Mathematica Pannonica

19/1 (2008), 71-80

## SOME REMARKS ON A THEOREM OF H. DABOUSSI

Imre Kátai<br>Eötvös Loránd University, Department of Computer Algebra, and Research Group of Applied Number Theory of the Hungarian Academy of Sciences, Pázmány Péter sétány $1 / C, H-1117 \mathrm{Bu}$ dapest, Hungary

Dedicated to Professor Karl-Heinz Indlekofer on his $65^{\text {th }}$ anniversary
Received: March 2008
MSC 2000: 11 A 63
Keywords: Exponential sums, uniform distribution mod 1 of sequences.
Abstract: Several generalizations of a famous theorem of H. Daboussi are surveyed.

## 1. Notation

$\mathcal{A}=$ set of real valued additive arithmetical functions
$\mathcal{M}=$ set of complex valued multiplicative arithmetical functions
$\mathcal{M}_{1}:=\{f \in \mathcal{M}| | f(n) \mid \leq 1(n \in \mathbb{N})\}$
$\mathcal{A}_{q}=$ set of q-additive functions
$\mathcal{M}_{q}=$ set of q-multiplicative functions
$e(x):=e^{2 \pi i x}$
$\mathcal{L}^{*}=$ set of uniformly summable functions (introduced by K.-H. Indlekofer):
$f: \mathbb{N} \rightarrow \mathbb{C}$ belongs to $\mathcal{L}^{*}$ if

$$
\lim _{y \rightarrow \infty} \sup _{x} \frac{1}{x} \sum_{\substack{|f(n)| \geq y \\ n \leq x}}|f(n)|=0
$$

## 2. The theorem of Daboussi

H. Daboussi proved that for every irrational $\alpha(\in \mathbb{R})$, uniformly in $f \in \mathcal{M}_{1}$

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} f(n) e(n \alpha) \rightarrow 0 \tag{2.1}
\end{equation*}
$$

The proof is given in his paper [4] written jointly with H. Delange. Later Delange extended this result for $f \in \mathcal{L}^{2}$, i.e. for those $f \in \mathcal{M}$ for which

$$
\frac{1}{x} \sum_{n \leq x}|f(n)|^{2}=O(1)
$$

Indlekofer proved (2.1) for a wider class, namely for $f \in \mathcal{L}^{*}$.
Daboussi deduced his theorem by using the "large sieve inequality".
The speed of the convergence was treated by H.L. Montgomery and R. C. Voughan [18]. They proved that the left-hand side of (2.1) is less than a constant times of

$$
\frac{x}{\log x}+\frac{x \log R}{\sqrt{R}}
$$

where $2 \leq r \leq \sqrt{x},\left|\alpha-\frac{r}{s}\right| \leq \frac{R}{\Delta x}, R \leq \Delta \leq \frac{x}{R},(r, s)=1$. An immediate consequence of Daboussi's theorem is the following:

If $\alpha$ is an irrational number and $F \in \mathcal{A}$, then the sequence

$$
\xi_{n}=\xi_{n}(F)=F(n)+\alpha n
$$

is uniformly distributed $\bmod 1$, and even the discrepancy

$$
D_{N}\left(\xi_{1}(F), \ldots, \xi_{N}(F)\right)
$$

tends to 0 uniformly as $F$ runs over the class of additive functions.
Let $\mathcal{T}$ be the set of those $t: \mathbb{N} \rightarrow \mathbb{R}$ for which

$$
\sup _{F \in \mathcal{A}} \mid D_{N}\left(\eta_{1}(\dot{F}), \ldots, \eta_{N}(F) \mid \rightarrow 0,\right.
$$

where $\eta_{n}(F)=F(n)+t(n)$.

## 3. Generalization of Daboussi's theorem

I observed that (2.1) can be proved by using the Turán-Kubilius inequality instead of the large sieve inequality, and this method allows us to prove wide generalization of (2.1) ([13]).
Theorem 1. Let $t: \mathbb{N} \rightarrow \mathbb{R}$. Let us assume that for every positive $K$ there exists a finite set $\mathcal{P}_{K}$ of primes $p_{1}<\ldots<p_{R}$ such that

$$
\begin{equation*}
A_{\mathcal{P}_{K}}:=\sum_{i=1}^{R} \frac{1}{p_{i}}>K \tag{3.1}
\end{equation*}
$$

and for the sequences

$$
\eta_{i, j}(m)=t\left(p_{i} m\right)-t\left(p_{j} m\right)
$$

the relation

$$
\begin{equation*}
\frac{1}{x} \sum_{m=1}^{[x]} e\left(\eta_{i, j}(m)\right) \rightarrow 0 \quad(x \rightarrow \infty) \tag{3.2}
\end{equation*}
$$

holds, whenever $i \neq j, i, j \in\{1, \ldots, R\}$. Then there exists a sequence $\rho_{x}(>0)$ tending to zero such that

$$
\begin{equation*}
\sup _{f \in \mathcal{M}_{1}}\left|\frac{1}{x} \sum_{n<x} f(n) e(t(n))\right| \leq \rho_{x} . \tag{3.3}
\end{equation*}
$$

Theorem 2. Let $t: \mathbb{N} \rightarrow \mathbb{R}$, and $\mathcal{P}_{K}$ be as in Th. 1. Assume that $\eta_{i, j}(m)$ are uniformly distributed modulo 1 for every $i \neq j, i, j \in\{1, \ldots, R\}$. Then $t \in \mathcal{T}$.

We give a proof of Th. 1. Let $c, c_{1}, c_{2}, \ldots$ be absolute positive constants, $B, B_{1}, B_{2}, \ldots$ be numbers, or functions which can be majorized by absolute constants. After fixing a $K$ we put $\mathcal{P}_{K}=\mathcal{P}$, and

$$
\omega_{\mathcal{P}}(n)=\sum_{\substack{p \mid n \\ p \in \mathcal{P}}} 1 .
$$

From the Turán-Kubilius inequality, we get immediately

$$
\begin{equation*}
\sum_{n \leq x}\left|\omega_{\mathcal{P}}(n)-A_{\mathcal{P}}\right| \leq c_{1} x \sqrt{A_{\mathcal{P}}} \tag{3.5}
\end{equation*}
$$

Let

$$
\begin{gather*}
S(x)=S(x, f)=\sum_{n \leq x} f(n) e(t(n))  \tag{3.6}\\
H(x)=H(x, f)=\sum_{n \leq x} f(n) e(t(n)) \omega_{\mathcal{P}}(n) . \tag{3.7}
\end{gather*}
$$

From (3.5) we obtain that

$$
\begin{equation*}
\left|H(x)-A_{\mathcal{P}} S(x)\right| \leq c_{2} x \sqrt{A_{\mathcal{P}}} \tag{3.8}
\end{equation*}
$$

furthermore

$$
\begin{equation*}
H(x)=\sum_{\substack{p m \leq x \\ p \in \mathcal{P}}} \sum f(p m) e(t(p m)) . \tag{3.9}
\end{equation*}
$$

For $(p, m)=1$ we can write $f(p m)=f(p) f(m)$. The contribution of the pairs $p \mid m$ on the right-hand side of (3.9) can be majorized by $x \sum \frac{1}{P_{i}^{2}}$, consequently

$$
\begin{equation*}
H(x)=\sum_{m \leq \frac{x}{p_{1}}} f(m) \sum_{p_{i} \leq \frac{x}{m}} f\left(p_{i}\right) e\left(t\left(p_{i} m\right)\right)+B_{1} x=\sum_{m \leq \frac{x}{p_{1}}} f(m) \Sigma_{m}+B_{1} x \tag{3.10}
\end{equation*}
$$

Since $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$ for real $a, b$, by using the Cauchy-inequality, we get
$|H(x)|^{2} \leq 2\left\{\left(\sum_{m \leq \frac{x}{p_{1}}}|f(m)|^{2}\right)\left(\sum_{m \leq \frac{x}{p_{1}}}\left|\Sigma_{m}\right|^{2}\right)\right\}+2 B_{1}^{2} x^{2}=2 U V+2 B_{1}^{2} x^{2}$.
We have $U \leq x$. Furthermore,

$$
\begin{equation*}
V=\sum_{m \leq \frac{x}{p_{1}}} \sum_{p_{i}, p_{j} \leq \frac{x}{m}} f\left(p_{i}\right) \bar{f}\left(p_{j}\right) e\left(t\left(p_{i} m\right)-t\left(p_{j} m\right)\right) \tag{3.12}
\end{equation*}
$$

The contribution of the terms $p_{i}=p_{j}$ on the right-hand side of (3.12) is

$$
\sum_{i=1}^{R}\left[\frac{x}{p_{i}}\right]<x A_{\mathcal{P}}
$$

Consequently

$$
\begin{equation*}
V \leq x A_{\mathcal{P}}+\sum_{\substack{p_{i}, p_{j} \in \mathcal{P} \\ i \neq j}}\left|\sum_{\substack{ \\m \leq \min \left(\frac{x}{p_{i}}, \frac{x}{p_{j}}\right)}} e\left(\eta_{i, j}(m)\right)\right| \tag{3.13}
\end{equation*}
$$

Collecting our inequalities we get

$$
\begin{equation*}
\left.\frac{|S(x)|^{2} A_{\mathcal{P}}^{2}}{x^{2}} \leq c_{2} A_{\mathcal{P}}+\sum_{\substack{p_{i}, p_{j} \in \mathcal{P} \\ i \neq j}} \right\rvert\, \frac{1}{x} \sum_{\substack{m \leq \min \left(\frac{x}{\left.p_{i}, \frac{x}{p_{j}}\right)}\right.}} e\left(\left(t\left(p_{i} m\right)-t\left(p_{j} m\right)\right) \mid\right. \tag{3.14}
\end{equation*}
$$

Let $B(x)=\sup _{f \in \mathcal{M}_{1}}|S(x, f)|$.
Since the right-hand side of (3.14) does not depend on $f$, therefore (3.14) holds for $B(x)$ instead of $S(x, f)$. Consequently

$$
\begin{equation*}
\lim \sup \left(\frac{B(x)}{x}\right)^{2} \leq \frac{c_{3}}{A_{\mathcal{P}}} \tag{3.15}
\end{equation*}
$$

Since $\mathcal{P}=\mathcal{P}_{K}$ can be chosen for an arbitrary $K$, and $A_{\mathcal{P}}>K$, therefore (3.15) equals to zero. The theorem is proved. $\diamond$
Remarks. 1. Let $t(n)=\alpha_{k} n^{k}+\cdots+\alpha_{1} n$ be a polynomial of $n$ such that at least one of the coefficients $\alpha_{1}, \ldots, \alpha_{k}$ is irrational. Then the conditions of Ths. 1 and 2 hold.
2. If $t \in \mathcal{T}$, then $t(n)$ is uniformly distributed modulo one. The opposite assertion is not true. Let $\omega(n)$ be the number of prime divisors of $n$. It can be proved in several ways that $\alpha \omega(n)$ is uniformly distributed modulo 1 for every irrational $\alpha$. Then $\alpha \omega(n)=u(n)$ can not be in $\mathcal{T}$, since for $F(n)=-\alpha \omega(n) \in \mathcal{A}, P(n)+u(n)=0$ identically.

Th. 1 can be extended to functions of $f \in L^{*}$. See [10].

## 4. Generalization to $q$-multiplicative functions

It is clear that $e(\alpha n)$ is a $q$-multiplicative function of module 1 .
In a paper written jointly with Indlekofer [11] we proved the following assertion:
Theorem 3. Let $f \in L^{*}$, and $g \in \mathcal{M}_{q},|g(n)|=1(n \in \mathbb{N})$. Assume that

$$
\begin{equation*}
\limsup _{x} \frac{1}{x}\left|\sum_{n \leq x} f(n) g(n)\right|>0 \tag{4.1}
\end{equation*}
$$

Then $g(n)$ can be written as $g(n)=e\left(\frac{r}{D}\right) h(n)$ with a suitable rational number $\frac{r}{D}$ and with a function $h \in \mathcal{M}_{q},|h(n)|=1(n \in \mathbb{N})$ such that

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{c=0}^{q-1} \operatorname{Re}\left(1-h\left(c q^{j}\right)\right)<\infty \tag{4.2}
\end{equation*}
$$

If the Bohr-Fourier spectrum of $f$ is empty, then

$$
\frac{1}{x} \sum_{n \leq x} f(n) g(n) \rightarrow 0
$$

for each $g \in \mathcal{M}_{q},|g(n)|=1(n \in \mathbb{N})$.
It is known from a theorem of $\operatorname{Kim}$, that $\varphi \in \mathcal{A}_{q}$ is uniformly distributed modulo 1 , if and only if either for every $k \in \mathbb{N}$ there exists such a $j$ for which

$$
\sum_{c=0}^{q-1} e\left(k \varphi\left(c q^{j}\right)\right)=0
$$

or

$$
\sum_{j=0}^{\infty} \sum_{c=0}^{q-1}\left\|\varphi\left(c q^{j}\right)\right\|^{2}=\infty
$$

Hence one can deduce that for $f \in \mathcal{A}_{q}$ the sequence $\varphi\left(n q^{R}\right)\left(n \in \mathbb{N}_{0}\right)$ is uniformly distributed modulo 1 for every $R$, if and only if

$$
\sum_{j=0}^{\infty} \sum_{c=0}^{q-1}\left\|\varphi\left(c q^{j}\right)\right\|^{2}=\infty
$$

From Th. 3 one gets easily:
Theorem 4. Let $\varphi \in \mathcal{A}_{q}$ and $\varphi\left(n q^{R}\right)\left(n \in \mathbb{N}_{0}\right)$ be uniformly distributed modulo 1 for every $R \in \mathbb{N}_{0}$. Then for each additive functions $F(n)$, the sequence $F(n)+\varphi\left(n q^{R}\right)\left(n \in \mathbb{N}_{0}\right)$ is uniformly distributed modulo 1 for very $R \in \mathbb{N}_{0}$.

## 5. The analogue of Daboussi's theorem for some special subsets of integers

Let $\mathcal{N}_{k}$ be the set of the integers the number of the prime powers of which is $k$. Let $N_{k}(x)$ be the size of $n \leq x, n \in \mathcal{N}_{k}$. In our paper [11] we proved
Theorem 5. Let $0<\delta(<1)$ be an arbitrary constant, and $\alpha$ be an irrational number. Then

$$
\lim _{x \rightarrow \infty} \sup _{\delta \leq \frac{k}{k} \log \log x}<2-\delta, \sup _{f \in \mathcal{M}_{1}} \frac{1}{N_{k}(x)}\left|\sum_{\substack{m \leq x \\ m \in \mathcal{N}_{k}}} f(m) e(m \alpha)\right|=0 .
$$

The proof is similar to the proof of Th. 1. It depends on an important assertion due to Dupain, Hall, Tenenbaum [6], namely that

$$
\sup _{\frac{k}{\log \log x} \leq(2-\delta)} \frac{1}{N_{k}(x)}\left|\sum_{\substack{m \leq x \\ m \in \mathcal{N}_{k}}} e(m \alpha)\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty .
$$

## 6. Some other questions

Let

$$
S\left(x, \alpha, X_{p}\right):=\sum_{\substack{p_{1}, p_{2}<x \\ p_{1}<p_{2}}} X_{p_{1}} X_{p_{2}} e\left(\alpha p_{1} p_{2}\right)
$$

where $p_{1}, p_{2}$ run over the set of primes,

$$
\pi_{2}(x)=\sum_{\substack{p_{1} p_{2}<x \\ p_{1}<p_{2}}} 1
$$

Conjecture 1. If $\alpha$ is an irrational number, then

$$
\begin{equation*}
\max _{\left|x_{p}\right| \leq 1} \frac{\left|S\left(x, \alpha, X_{p}\right)\right|}{\pi_{2}(x)} \rightarrow 0 \quad(x \rightarrow \infty) \tag{6.1}
\end{equation*}
$$

In [14] I proved a weaker version of Conj. 1, namely
Condition $_{\delta}$. Let $\alpha$ be an irrational number for which for all $x \geq x_{0}$ there exists a rational number $\frac{a}{q},(a, q)=1, x^{\frac{2}{3}+\delta}<q<x^{1-\delta}$, and for $\beta=\alpha-\frac{a}{q},|\beta| \leq \frac{1}{q^{2}}$.

Here $\delta$ is an arbitrary small positive number.
Theorem 6. Let $\delta>0$, and assume that Cond. $\delta$ holds for $\alpha$. Then (6.1) holds true.

Huixue Lao [17] strengthened this theorem, proving that (6.1) holds true if the irrationality measure $\mu(\alpha)$ of $\alpha$ is finite.

Let $\mathcal{R}(\alpha)$ be the set of those positive real numbers $\mu$ for which

$$
q^{\mu-1}\|q \alpha\|>1
$$

for every $q$ larger than a constant $\chi_{0}=\chi_{0}(\mu)$. It is clear that $\mathcal{R}(\alpha)$ is a halfline. Then the irrationality measure of $\alpha$ is defined as

$$
\mu(\alpha)=\inf _{\mu \in \mathcal{R}(\alpha)} \mu
$$

(If $\mathcal{R}(\alpha)$ is empty, then $\mu(\alpha)$ is defined to be $\mu(\alpha)=\infty$.) In our paper [12] written with K.-H. Indlekofer we proved the following assertion.

Let $\mathcal{M}_{x}=\left\{m_{1}<m_{2}<\ldots<m_{t}\right\}$ be a set of integers depending on the parameter $x$, and let

$$
\nu\left(\mathcal{M}_{x}\right):=\sum_{j=1}^{t} \frac{1}{m_{j}}
$$

We shall assume that $m_{t} \leq x^{\delta x}$, where $\delta x \rightarrow 0(x \rightarrow \infty)$. Let $\mathcal{P}$ be the whole set of primes,

$$
\begin{gathered}
\mathcal{B}_{j}=\left\{m_{j} p \mid p \in \mathcal{P}, \sqrt{x} \leq p \leq \frac{x}{m_{j}}\right\}, \quad \mathcal{H}_{x}=\bigcup_{j=1}^{t} \mathcal{B}_{j}, \\
\mathcal{B}_{j}(x):=\#\left(\mathcal{B}_{j}\right)=\pi\left(\frac{x}{m_{j}}\right)-\pi(\sqrt{x})=\left(1+o_{x}(1)\right) \frac{\pi(x)}{m_{j}}
\end{gathered}
$$

uniformly in $j=1, \ldots, t$. Then

$$
H(x):=\#\left(\mathcal{H}_{x}\right)=\sum_{j=1}^{t} \mathcal{B}_{j}(x)=\left(1+o_{x}(1)\right) \nu\left(\mathcal{M}_{x}\right) \pi(x)
$$

Let

$$
S(x \mid \alpha)=\sum_{j=1}^{t} \sum_{m_{j} p \in \mathcal{B}_{j}} Y_{m_{j}} X_{p} e\left(m_{j} p \alpha\right)
$$

where $\left|Y_{m_{j}}\right| \leq 1(j=1, \ldots, t),\left|X_{p}\right| \leq 1(p \in \mathcal{P})$.
Theorem 7. Assume that $\delta>0$, Cond. $\delta$ holds for $\alpha$. Assume furthermore that $\nu\left(\mathcal{M}_{x}\right) \rightarrow \infty(x \rightarrow \infty)$. Then

$$
\max _{\substack{Y_{m}, X_{p} \\\left|Y_{m_{j}} \leq 1,\left|X_{p}\right| \leq 1\right.}} \frac{|S(x \mid \alpha)|}{H(x)}=: \Delta(x, \alpha) \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty
$$

Theorem 8. Assume that Cond. holds for $\alpha$. Let $\rho_{x} \downarrow 0,2 \leq k \leq$ $\leq \rho_{x} \log \log x$. Let $\mathcal{P}_{k}=\{n \mid \omega(n)=k\}, P(n)$ be the largest prime factor of $n, \pi_{k}(x)=\#\left\{n \leq x \mid n \in \mathcal{P}_{k}\right\}$. Let us write every $n \in \mathcal{P}_{k}$ in the form $n=m p, P(n)=p$. Assume that $Y_{m}, X_{p}$ are defined for all $m \in \mathbb{N}, p \in \mathcal{P}$ which occur in the representation of $n=m p$, and let $\left|Y_{m}\right| \leq 1,\left|X_{p}\right| \leq 1$. Let

$$
S_{k}(x \mid \alpha):=\sum_{\substack{m p \leq x \\ \omega(m p)=k \\ p=P(m p)}} Y_{m} X_{p} e(m p \alpha)
$$

Then

$$
\lim _{x \rightarrow \infty} \max _{2 \leq k \leq \rho_{x}(\log \log x)} \sup _{Y_{m}, X_{p}} \frac{\left|S_{k}(x \mid \alpha)\right|}{\pi_{k}(x)}=0
$$

Lao noted that Ths. 7 and 8 remain true under the weaker condition that $\alpha$ is of finite irrationality measure.

## 7. On the distribution of modulo 1 of the values of $F(n)+\alpha \sigma(n)$

In our paper [16] written jointly with J. M. De Koninck we proved the following assertion.

Theorem 9. Let $\alpha$ be a positive irrational number such that for each real number $\kappa>1$ there exists a positive constant $c=c(\kappa, \alpha)$ for which the inequality

$$
\|\alpha q\|>\frac{c}{q^{\kappa}}
$$

holds for every positive integer $q$.
Let $h$ be an integer valued multiplicative function such that $h(p)=$ $=Q(p)$ for every prime $p$, and $h\left(p^{a}\right)=\mathcal{O}\left(p^{\text {ad }}\right)$ for some fixed number $d$ for every prime $p$ and every integer $a \geq 2$, where

$$
\begin{aligned}
Q(x)= & a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0} \\
& k \geq 1, a_{k}>0, a_{j} \in \mathbb{Z}
\end{aligned}
$$

Then the function $t(n)=\alpha h(n)$ belongs to $\mathcal{T}$.
Remark. The above assertion is true for $t(n)=\sigma^{k}(n), t(n)=\varphi^{k}(n)$, ( $k=1,2, \ldots$. .

## 8. On an analogue of Daboussi's theorem related to the set of Gaussian integers

Let $\mathbb{Z}[i]$ be the ring of Gaussian integers, $\mathbb{Z}^{*}[i]=\mathbb{Z}[i] \backslash\{0\}$ be the multiplicative group of nonzero Gaussian integers.

Let $\chi$ be such an additive character on $\mathbb{Z}[i]$, for which $\chi(1)=$ $=e(A), \chi(i)=e(B)$, and at least one of $A$ and $B$ is an irrational number.

Let $W$ be the union of finitely many convex bounded domains in $\mathbb{C}$. In our paper [1] written jointly with N. L. Bassily and J. M. De Koninck we proved
Theorem 10. Let $\mathcal{K}_{1}$ be the set $g$ of multiplicative functions on $\mathbb{Z}^{*}[i]$ satisfying $|g(\alpha)| \leq 1 \quad\left(\alpha \in \mathbb{Z}^{*}[i]\right)$. Then

$$
\lim _{x \rightarrow \infty} \sup _{g \in \mathcal{K}_{1}} \frac{1}{|x W|}\left|\sum_{\beta \in x W} g(\beta) \chi(\beta)\right|=0
$$

## References

[1] BASSILY, N. L., DE KONINCK, J. M. and KÁTAI, I.: On a theorem of Daboussi related to the set of Gaussian integers, Mathematica Pannonica 14/2 (2003), 267-272.
[2] DABOUSSI, H.: On some exponential sums, in: Analytic Number Theory, Proceedings of a Conference in honour of Paul T. Bateman, Birkhauser, Boston, 1990, 111-118.
[3] DABOUSSI, H. and DELANGE, H.: On multiplicative arithmetical funtions whose module does not exceed one, J. London Math. Soc. 26 (1982), 245-264.
[4] DABOUSSI, H. and DELANGE, H.: Quelques proprietes des functions multiplicatives de module au plus egal 1, C. R. Acad. Sci. Paris, Ser. A 278 (1974), 657-660.
[5] DELANGE, H.: Generalization of Daboussi's theorem, Colloq. Math. Soc. János Bolyai, 34. Topics in Classical Number Theory (Budapest, 1981), 305-318.
[6] DUPAIN, Y., HALL, R. R. and TENENBAUM, G.: Sur l'equirepartition modulo 1 de certaines fonctions de diviseurs, J. London Math. Soc. (2) 26 (1982), 397411.
[7] GOUBAIN, L.: Sommes d'exponentielles et principe de l'hyperbole, Acta Arith. 73 (1995), 303-324.
[8] INDLEKOFER, K.-H.: Properties of uniformly summable multiplicative functions, Periodica Math. Hungar. 17 (1986), 143-161.
[9] INDLEKOFER, K.-H. and KÁTAI, I.: A note on a theorem of Daboussi, Acta Math. Hungar. 101 (3) (2003), 211-216.
[10] INDLEKOFER, K.-H. and KÁTAI, I.: Exponential sums with multiplicative coefficients, 53 (3-4) (1989), 263-268.
[11] INDLEKOFER, K.-H. and KÁTAI, I.: On a theorem of Daboussi, Publ. Math. Debrecen 57 (1-2) (2000), 145-152.
[12] INDLEKOFER, K.-H. and KÁTAI, I.: Some remarks on trigonometric sums, Acta Math. Hungar. (accepted).
[13] KÁTAI, I.: A remark on a theorem of H. Daboussi, Acta Math. Hungar. 47 (1-2) (1986), 223-225.
[14] KÁTAI, I.: A remark on trigonometric sums, Acta Math. Hungar. 112 (3) (2006), 227-231.
[15] KÁTAI, I.: Uniform distribution of sequences connected with arithmetical functions, Acta Math. Hungar. 51 (3-4) (1988), 401-408.
[16] DE KONINCK, J. M. and KÁTAI, I.: On the distribution modulo 1 on the values of $F(n)+\alpha \sigma(n)$, Publ. Math. Debrecen 66 (2005), 121-128.
[17] LAO, H.: A remark on trigonometric sums, Acta Arithmetica (accepted).
[18] MONTGOMERY, H. L. and VAUGHAN, R. C.: Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), 69-82.

