactification. Then, for any cardinal num-
ber k, M(aX, k) < M(X, k), and the inequality can be strict.

(4) M(X, k) is not monotone with respect to the first parameter.
However, if A C X s a closed subset, then M(A, k) < M(X,k) for
any K.

(5) Let f : X — Y be a continuous onto function. Then M(X, k) >
> M(Y, k).

(6) Let X and Y be any spaces. Then M(X x Y,k) > M(X,k) -
- M(Y, k) and the inequality can be strict.

(7) Let X = [[,., Xa, with |Xo| > 2 for all o« < 7. Then
M(X,k) > sup{M(X,, k) : a < 7}. Moreover, if K < 27, then we
also have M(X, k) > 27. Finally, suppose that there is an Xg such that
k < |Xgs|. Then we have M(X, k) > sup{|X,|: o < 7,0 # B}.

Proof. To explain the claim in (3) consider X = w with its one-point
compactification aX = w + 1. We clearly have M(X,w) = w and
M (aX,w) =1, since any infinite closed set of w has w as a limit point.

It is not difficult to obtain an example where the inequality in (6)
is strict. Note that if x < |X| then M(X x Y, k) > |Y]. Take X, Y and
k such that k < |X| and |Y| > M(X, k) - M(Y,k); then M(X XY, k) >
> M(X, k) - M(Y,K).

To explain the claims in (7) notice that it is possible to embed
27 into X, and in the compact space 27 there exists a dyadic system
of cardinality 7 (see Prop. 3.2). Hence, by Prop. 3.1 there are at least
2™ disjoint compact subsets of X of size larger than or equal to 27, or
M(X,27)>2". ¢

We recall that the index of a space is the cardinal function

i(X) =sup{r:3f : X — I["onto}.

Let X be any space. Suppose that i(X) > k, then there is a
continuous surjection f : X — I". Since, by Prop. 3.2, M(I*,2"%) = 2"
by (5) in Prop. 3.3 M (X, 2") > 2*. Therefore we can state the following:
Proposition 3.4. Let X be any space. If i(X) > kK, then

M(X,2%) > M(X,2/) > 2/X) > o
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It is often the case that M (X, k) = | X| for any x < |X|. However,
easy examples show that M (X, k) can be any number between 1 and
|X|. For instance, for any cardinal number 7 with cof(7)# w we have
M (7,7) = 1, because two unbounded closed sets of 7 cannot be disjoint.
Also M (p, 1) =7 for any p < 7.

Example 3.3. A space X for which M (X,w) = ws, M(X,w;) = w; and
M(X, (UQ) = 1.

Let Y be a discrete space of cardinality w;. Let Z be the one-point
Lindeltfization of a discrete space D of cardinality wo, i.e. Z = DU{oc0}
where the neighbourhoods of oo are all sets of the form {oco} U C, with
D\ C countable. The disjoint union X =Y U Z is the desired space.
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