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surveyed.

1. Notation

A = set of real valued additive arithmetical functions
M = set of complex valued multiplicative arithmetical functions
M1 := {f ∈ M | |f(n)| ≤ 1 (n ∈ N)}
Aq = set of q-additive functions
Mq = set of q-multiplicative functions
e(x) := e2πix

L∗ = set of uniformly summable functions (introduced by K.-H.
Indlekofer):

f : N → C belongs to L∗ if

lim
y→∞

sup
x

1

x

∑

|f(n)|≥y

n≤x

|f(n)| = 0.
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2. The theorem of Daboussi

H. Daboussi proved that for every irrational α(∈ R), uniformly in
f ∈ M1

(2.1)
1

x

∑

n≤x

f(n)e(nα) → 0.

The proof is given in his paper [4] written jointly with H. Delange.
Later Delange extended this result for f ∈ L2, i.e. for those f ∈ M for
which

1

x

∑

n≤x

|f(n)|2 = O(1).

Indlekofer proved (2.1) for a wider class, namely for f ∈ L∗.
Daboussi deduced his theorem by using the “large sieve inequality”.
The speed of the convergence was treated by H. L. Montgomery and

R.C. Voughan [18]. They proved that the left-hand side of (2.1) is less
than a constant times of

x

log x
+

x log R√
R

,

where 2 ≤ r ≤ √
x, |α− r

s
| ≤ R

∆x
, R ≤ ∆ ≤ x

R
, (r, s) = 1. An immediate

consequence of Daboussi’s theorem is the following:
If α is an irrational number and F ∈ A, then the sequence

ξn = ξn(F ) = F (n) + αn

is uniformly distributed mod 1, and even the discrepancy
DN(ξ1(F ), . . . , ξN(F ))

tends to 0 uniformly as F runs over the class of additive functions.
Let T be the set of those t : N → R for which

sup
F∈A

|DN(η1(F ), . . . , ηN(F )| → 0,

where ηn(F ) = F (n) + t(n).

3. Generalization of Daboussi’s theorem

I observed that (2.1) can be proved by using the Turán–Kubilius
inequality instead of the large sieve inequality, and this method allows
us to prove wide generalization of (2.1) ([13]).

Theorem 1. Let t : N → R. Let us assume that for every positive K

there exists a finite set PK of primes p1 < . . . < pR such that
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(3.1) APK
:=

R
∑

i=1

1

pi

> K,

and for the sequences
ηi,j(m) = t(pim) − t(pjm)

the relation

(3.2)
1

x

[x]
∑

m=1

e(ηi,j(m)) → 0 (x → ∞)

holds, whenever i 6= j, i, j ∈ {1, . . . , R}. Then there exists a sequence
ρx (> 0) tending to zero such that

(3.3) sup
f∈M1

∣

∣

∣

∣

∣

1

x

∑

n<x

f(n)e(t(n))

∣

∣

∣

∣

∣

≤ ρx.

Theorem 2. Let t : N → R, and PK be as in Th. 1. Assume that ηi,j(m)
are uniformly distributed modulo 1 for every i 6= j, i, j ∈ {1, . . . , R}.
Then t ∈ T .

We give a proof of Th. 1. Let c, c1, c2, . . . be absolute positive
constants, B, B1, B2, . . . be numbers, or functions which can be majorized
by absolute constants. After fixing a K we put PK = P, and

ωP(n) =
∑

p|n
p∈P

1.

From the Turán–Kubilius inequality, we get immediately

(3.5)
∑

n≤x

|ωP(n) − AP | ≤ c1x
√

AP .

Let

(3.6) S(x) = S(x, f) =
∑

n≤x

f(n)e(t(n))

(3.7) H(x) = H(x, f) =
∑

n≤x

f(n)e(t(n))ωP(n).

From (3.5) we obtain that
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(3.8) |H(x) − APS(x)| ≤ c2x
√

AP ,

furthermore

(3.9) H(x) =
∑ ∑

pm≤x
p∈P

f(pm)e(t(pm)).

For (p, m) = 1 we can write f(pm) = f(p)f(m). The contribution of the
pairs p|m on the right-hand side of (3.9) can be majorized by x

∑

1
P 2

i

,

consequently
(3.10)

H(x) =
∑

m≤ x
p1

f(m)
∑

pi≤
x
m

f(pi)e(t(pim)) + B1x =
∑

m≤ x
p1

f(m)Σm + B1x.

Since (a + b)2 ≤ 2(a2 + b2) for real a, b, by using the Cauchy-inequality,
we get
(3.11)

|H(x)|2 ≤ 2











∑

m≤ x
p1

|f(m)|2








∑

m≤ x
p1

|Σm|2










+2B2
1x

2 = 2UV +2B2
1x

2.

We have U ≤ x. Furthermore,

(3.12) V =
∑

m≤ x
p1

∑

pi,pj≤
x
m

f(pi)f(pj)e(t(pim) − t(pjm)).

The contribution of the terms pi = pj on the right-hand side of (3.12) is
R

∑

i=1

[

x

pi

]

< xAP .

Consequently

(3.13) V ≤ xAP +
∑

pi,pj∈P

i6=j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

m≤min

(

x
pi

, x
pj

)

e(ηi,j(m))

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Collecting our inequalities we get
(3.14)

|S(x)|2A2
P

x2
≤ c2AP +

∑

pi,pj∈P

i6=j

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

x

∑

m≤min

(

x
pi

, x
pj

)

e ((t(pim) − t(pjm))

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Let B(x) = sup
f∈M1

|S(x, f)|.
Since the right-hand side of (3.14) does not depend on f , therefore

(3.14) holds for B(x) instead of S(x, f). Consequently

(3.15) lim sup

(

B(x)

x

)2

≤ c3

AP

.

Since P = PK can be chosen for an arbitrary K, and AP > K,
therefore (3.15) equals to zero. The theorem is proved. ♦

Remarks. 1. Let t(n) = αkn
k + · · · + α1n be a polynomial of n such

that at least one of the coefficients α1, . . . , αk is irrational. Then the
conditions of Ths. 1 and 2 hold.

2. If t ∈ T , then t(n) is uniformly distributed modulo one. The
opposite assertion is not true. Let ω(n) be the number of prime divisors
of n. It can be proved in several ways that αω(n) is uniformly distributed
modulo 1 for every irrational α. Then αω(n) = u(n) can not be in T ,
since for F (n) = −αω(n) ∈ A, P (n) + u(n) = 0 identically.

Th. 1 can be extended to functions of f ∈ L∗. See [10].

4. Generalization to q-multiplicative functions

It is clear that e(αn) is a q-multiplicative function of module 1.
In a paper written jointly with Indlekofer [11] we proved the fol-

lowing assertion:
Theorem 3. Let f ∈ L∗, and g ∈ Mq, |g(n)| = 1 (n ∈ N). Assume that

(4.1) lim sup
x

1

x

∣

∣

∣

∣

∣

∑

n≤x

f(n)g(n)

∣

∣

∣

∣

∣

> 0.

Then g(n) can be written as g(n) = e( r
D

)h(n) with a suitable ra-
tional number r

D
and with a function h ∈ Mq, |h(n)| = 1 (n ∈ N) such

that

(4.2)

∞
∑

j=0

q−1
∑

c=0

Re(1 − h(cqj)) < ∞.

If the Bohr–Fourier spectrum of f is empty, then
1

x

∑

n≤x

f(n)g(n) → 0
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for each g ∈ Mq, |g(n)| = 1 (n ∈ N).
It is known from a theorem of Kim, that ϕ ∈ Aq is uniformly

distributed modulo 1, if and only if either for every k ∈ N there exists
such a j for which

q−1
∑

c=0

e(kϕ(cqj)) = 0,

or
∞

∑

j=0

q−1
∑

c=0

||ϕ(cqj)||2 = ∞.

Hence one can deduce that for f ∈ Aq the sequence ϕ(nqR) (n ∈ N0) is
uniformly distributed modulo 1 for every R, if and only if

∞
∑

j=0

q−1
∑

c=0

||ϕ(cqj)||2 = ∞.

From Th. 3 one gets easily:

Theorem 4. Let ϕ ∈ Aq and ϕ(nqR) (n ∈ N0) be uniformly distributed
modulo 1 for every R ∈ N0. Then for each additive functions F (n), the
sequence F (n) + ϕ(nqR) (n ∈ N0) is uniformly distributed modulo 1 for
very R ∈ N0.

5. The analogue of Daboussi’s theorem for some spe-
cial subsets of integers

Let Nk be the set of the integers the number of the prime powers
of which is k. Let Nk(x) be the size of n ≤ x, n ∈ Nk. In our paper [11]
we proved

Theorem 5. Let 0 < δ(< 1) be an arbitrary constant, and α be an
irrational number. Then

lim
x→∞

sup
δ≤ k

log log x
<2−δ

sup
f∈M1

1

Nk(x)

∣

∣

∣

∣

∣

∣

∣

∑

m≤x
m∈Nk

f(m)e(mα)

∣

∣

∣

∣

∣

∣

∣

= 0.

The proof is similar to the proof of Th. 1. It depends on an impor-
tant assertion due to Dupain, Hall, Tenenbaum [6], namely that

sup
k

log log x
≤(2−δ)

1

Nk(x)

∣

∣

∣

∣

∣

∣

∣

∑

m≤x

m∈Nk

e(mα)

∣

∣

∣

∣

∣

∣

∣

→ 0 as x → ∞.
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6. Some other questions

Let
S(x, α, Xp) :=

∑

p1,p2<x

p1<p2

Xp1Xp2e(αp1p2)

where p1, p2 run over the set of primes,

π2(x) =
∑

p1p2<x
p1<p2

1.

Conjecture 1. If α is an irrational number, then

(6.1) max
|xp|≤1

|S(x, α, Xp)|
π2(x)

→ 0 (x → ∞).

In [14] I proved a weaker version of Conj. 1, namely

Conditionδ. Let α be an irrational number for which for all x ≥ x0

there exists a rational number a
q
, (a, q) = 1, x

2
3
+δ < q < x1−δ, and for

β = α − a
q
, |β| ≤ 1

q2 .

Here δ is an arbitrary small positive number.

Theorem 6. Let δ > 0, and assume that Cond.δ holds for α. Then (6.1)
holds true.

Huixue Lao [17] strengthened this theorem, proving that (6.1) holds
true if the irrationality measure µ(α) of α is finite.

Let R(α) be the set of those positive real numbers µ for which

qµ−1||qα|| > 1

for every q larger than a constant χ0 = χ0(µ). It is clear that R(α) is a
halfline. Then the irrationality measure of α is defined as

µ(α) = inf
µ∈R(α)

µ.

(If R(α) is empty, then µ(α) is defined to be µ(α) = ∞.) In our paper
[12] written with K.-H. Indlekofer we proved the following assertion.

Let Mx = {m1 < m2 < . . . < mt} be a set of integers depending
on the parameter x, and let

ν(Mx) :=
t

∑

j=1

1

mj

.

We shall assume that mt ≤ xδx, where δx → 0 (x → ∞). Let P be the
whole set of primes,
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Bj =

{

mjp|p ∈ P,
√

x ≤ p ≤ x

mj

}

, Hx =
t

⋃

j=1

Bj ,

Bj(x) := #(Bj) = π

(

x

mj

)

− π(
√

x) = (1 + ox(1))
π(x)

mj

uniformly in j = 1, . . . , t. Then

H(x) := #(Hx) =

t
∑

j=1

Bj(x) = (1 + ox(1))ν(Mx)π(x).

Let

S(x|α) =
t

∑

j=1

∑

mjp∈Bj

Ymj
Xpe(mjpα),

where |Ymj
| ≤ 1 (j = 1, . . . , t), |Xp| ≤ 1 (p ∈ P).

Theorem 7. Assume that δ > 0, Cond.δ holds for α. Assume further-
more that ν(Mx) → ∞ (x → ∞). Then

max
Ym, Xp

|Ymj
|≤1,|Xp|≤1

|S(x|α)|
H(x)

=: ∆(x, α) → 0 as x → ∞.

Theorem 8. Assume that Cond.δ holds for α. Let ρx ↓ 0, 2 ≤ k ≤
≤ ρx log log x. Let Pk = {n|ω(n) = k}, P (n) be the largest prime factor
of n, πk(x) = #{n ≤ x|n ∈ Pk}. Let us write every n ∈ Pk in the form
n = mp, P (n) = p. Assume that Ym, Xp are defined for all m ∈ N, p ∈ P
which occur in the representation of n = mp, and let |Ym| ≤ 1, |Xp| ≤ 1.

Let
Sk(x|α) :=

∑

mp≤x
ω(mp)=k

p=P (mp)

YmXpe(mpα).

Then

lim
x→∞

max
2≤k≤ρx(log log x)

sup
Ym, Xp

|Sk(x|α)|
πk(x)

= 0.

Lao noted that Ths. 7 and 8 remain true under the weaker condition
that α is of finite irrationality measure.

7. On the distribution of modulo 1 of the values of

F (n) + ασ(n)

In our paper [16] written jointly with J. M. De Koninck we proved
the following assertion.
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Theorem 9. Let α be a positive irrational number such that for each
real number κ > 1 there exists a positive constant c = c(κ, α) for which
the inequality

||αq|| >
c

qκ

holds for every positive integer q.
Let h be an integer valued multiplicative function such that h(p) =

= Q(p) for every prime p, and h(pa) = O(pad) for some fixed number d

for every prime p and every integer a ≥ 2, where
Q(x) = akx

k + ak−1x
k−1 + · · · + a0

k ≥ 1, ak > 0, aj ∈ Z.

Then the function t(n) = αh(n) belongs to T .

Remark. The above assertion is true for t(n) = σk(n), t(n) = ϕk(n),
(k = 1, 2, . . .).

8. On an analogue of Daboussi’s theorem related to
the set of Gaussian integers

Let Z[i] be the ring of Gaussian integers, Z∗[i] = Z[i] \ {0} be the
multiplicative group of nonzero Gaussian integers.

Let χ be such an additive character on Z[i], for which χ(1) =
= e(A), χ(i) = e(B), and at least one of A and B is an irrational
number.

Let W be the union of finitely many convex bounded domains in C.
In our paper [1] written jointly with N. L. Bassily and J. M. De Koninck
we proved
Theorem 10. Let K1 be the set g of multiplicative functions on Z∗[i]
satisfying |g(α)| ≤ 1 (α ∈ Z∗[i]). Then

lim
x→∞

sup
g∈K1

1

|xW |

∣

∣

∣

∣

∣

∑

β∈xW

g(β)χ(β)

∣

∣

∣

∣

∣

= 0.
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