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Abstract: Two families of generalized Heronian means of several variables are
introduced and studied. Emphasis is on Schur-concavity, superadditivity and
concavity. Several inequalities involving means under discussion are obtained.
In particular, the Ky Fan type inequalities are proven. The latter provide
refinements of several known inequalities.

1. Introduction, notation, and definitions

Let a and b be positive numbers. Classical Heronian mean He(a, b)
of a and b is defined as

He(a, b) =
a + b +

√
ab

3
.

Clearly

(1.1) He(a, b) =
2A + G

3
,
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where A = (a + b)/2 and G =
√

ab are the arithmetic and geometric
means of a and b. Using (1.1) as a prototype, W. Janous [7] has in-
troduced a one-parameter family of bivariate means denoted by Hω(a, b)
(ω ≥ 0) and defined as

(1.2) Hω(a, b) ≡ Hω =
2A + ωG

2 + ω
.

It is easy to see that Hω interpolates the inequality of arithmetic and
geometric means:

(1.3) G ≤ Hω ≤ A.

If numbers a and b are not equal, then equalities hold in (1.3) if either
ω = ∞ or ω = 0. This mean has been studied extensively in the recent
paper [6]. Therein the authors have introduced a generalization of Hω to
an arbitrary number of variables.

Motivated by the research reported in [6], we introduce two three-
parameter families of multivariate means which include those defined in
[6] as a special case.

For later use let us introduce more notation. The symbol R> will
stand for the positive semi-axis. In what follows we will always assume
that a vector x = (x1, . . . , xn) is a member of R

n
> unless otherwise stated.

Also, we will use a family of multivariate means {φ1(x), φ2(x), . . .} that
are comparable means which satisfy

(1.4) φi(x) ≥ φj(x)

for all 1 ≤ i < j. Also, let

(1.5) µ =
n

n + ω
, ν = 1 − µ ,

where ω ≥ 0. Clearly µ and ν are nonnegative numbers whose sum is
equal to 1.

We shall define now two families of the generalized Heronian means.
Throughout the sequel they are denoted by Hi,j and Hi,j (1 ≤ i < j)
and called the generalized Heronian means of the first and second kind,
respectively. We define

(1.6) Hi,j(ω; x) = µ φi(x) + ν φj(x)

and
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(1.7) Hi,j(ω; x) = φi(x)µφj(x)ν ,

where the underlying means φi and φj satisfy the comparability condition
(1.4) and the weights µ and ν are defined in (1.5). Since some of the
results of this paper apply to means of both kinds, the symbol Λi,j(ω; x)
will stand for Hi,j(ω; x) and Hi,j(ω; x).

In what follows we shall employ standard notation for the un-
weighted arithmetic, geometric and harmonic means of several variables x:

(1.8) An(x) ≡ An =
1

n

n
∑

i=1

xi ,

(1.9) Gn(x) ≡ Gn =

n
∏

i=1

x
1

n

i ,

(1.10) Hn(x) ≡ Hn =

(

1

n

n
∑

i=1

1

xi

)−1

.

On several occasions we will assume that φ1 = An, φ2 = Gn and φ3 = Hn .
Thus

H1,2(ω; x) = µ An(x) + ν Gn(x), H1,2(ω; x) = An(x)µGn(x)ν ,

H1,3(ω; x) = µ An(x) + ν Hn(x), H1,3(ω; x) = An(x)µHn(x)ν ,

etc. Mean H1,2 is studied in [6].
Another mean used in this paper is a special case of the multivariate

logarithmic mean introduced in [10, (2.2)] and defined as

(1.11) Ln(x) ≡ Ln = (n − 1)!

∫

En−1

n
∏

k=1

xuk

k du,

where
En−1 =

{

(u1, . . . , un−1) : ui ≥ 0, 1 ≤ i ≤ n − 1, u1 + . . . + un−1 ≤ 1
}

is the Euclidean simplex, un = 1−(u1+. . .+un−1) and du = du1 . . . dun−1 .
If xi 6= xj for all i 6= j, then

Ln(x) = (n − 1)!

n
∑

k=1

[

xk

/

n
∏

l=1
l 6=k

ln

(

xk

xl

)]

(see [10, p. 899]). It has been shown in [10, Th. 1] that this mean inter-
polates the inequality of arithmetic and geometric means, i.e.,
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(1.12) Gn(x) ≤ Ln(x) ≤ An(x)

with equalities in (1.12) if and only if x1 = . . . = xn .
This paper is devoted to the study of two families of means defined

in (1.6) and (1.7) and is organized as follows. In Sec. 2 we give four
lemmas which will be utilized in the remaining part of this paper. The
next section deals with the properties and inequalities satisfied by the
generalized Heronian means. We shall prove, among other things, that
Λi,j(ω; x) is a logarithmically convex (log-convex) function of ω and is
Schur-concave in its variables x. Superadditivity of Λi,j(ω; x) and vari-
ables x is also established. In Sec. 4 we shall prove several Ky Fan type
inequalities involving means under discussion.

2. Lemmas

Let D denote an interval in R with nonempty interior.

Lemma 2.1. Let f : D → R> be a log-convex function. If u, v ∈ D
(u ≤ v) and if λ > 0 is such that u + λ, v + λ ∈ D, then

f(u + λ)

f(v + λ)
≤ f(u)

f(v)
(2.1)

and
f(αu)

f(αv)
≤
[

f(u)

f(v)

]α

(2.2)

where the last inequality is valid provided u ≥ 0 and α ≥ 1. The inequality

(2.2) is reversed if 0 < α ≤ 1.

Proof. We shall prove the inequality (2.1) only because (2.2) is estab-
lished in [11, Th. 2.1]. There is nothing to prove when u = v. Assume
that u < v. Logarithmic convexity of f implies the inequality

ln f(v) − ln f(u)

v − u
≤ ln f(v + λ) − ln f(u + λ)

(v + λ) − (u + λ)
.

Hence the assertion follows. ♦

A slight modification of the proof of the inequality (1) in [5, p. 26]
gives the following result.

Lemma 2.2. Let xk and yk (1 ≤ k ≤ n) be positive numbers. If λi ≥ 0
for 1 ≤ i ≤ n and if λ1 + . . . + λn = 1, then the inequality

(2.3)

n
∏

k=1

(xk + yk)
λk ≥

n
∏

k=1

xλk

k +

n
∏

k=1

yλk

k
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is valid with equality if yk = cxk where c > 0 or if xk = x and yk = 1− x
(0 < x < 1). Inequality (2.3) with λk = 1/n, 1 ≤ k ≤ n is also called the

Minkowski inequality (see [5, p. 26]).
The remaining two lemmas will be utilized in Sec. 4 in proofs of

the Ky Fan type inequalities for the means under discussion.

Lemma 2.3. Let a, a′, b and b′ be positive numbers and let α ≥ 0, β ≥ 0
with α + β = 1. If

b

b′
≤ a

a′
(2.4)

and

b′ ≤ a′,(2.5)

then

b

b′
≤ aαbβ

a′αb′β
≤ αa + βb

αa′ + βb′
≤ a

a′
.(2.6)

Proof. The first inequality in (2.6) follows easily from (2.4). We have

b

b′
=

(

b

b′

)α(
b

b′

)β

≤
( a

a′

)α
(

b

b′

)β

.

For the proof of the second inequality in (2.6) we use (2.4) and (2.5)
to obtain

(ab′ − a′b)(b′ − a′) ≤ 0

or what is the same as
a

′2b + ab
′2 ≤ aa′b′ + a′bb′.

Multiplying both sides by αβ = α(1 − α) = β(1 − β) we obtain

αβ(a
′2b + ab

′2) ≤ α(1 − α)aa′b′ + β(1 − β)a′bb′

which also can be written as
(αab′ + βa′b)(αa′ + βb′) ≤ a′b′(αa + βb).

Dividing both sides by (αa′ + βb′)a′b′ we obtain

α
a

a′
+ β

b

b′
≤ αa + βb

αa′ + βb′
.

Application of the inequality for the arithmetic and geometric means
gives the desired result. In order to prove the third inequality in (2.6)
we use the following one [14, (2.3)]

a + b

a′ + b′
≤ a

a′

which is valid provided the numbers a, a′, b and b′ satisfy (2.4). To
complete the proof we let above a :=αa, a′ :=αa′, b :=βb and b′ :=βb′. ♦
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The next result is known [14, Lemma 2.1].

Lemma 2.4. Let a, a′, b and b′ be positive numbers.

(i) If b ≤ a and b/b′ ≤ a/a′ ≤ 1 or if a ≤ b and 1 ≤ b/b′ ≤ a/a′,

then

(2.7)
1

b′
− 1

b
≤ 1

a′
− 1

a
.

(ii) If the numbers a, a′, b and b′ satisfy the inequalities (2.4) and

(2.5), then

(2.8) bb′ ≤ aa′.

3. Properties of generalized Heronian means

In this section we shall often write Λi,j or Λi,j(ω) instead of Λi,j(ω; x)
(ω ≥ 0, x ∈ R

n
>) when no confusion would arise. Similarly, we will write

φi for φi(x) and φj for φj(x).

Proposition 3.1. Let 1 ≤ i < j < k. Then

(3.1) φj ≤ Hi,j ≤ Hi,j ≤ φi

and

(3.2) Λj,k ≤ Λi,k ≤ Λi,j .

Proof. Inequalities (3.1) follow immediately from (1.4)–(1.7) and the
inequality of the weighted arithmetic and geometric means. For the proof
of (3.2) it suffices to use (1.6), (1.7) and the assumption that φi ≥ φj ≥
≥ φk . ♦

For particular means φi and φj the second inequality in (3.1) can
be refined. For instance, Seiffert’s mean P (x) (x ∈ R

2
>) which is defined

as

P (x) =







x1 − x2

2 arcsin x1−x2

x1+x2

, x1 6= x2

x1 , x1 = x2

(see [16]) satisfies
[

A2(x)G(x)
]

1

3 ≤ P (x) ≤
[

2A(x) + G(x)
]

/3

(see [13, (2.8) and (3.10)]). Using (1.7) and (1.6) we see that the first and
third members in the last inequality are equal to H1,2(1; x) and H1,2(1; x),
respectively.
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We shall utilize the following.

Proposition 3.2. The function ω → Λi,j(ω) is nonincreasing and log-

convex on the nonnegative semi-axis.

Proof. Let f(ω) = Hi,j(ω). Logarithmic differentiation together with
the use of (1.6) and (1.5) gives

(3.3)
f ′(ω)

f(ω)
= − n(φi − φj)

(n + ω)(n φi + ω φj)
.

Hence

(3.4)

[

f ′(ω)

f(ω)

]′

=
n(φi − φj)[n φi + ω φj + (n + ω)φj]

[

(n + ω)(n φi + ω φj)
]2 .

Making use of (1.4) we see that the right sides of (3.3) and (3.4) are
nonpositive and nonnegative, respectively. Hence the assertion follows
for the means Hi,j . Now let f(ω) = Hi,j(ω). Using (1.7) we obtain

f ′(ω)

f(ω)
= − n

n + ω
ln

(

φi

φj

)

≤ 0

and
[

f ′(ω)

f(ω)

]′

=
2n

(n + ω)3
ln

(

φi

φj

)

≥ 0,

where the inequalities follow from (1.4). The proof is complete. ♦

We are in a position to prove the following.

Theorem 3.3. Let α ≥ 1, λ ≥ 0, 0 ≤ ω1 ≤ ω2 and let ω ≥ 0. Then for

1 ≤ i < j

(3.5)
Λi,j(αω1 + λ)

Λi,j(αω2 + λ)
≤ Λi,j(α ω1)

Λi,j(α ω2)
≤
[

Λi,j(ω1)

Λi,j(ω2)

]α

and

(3.6)

[

Λi,j(ω)

φi

]α

≤ Λi,j(α ω)

φi

.

Proof. Let f(ω) = Λi,j(ω). For the proof of the first inequality in (3.5)
we use the inequality (2.1) with u = αω1 and v = αω2. The second
inequality in (3.5) follows from (2.2) with u = ω1 and v = ω2 . Inequality
(3.6) follows from (2.2) by letting u = 0 and v = ω. Taking into account
that f(0) = Λi,j(0) = φi (see (1.6), (1.7), and (1.5)) we obtain the desired
result. ♦
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Corollary 3.4. Let ω ≥ α ≥ 0. Then the function

ω → Λi,j(ω − α)

Λi,j(ω)

is nonincreasing on its domain.

Proof. In the first inequality in (3.5) put α ω1 := ω − α and α ω2 := ω
to obtain the assertion. ♦

A special case of the last result when Λi,j = H1,2 and α = 1 is
obtained in [6, Th. 5.1, case (ii)].

We will now deal with Schur-concavity of the generalized Heronian
means. For the reader’s convenience let us recall the definition of the
Schur-concave functions. Let D be an interval with nonempty interior
and let f : Dn → R (n ≥ 2). Function f is said to be Schur-concave on
Dn if f(x) ≥ f(y) for all n-tuples x and y in Dn such that x ≺ y. The
relationship of majorization ≺ means that

k
∑

i=1

x[i] ≤
k
∑

i=1

y[i], k = 1, 2, . . . , n − 1

and
n
∑

i=1

x[i] =
n
∑

i=1

y[i] ,

where x[1] ≥ x[2] ≥ · · · ≥ x[n] and y[1] ≥ y[2] ≥ · · · ≥ y[n] are nonincreasing
rearrangements of x and y, respectively (see, e.g., [8]). A well-known
result states that the function f ∈ C1(Dn) is Schur-concave if and only
if f is symmetric in its variables and the inequality

(3.7) (xk − xl)

(

∂ f(x)

∂ xk

− ∂ f(x)

∂ xl

)

≤ 0

holds for all 1 ≤ k, l ≤ n (see [8]).
For later use let us introduce the operator

(3.8) ∆k,l = (xk − xl)

(

∂

∂ xk

− ∂

∂ xl

)

.

Theorem 3.5. If both means φi and φj are symmetric and Schur-

concave, then the generalized Heronian mean Λi,j is also Schur-concave.

Proof. Let Λi,j = Hi,j . Using (1.6) we obtain
∆k,lΛi,j = µ(∆k,lφi) + ν(∆k,lφj) ≤ 0

where the last inequality holds true provided
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(3.9) ∆k,lφi ≤ 0 and ∆k,lφj ≤ 0.

The assertion now follows. Let now Λi,j = Hi,j . Application of (3.8) to
(1.7) gives

∆k,lHi,j = φµ−1
i φν−1

j

[

(µ φj)∆k,lφi + (ν φi)∆k,lφj

]

≤ 0,

where, again, the last inequality is holds true if the conditions (3.9) are
satisfied. The proof is complete. ♦

Corollary 3.6. The generalized Heronian means Λ1,2 , Λ1,3 , and Λ2,3

are Schur-concave functions of their variables.

Proof. Using (1.8)–(1.10) one easily obtains
∂

∂xk

An(x) =
1

n
,

∂

∂xk

Gn(x) =
Gn(x)

nxk

,
∂

∂xk

Hn(x) =
H2

n(x)

nx2
k

.

This and (3.8) imply
∆k,lAn(x) = 0,

∆k,lGn(x) = −(xk − xl)
2

nxkxl

Gn(x) ≤ 0,

∆k,lHn(x) = −(xk + xl)(xk − xl)
2

n(xkxl)2
H2

n(x) ≤ 0.

The assertion now follows from Th. 3.5. ♦

We close this section with a result about superadditivity of the
mean Λi,j . Now let D stand for a nonempty subset of R

n (n ≥ 1).
Recall that the function f : D → R is said to be superadditive if

(3.10) f(x + y) ≥ f(x) + f(y)

holds for all x, y, x + y ∈ D.
An important result states that if f is homogeneous of degree 1 in

its variables, i.e., if f(λx) = λf(x) for λ > 0, then f is superadditive if
and only if f is a concave function (see [15]).

We are in a position to prove the following.

Theorem 3.7. If the means φi and φj are superadditive functions of

their variables, then so is the generalized Heronian mean Λi,j .

Proof. Superadditivity of the mean Hi,j follows immediately from (2.3).
For the proof of superadditivity of Hi,j we shall employ the inequality

(3.11) (a + b)α(c + d)β ≥ aαcβ + bαdβ

(a, b, c, d > 0, α, β ≥ 0, α + β = 1) which follows (2.3). Using (1.7),
(3.10) and (3.11) with α = µ and β = ν, we obtain
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Hi,j(ω; x + y) = φi(x + y)µφj(x + y)ν

≥
[

φi(x) + φi(y)
]µ[

φj(x) + φj(y)
]ν

= Hi,j(ω; x) + Hi,j(ω; y)

(x, y ∈ R
n
>). The proof is complete. ♦

Corollary 3.8. The means Λ1,2 , Λ1,3 , and Λ2,3 are superadditive and

concave functions of their variables.

Proof. It follows from (1.1), Lemma 2.2 and [15], respectively, that the
means An, Gn and Hn are superadditive. Since the last three means are
homogeneous of degree 1, the assertion follows from Th. 3.7. ♦

Application of Lemma 2.2 to (1.11) shows that the logarithmic
mean Ln is superadditive. Also, it follows from (1.11) that this mean
is homogeneous of degree 1. Thus the generalized Heronian mean Λi,j

where (φi, φj) = (An, Ln) or (Ln, Gn) or (Ln, Hn) is superadditive and
concave in its variables.

4. Ky Fan inequality and related inequalities

This section is devoted to the study of Ky Fan and Ky Fan type
inequalities for the generalized Heronian means. To this end we will
always assume that x ∈ In where I = (0, 1/2]. Also, we will write x′ for
1 − x = (1 − x1, . . . , 1 − xn).

The following result is well known.

(4.1)
Hn(x)

Hn(x′)
≤ Gn(x)

Gn(x′)
≤ An(x)

An(x′)
,

where the first inequality in (4.1) was established by W.-L. Wang and P.-
F. Wang in [17] while the second one is due to Ky Fan (see, e.g., [5, p.5]).
Many results about inequalities of the form (4.1) and related inequalities
have been obtained by numerous researchers. The interested reader is
referred to [1]–[4], [12, 14] and the references therein.

The first result of this section reads as follows.

Theorem 4.1. Let 1 ≤ i < j. If the means φi and φj satisfy the Ky Fan

inequality

(4.2)
φj(x)

φj(x′)
≤ φi(x)

φi(x′)
,

then
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(4.3)
φj(x)

φj(x′)
≤ Hi,j(ω; x)

Hi,j(ω; x′)
≤ Hi,j(ω; x)

Hi,j(ω; x′)
≤ φi(x)

φi(x′)

holds for every ω ≥ 0 and the inequality

(4.4)
Λi,j(ω2; x)

Λi,j(ω2; x′)
≤ Λi,j(ω1; x)

Λi,j(ω1; x′)

is valid provided 0 ≤ ω1 ≤ ω2 .

Proof. Inequalities (4.3) follow immediately from Lemma 2.3 with a =
= φi(x), a′ = φi(x

′), b = φj(x), b′ = φj(x
′), α = µ and β = ν, where µ

and ν are defined in (1.5). For the proof of (4.4) when Λi,j = Hi,j we let

f(ω) =
Hi,j(ω; x)

Hi,j(ω; x′)
.

Differentiating with respect to ω and using (1.6) and (1.5) we obtain

f ′(ω) =
n
[

φj(x)φi(x
′) − φi(x)φj(x

′)
]

(n + ω)2
[

Hi,j(ω; x′)
]2 .

This in conjunction with (4.2) gives f ′[(ω) ≤ 0 for every ω ≥ 0. Thus
the function f(ω) is nonincreasing and the assertion follows. Assume
now that Λi,j = Hi,j and define

g(ω) =
Hi,j(ω; x)

Hi,j(ω; x′)
.

Logarithmic differentiation together with the use of (1.7) and (1.5) gives
g′(ω)

g(ω)
=

n

(n + ω)2
ln

[

φi(x
′)φj(x)

φi(x)φj(x′)

]

≤ 0,

where the last inequality is the consequence of (4.2). This shows that
the function g(ω) is nonincreasing and (4.4) follows in the case under
discussion. This completes the proof. ♦

Let 1 ≤ i < j < k. The following inequalities

(4.5) Λj,k(ω; x) ≤ Λi,k(ω; x) ≤ Λi,j(ω; x)

(ω ≥ 0, x ∈ R
n
>) are immediate consequence of (1.4), (1.6), and (1.7).

The Ky Fan analogue of (4.5) for the generalized Heronian means of the
second kind is obtained in the following.

Theorem 4.2. Let the means φi, φj and φk (1 ≤ i < j < k) satisfy the

Ky Fan inequalities

(4.6)
φk(x)

φk(x′)
≤ φj(x)

φj(x′)
≤ φi(x)

φi(x′)
.
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Then for every ω ≥ 0

(4.7)
Hj,k(ω; x)

Hj,k(ω; x′)
≤ Hi,k(ω; x)

Hi,k(ω; x′)
≤ Hi,j(ω; x)

Hi,j(ω; x′)
.

Proof. Inequalities (4.7) follow from (4.6) and (1.7). ♦

The remaining part of this section deals with the Ky Fan type
inequalities for the means under discussion. In particular, inequalities
for the differences, reciprocals and products of the generalized Heronian
means are obtained. They provide generalizations and refinements of
certain inequalities which appear in mathematical literature.

The following inequalities

An(x′) − An(x) ≤ Gn(x
′) − Gn(x),(4.8)

An(x′) − An(x) ≤ Hn(x
′) − Hn(x)(4.9)

and

(4.10)
1

H ′
n(x)

− 1

Hn(x)
≤ 1

Gn(x′)
− 1

Gn(x)
≤ 1

An(x′)
− 1

An(x)

have been established by H. Alzer in [1], [3], and [2], respectively.
Our next result reads as follows.

Theorem 4.3. Let the means φi and φj (1 ≤ i < j) satisfy the Ky Fan

type inequality

(4.11) φi(x
′) − φi(x) ≤ φj(x

′) − φj(x).

Then for every ω ≥ 0 the inequalities

(4.12) φi(x
′) − φi(x) ≤ Hi,j(ω; x′) − Hi,j(ω; x) ≤ φj(x

′) − φj(x)

and

(4.13)
1

φj(x′)
− 1

φj(x)
≤ 1

Hi,j(ω; x′)
− 1

Hi,j(ω; x)
≤ 1

φi(x′)
− 1

φi(x)

hold true.

Proof. For the proof of (4.12) we use (1.6) to obtain
Hi,j(ω; x′) − Hi,j(ω; x) = µ

[

φi(x
′) − φi(x)

]

+ ν
[

φj(x
′) − φj(x)

]

,

where µ and ν are defined in (1.5). Since the right side in the last equality
is the weighted mean of two nonnegative quantities, the assertion follows.
In order to establish the first inequality in (4.13) we apply Lemma 2.4
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with a = Hi,j(ω; x), a′ = Hi,j(ω; x′), b = φj(x) and b′ = φj(x
′). Using

the first and third members of (3.1) and (4.3) we see that, with a, a′, b
and b′ as defined earlier, the assumptions of Lemma 2.4 are satisfied and
the desired inequality is established. The second inequality in (4.13) can
be established in an analogous manner. We omit further details. ♦

Refinements of (4.8) and (4.9) can be obtained using (4.12) with
(φi, φj) = (An, Gn) and (φi, φj) = (An, Hn). Similarly, using (4.13)
with (φi, φj) = (Gn, Hn) and (φi, φj) = (An, Gn) one obtains refinements
of (4.10).

We close this section with the proof of the multiplicative version of
inequalities (4.3).

Theorem 4.4. Let the means φi and φj (1 ≤ i < j) satisfy the Ky Fan

inequality (4.2). Then for every ω ≥ 0

φj(x)φj(x
′) ≤ Hi,j(ω; x)Hi,j(ω; x′)(4.14)

≤ Hij(ω; x)Hi,j(ω; x′) ≤ φi(x)φi(x
′) .

Proof. The first inequality in (4.14) can be established using part (ii)
of Lemma 2.4 with b = φj(x), b′ = φj(x

′), a = Hi,j(ω; x) and a′ =
= Hi,j(ω; x′). The first inequalities in (3.1) and (4.3) show that the
assumptions of Lemma 2.4 are satisfied. The assertion now follows from
(2.8). The remaining two inequalities in (4.14) can be established in a
similar way. We omit further details. ♦

Corollary 4.5. For every ω ≥ 0 the following inequalities

Hn(x)Hn(x′) ≤ H2,3(ω; x)H2,3(ω; x′)(4.15)

≤ H2,3(ω; x)H2,3(ω; x′) ≤ Gn(x)Gn(x′)

and

Gn(x)Gn(x′) ≤ H1,2(ω; x)H1,2(ω; x′)(4.16)

≤ H1,2(ω; x)H1,2(ω; x′) ≤ An(x)An(x′)

hold true.

Proof. For the proof of (4.15) we apply (4.14) with φ2 = Gn and φ3 =
= Hn . Since the harmonic and geometric means satisfy the Ky Fan
inequality (see (4.1)) the assertion follows. Inequalities (4.16) can be
established in a similar manner. ♦
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