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Abstract: Three different notions of an independent family of sets are con-
sidered, and it is shown that they are all equivalent under certain conditions.
In particular it is proved that in a compact space X in which there is a dyadic
system of size τ there exists also an independent matrix of closed subsets of
size τ × 2τ . The cardinal function M(X, κ) counting the number of disjoint
closed subsets of size larger than or equal to κ is introduced and some of its
basic properties are studied.

1. Introduction

The notion of an independent family of sets is a well known tool
from set theoretic combinatorics, already used in topology by Hausdorff
and even before ([2]). To approach different kinds of problems, different
notions of set independence have been defined. In [3], [4], [5] for instance,
the idea of an independent collection of subsets of a set is used. In [6]
the notion of an independent matrix is used (for example) to show that
in ω∗ there exists an R-point. In [1] the notion of a dyadic system is
introduced and a strong use of this (generalized) concept is made in [7] to
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give a characterization of the spaces that can be mapped onto a Tykhonov
cube.

Meeting these notions in so different contexts, it is natural to ask if
these structures might have something in common. In Sec. 2 we establish
that they are all equivalent under certain conditions.

As the existence of a dyadic system, an independent matrix or an
independent family of closed sets implies the existence of many disjoint
closed sets in a topological space X, these notions can be used to count
the cardinalities of families of pairwise disjoint closed sets of a given car-
dinality. In Sec. 3 we introduce the cardinal function M(X, κ), counting
the number of the disjoint closed subsets of cardinality κ of a space X,
and study some of its basic properties.

2. Independent families, independent matrices,

dyadic systems

Definition 2.1. An independent family of subsets of a set X is a fam-
ily F = {Fα : α ∈ A} such that, for any finite collection of elements
Fα1

, Fα2
, ..., Fαn

and Fβ1
, Fβ2

, ..., Fβm
, with distinct indices α1, α2, ..., αn,

β1, β2, . . . , βm, we have
n

⋂

i=1

Fαi
∩

m
⋂

i=1

(X \ Fβi
) 6= ∅.

Definition 2.2. An indexed family {Ai
j : i ∈ I, j ∈ J} of closed subsets

of a space X is called an I × J independent matrix if
(1) for all distinct j0, j1 ∈ J and fixed i ∈ I, Ai

j0
∩ Ai

j1
= ∅;

(2) for any choice of finitely many rows T = {i0, i1, . . . , in}, and for
any function f : T → J ,

⋂

{Ai
f(i) : i ∈ T} 6= ∅.

Definition 2.3. A dyadic system in a topological space X is a family of
pairs of closed sets {{A0

α, A1
α} : α ∈ A} such that

(1) A0
α ∩ A1

α = ∅ for any α;
(2) for any choice of finitely many α, say T = {α1, α2, . . . αn} and

for any function f : T → 2 we have
⋂

{Af(α)
α : α ∈ T} 6= ∅.

It is easily seen that a dyadic system is an I×2 independent matrix.
Moreover it is clear that if F = {Fα : α ∈ A} is an independent family
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of clopen sets in a space X then the system {{Fα, X \ Fα} : α ∈ A} is
dyadic. Also, if there is a dyadic system of size κ in a space X, then
there is an independent family of the same size (for, if D = {{D0

α, D1
α} :

: α < κ} is the dyadic system, both {D0
α : α < κ} and {D1

α : α < κ}
are independent families of closed sets in X). Finally, if you are given an
independent matrix {Ai

j : i ∈ I, j ∈ J}, fixing any two columns j0 and
j1 gives the dyadic system (of size |I|) D = {{D0

i , D
1
i } : i ∈ I} where

D0
i = Ai

j0
and D1

i = Ai
j1

. So we can state the following.

Proposition 2.1. In any topological space X

(1) if there is an I × J independent matrix, then there is also a
dyadic system of size |I|, and an independent family of closed sets of the
same size;

(2) if there is a dyadic system of size κ, then there is an independent
family of size κ and also an independent matrix of size κ × 2;

(3) if there is an independent family of clopen sets of size κ, then
there is a dyadic system of the same size and also an independent matrix
of size κ × 2.

It is evident that the existence of an independent matrix with a
large number of rows is stronger than the existence of a simple dyadic
system or an independent family. The following result, however, allows
us to produce large matrices starting from a dyadic system in a compact
space.
Theorem 2.1. Let X be a compact space and suppose that there exists
in X a dyadic system D = {{A0

α, A1
α} : α < τ}. Then there is in X a

τ × 2τ independent matrix of closed sets.

Proof. Pick a family D of τ pairwise disjoint subsets of τ , each of
cardinality τ . Put D = {dα : α < τ}. For any fixed dα ∈ D consider the
set dα2 of the functions from dα to 2. We clearly have |dα2| = 2τ , so there
exists a bijection fα : 2τ → dα2. Now, for any α ∈ τ and any β ∈ 2τ set

Bα
β =

⋂

γ∈dα

Afα(β)(γ)
γ .

Note that Bα
β is a nonempty closed subset of X. Indeed pick any finite

collection of elements of dα, say γ1, γ2, . . . , γn; since D is a dyadic system,

Afα(β)(γ1)
γ1

∩ Afα(β)(γ2)
γ2

∩ . . . ∩ Afα(β)(γn)
γn

6= ∅.

Since the space X is compact, Bα
β is not empty.

Let us show that the family {Bα
β : α < τ, β < 2τ} is an independent

matrix of closed subsets of X. Fix α and pick β1 6= β2. We must check
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that Bα
β1

∩ Bα
β2

= ∅. Since β1 6= β2 we have fα(β1) 6= fα(β2), so there
exists a γ′ ∈ dα such that

fα(β1)(γ
′) = |1 − fα(β2)(γ

′)|.

Therefore ∅ = A0
γ′ ∩ A1

γ′ ⊃ Bα
β1

∩ Bα
β2

and the claim is proved.
Now pick any finite subset F of τ , say F = {α1, α2, . . . , αn}, and

pick any function g : F → 2τ . We must check that
⋂

1≤i≤n Bαi

g(αi)
6= ∅.

Note that dα1
, dα2

, . . . , dαn
are pairwise disjoint. Put d =

⋃

1≤i≤n dαi
and

h =
⋃

1≤i≤n fαi
(g(αi)) (note that h ∈ d2). We have

⋂

1≤i≤n

Bαi

g(αi)
=

⋂

1≤i≤n

⋂

γ∈dα
i

A
fα

i
(g(αi))(γ)

γ =
⋂

γ∈d

Ah(γ)
γ 6= ∅,

where the last inequality is true since D is dyadic. ♦

3. The number of disjoint closed subsets in a space

Suppose that in a space X there exists a κ×λ independent matrix
{Aα

β : α < κ, β < λ}. Then we have at least λ closed pairwise disjoint
subsets each of cardinality larger than or equal to λ. In fact, consider any
row {Aα′

β :β <λ}, where α′ is fixed. All of its elements are pairwise dis-

joint. Moreover, since any fixed Aα′

β meets all the Aα′′

β for a fixed α′′ 6= α′

and for all β, and these are pairwise disjoint, we have that |Aα′

β | ≥ λ.
In particular (Th. 2.1) if there is a dyadic system of size τ in a compact
space X, then there is a τ × 2τ independent matrix, so that there are at
least 2τ pairwise disjoint closed subsets of size larger than or equal to 2τ .
We state this observation in the following.

Proposition 3.1. Let X be a compact space. If there exists a dyadic
system of size τ in X, then there are at least 2τ pairwise disjoint closed
subsets of size larger than or equal to 2τ .

The following well-known fact can be helpful to find a dyadic system
in a given space.

Proposition 3.2. Let X be any topological space and assume that there
exists a continuous map f : X → Iτ (or f : X → 2τ) onto. Then there
is a dyadic system of size τ in X.
Proof. Let A = {{A0

α, A1
α} : α < τ}, where Ai

α = {h ∈ 2τ : h(α) = i}
for i = 0, 1. It is straightforward to check that A is a dyadic system
in 2τ . Put D = {{f−1(A0

α), f−1(A1
α)} : α < τ}. Since f−1 preserves

intersections and f is onto D is dyadic in X. ♦



Independent-type structures 103

It is also possible to prove [7] that, in a compact space X, the
existence of a dyadic system of size τ is equivalent to the existence of a
continuous surjection f : X → Iτ .

Example 3.1. In the unit interval I there are c pairwise disjoint closed
sets of size c.

The existence of a countable dyadic system in I can be easily proved
by using a construction similar to that one of the triadic Cantor set.
Subdivide the unit interval into three equal parts and call Al

1 the left
subinterval, Ar

1 the right subinterval. Divide now both Al
1 and Ar

1 into
three equal parts. Call Al

2 the union of the left subinterval in Al
1 and the

left subinterval in Ar
1. Call Ar

2 the union of the right subinterval in Al
1

and the right subinterval in Ar
1. Suppose you have defined all Al

k and Ar
k

for k < n. Subdivide each subinterval of size 1
3n−1 into three equal parts.

Call Al
n the union of all the left pieces and Ar

n the union of all the right
pieces. By induction over ω you get a countable family of pairs of closed
sets D = {{Al

n, Ar
n} : n < ω}. It is straightforward to check that D is a

dyadic system. By Prop. 3.1 we conclude that in I there are at least c

pairwise disjoint closed subsets of size larger than or equal to c.

Example 3.2. In βω and in ω∗ there are 2c pairwise disjoint closed
subsets of size 2c. In particular there are 2c disjoint copies of βω.

To apply Prop. 3.1 we need to construct a dyadic system of size
c in βω. Since the space 2c is separable there exists a countable dense
set D ⊂ 2c. Let f : ω → D be a bijection. Let fβ : βω → 2c be
its Stone–Čech extension. fβ is onto. By Prop. 3.2 there exists in X

a dyadic system of size c. Let {Kα : α < 2c} be a family of pairwise
disjoint closed subsets of βω of size 2c. Clearly {Kα ∩ω∗ : α < 2c} are 2c

pairwise disjoint closed subsets of ω∗ of size 2c.
Prop. 3.1 suggests the definition of a cardinal function that counts

the number of large disjoint closed subsets of a space.
Definition 3.1. For any space X and any cardinal number κ we define

M(X, κ) = sup
{

|F| : (F ∈ F ⇒ F ⊂ X closed |F | ≥ κ)

(F, G ∈ F ⇒ F ∩ G = ∅)
}

.

With this new terminology we can write the statements in Examples
3.1 and 3.2 as follows:

M(I, c) = c.

M(βω, 2c) = 2c.
We now list some properties of M(X, κ). We recall that o(X) de-

notes the cardinality of the topology of the space X.
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Proposition 3.3. (1) For any space X and any cardinal number κ,
M(X, κ) ≤ |X| and M(X, κ) ≤ o(X).

(2) For any cardinal numbers κ and λ with κ ≤ λ, M(X, κ) ≥
≥ M(X, λ).

(3) Suppose that X is a completely regular locally compact space,
and call αX its one-point compactification. Then, for any cardinal num-
ber κ, M(αX, κ) ≤ M(X, κ), and the inequality can be strict.

(4) M(X, κ) is not monotone with respect to the first parameter.
However, if A ⊆ X is a closed subset, then M(A, κ) ≤ M(X, κ) for
any κ.

(5) Let f : X → Y be a continuous onto function. Then M(X, κ) ≥
≥ M(Y, κ).

(6) Let X and Y be any spaces. Then M(X × Y, κ) ≥ M(X, κ) ·
· M(Y, κ) and the inequality can be strict.

(7) Let X =
∏

α<τ Xα, with |Xα| ≥ 2 for all α < τ . Then
M(X, κ) ≥ sup{M(Xα, κ) : α < τ}. Moreover, if κ ≤ 2τ , then we
also have M(X, κ) ≥ 2τ . Finally, suppose that there is an Xβ such that
κ ≤ |Xβ|. Then we have M(X, κ) ≥ sup{|Xα| : α < τ, α 6= β}.
Proof. To explain the claim in (3) consider X = ω with its one-point
compactification αX = ω + 1. We clearly have M(X, ω) = ω and
M(αX, ω) = 1, since any infinite closed set of ω has ω as a limit point.

It is not difficult to obtain an example where the inequality in (6)
is strict. Note that if κ ≤ |X| then M(X × Y, κ) ≥ |Y |. Take X, Y and
κ such that κ ≤ |X| and |Y | > M(X, κ) · M(Y, κ); then M(X × Y, κ) >

> M(X, κ) · M(Y, κ).
To explain the claims in (7) notice that it is possible to embed

2τ into X, and in the compact space 2τ there exists a dyadic system
of cardinality τ (see Prop. 3.2). Hence, by Prop. 3.1 there are at least
2τ disjoint compact subsets of X of size larger than or equal to 2τ , or
M(X, 2τ ) ≥ 2τ . ♦

We recall that the index of a space is the cardinal function
i(X) = sup{τ : ∃f : X → Iτonto}.

Let X be any space. Suppose that i(X) ≥ κ, then there is a
continuous surjection f : X → Iκ. Since, by Prop. 3.2, M(Iκ, 2κ) = 2κ,
by (5) in Prop. 3.3 M(X, 2κ) ≥ 2κ. Therefore we can state the following:
Proposition 3.4. Let X be any space. If i(X) ≥ κ, then

M(X, 2κ) ≥ M(X, 2i(X)) ≥ 2i(X) ≥ 2κ.
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It is often the case that M(X, κ) = |X| for any κ ≤ |X|. However,
easy examples show that M(X, κ) can be any number between 1 and
|X|. For instance, for any cardinal number τ with cof(τ) 6= ω we have
M(τ, τ) = 1, because two unbounded closed sets of τ cannot be disjoint.
Also M(µ, τ) = τ for any µ < τ .

Example 3.3. A space X for which M(X, ω) = ω2, M(X, ω1) = ω1 and
M(X, ω2) = 1.

Let Y be a discrete space of cardinality ω1. Let Z be the one-point
Lindelöfization of a discrete space D of cardinality ω2, i.e. Z = D∪{∞}
where the neighbourhoods of ∞ are all sets of the form {∞} ∪ C, with
D \ C countable. The disjoint union X = Y ∪ Z is the desired space.
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