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Abstract: We shall show that 9, 165 are all of the odd unitary super perfect
numbers.

1. Introduction

We denote by σ(N) the sum of divisors of N . N is called to be
perfect if σ(N) = 2N . It is a well-known unsolved problem whether or
not an odd perfect number exists. Interest to this problem has produced
many analogous notions.

D. Suryanarayana [9] called N to be super perfect if σ(σ(N)) = 2N .
It is asked in this paper and still unsolved whether there were odd super
perfect numbers.

A special class of divisors is the class of unitary divisors. A divisor
d of n is called a unitary divisor if (d, n/d) = 1. Then we write d || n.
We denote by σ∗(N) the sum of unitary divisors of N . Replacing σ by
σ∗, Subbarao and Warren [8] introduced the notion of a unitary perfect
number. N is called to be unitary perfect if σ∗(N) = 2N . They proved
that there are no odd unitary perfect numbers. Moreover, Subbarao [7]
conjectured that there are only finitely many unitary perfect numbers.
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Combining these two notions, Sitaramaiah and Subbarao [5] studied
unitary super perfect (USP) numbers, integers N satisfying σ∗(σ∗(N)) =
= 2N . They found all unitary super perfect numbers below 108. The first
ones are 2, 9, 165, 238. Thus there are both even and odd USPs. They
proved that another odd USP must have at least four distinct prime
factors and conjectured that there are only finitely many odd USPs.

The purpose of this paper is to prove this conjecture. Indeed, we
show that the known two USPs are all.

Theorem 1.1 If N is an odd USP, then N = 9 or N = 165.
Our proof is completely elementary. The key point of our proof is

the fact that if N is an odd USP, then σ∗(N) must be of the form 2f1qf2 ,
where q is an odd prime. This yields that if pe is an unitary divisor of
N , then pe +1 must be of the form 2aqb. Moreover, elementary theory of
cyclotomic polynomials and quadratic residues gives that a ≤ 2 or b = 0.
Hence pe belongs a to very thin set. Using this fact, we deduce that q
must be small. For each small primes q, we show that σ∗(σ∗(N))/N < 2
and therefore N cannot be an USP unless N = 9, 165, with the aid of
the fact that f1, f2 must be fairly large. We sometimes use facts already
stated in [5] but we shall present proofs of these facts when proofs are
omitted in [5].

Our method does not seem to work to find all odd super perfect
numbers. Since σ(σ(N)) = 2N does not seem to imply that ω(σ(N)) ≤
≤ 2. Even assuming that ω(σ(N)) ≤ 2, the property of σ that σ(pe)/pe >
> 1 + 1/p prevents us from showing that σ(σ(N)) < 2. Nevertheless,
with the aid of a theory of exponential diophantine equations, we can
show that for any given k, there are only finitely many odd super perfect
numbers N with ω(σ(N)) ≤ k.

2. Preliminary lemmas

Let us denote by vp(n) the solution e of pe||n. For distinct primes
p and q, we denote by oq(p) the exponent of p mod q and we define
aq(p) = vq(p

d − 1), where d = oq(p). Clearly oq(p) divides q − 1 and
aq(p) is a positive integer. Now we quote some elementary properties of
vq(σ(px)). Lemma 2.1 is well known. Lemma 2.1 has been proved by
Zsigmondy [11] and rediscovered by many authors such as Dickson [2]
and Kanold [3]. See also Th. 6.4 A.1 in [4].
Lemma 2.1. If a > b ≥ 1 are coprime integers, then an−bn has a prime
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factor which does not divide am − bm for any m < n, unless (a, b, n) =
= (2, 1, 6) or a − b = n = 1, or n = 2 and a + b is a power of 2.

By Lemma 2.1, we obtain the following lemmas.

Lemma 2.2. Let p, q be odd primes and e be a positive integer. If

pe + 1 = 2aqb for some integers a and b, then one of the following holds:

a) e = 1.
b) e is even and q ≡ 1 (mod 2e).
c) p is a Mersenne prime and q ≡ 1 (mod 2e).

Proof. We first show that if a) does not hold, then either b) or c) must
hold. Since (p, e) 6= (2, 3) and e 6= 1, it follows from Lemma 2.1 that
p2e−1 has a prime factor r which does not divide pm−1 for any m < 2e.
Since the order of p (mod r) is 2e, r ≡ 1 (mod 2e). Since r is odd and
does not divide pe − 1, we see that r divides pe + 1 and therefore q = r.

If e is even, then b) holds. Assume that e is odd. If p + 1 has an
odd prime factor, then this cannot be equal to q and must be a prime
factor of pe + 1 = 2aqb, which is contradiction. Thus p is a Mersenne
prime and c) follows. ♦

Lemma 2.3. Let p be an odd prime and e be a positive integer. If

pe + 1 = 2a3b for some integers a and b, then e = 1.
Proof. By Lemma 2.2, e = 1 or 3 ≡ 1 (mod 2e). The latter is equivalent
to e = 1. ♦

Lemma 2.4. Let p be an odd prime and e, x be positive integers. If

pe + 1 = 2x, then e = 1.
Proof. If e > 1, then by Lemma 2.1, p2e − 1 has a prime factor which
does not divide pm − 1 for any m < 2e. This prime factor must be odd
and divide pe + 1, which violates the condition pe + 1 = 2x. ♦

Lemma 2.5. Let p be an odd prime and e, x be positive integers. If

2x + 1 = 3e, then (e, x) = (1, 1) or (2, 3).
Proof. We apply Lemma 2.1 with (a, b, n) = (3, 1, e). If e > 2, then
3e − 1 has a prime factor which does not divide 3 − 1 = 2. ♦

Lemma 2.6. If a prime p divides 2a + 1 for some integer a, then p is

congruent to 1, 3 or 5 (mod 8).
Proof. If a is even, then it is well known that p ≡ 1 (mod 4). If a is
odd, then p divides 2x2 + 1 with x = 2(a−1)/2. We have (−2/p) = 1 and
therefore p ≡ 1 or 3 (mod 8). ♦

Lemma 2.7. Let p and q be odd primes and b be a positive integer. If

a prime p divides qb + 1 and 4 does not divide qb + 1, then 4q does not

divide p + 1.
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Proof. If b is even, then p ≡ 1 (mod 4) and clearly 4q does not divide
p + 1.

If b is odd, then we have (−q/p) = 1 and q ≡ 1 (mod 4). Assume
that q divides p + 1. Since q ≡ 1 (mod 4), we have, by the reciprocity
law, (−q/p) = (−1/p)(q/p) = (−1/p)(p/q) = (−1/p)(−1/q) = (−1/p).
Thus (−1/p) = 1 and p ≡ 1 (mod 4) and therefore 4 does not divide
p + 1. ♦

3. Basic properties of odd USPs

In this section, we shall show some basic properties of odd USPs.
We write N = pe1

1 pe2

2 . . . pek

k , where p1, p2, . . . , pk are distinct primes.
Moreover, we denote by C the constant

(1)
∏

p,2p−1 is prime

2p

2p − 1
< 1.6131008.

This upper bound follows from the following estimate:

(2)
∏

p,2p−1 is prime

2p

2p − 1
<

4

3
·

(

∏

n≥3,n is odd

2n

2n − 1

)

<
4

3
· exp

(

∑

n≥3,n is odd

1

2n − 1

)

<
4

3
· exp

(

1

7

∑

n≥0

1

4n

)

=
4

3
· exp

(

4

21

)

= 1.631007 . . . .

Lemma 3.1. If N is an odd USP, then σ∗(N) = 2f1qf2 for some odd

prime q and positive integers f1, f2. Moreover, qf2+1 is not divisible by 4.
Proof. Since N is odd, σ∗(N) must be even. Moreover, since σ∗(σ∗

∗(N)) = 2N with N odd, σ∗(N) has exactly one odd prime factor. Hence
σ∗(N) = 2f1qf2 for some odd prime q and positive integers f1, f2. Since
σ∗(qf2) = qf2 + 1 divides σ∗(σ∗(N)) = 2N , 4 does not divide qf2 + 1. ♦

Henceforth, we let N 6= 9, 165 be an odd USP and write σ∗(N) =
= 2f1qf2 as allowed by Lemma 3.1.
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Lemma 3.2. Unless pi is a Mersenne prime and ei is odd, we have pei

i =
= 2aiqbi − 1 for some positive integers ai and bi with ai ≤ 2. Moreover,

f1 =
∑k

i=1 ai and f2 =
∑k

i=1 bi.

Proof. Since σ∗(pei

i + 1) divides σ∗(N) = 2f1qf2 , we can write pei

i + 1 =
= 2aiqbi with some nonnegative integers ai and bi. Since pi is odd and
non-Mersenne, ai and bi are positive by Lemma 2.4.

If ei is even, then pei

i + 1 ≡ 2 (mod 4). Hence ai = 1.
Assume that pi is not a Mersenne prime and ei is odd. By Lemma 2.2,

we have ei = 1 and therefore pi = pei

i = 2aiqbi − 1. By Lemmas 2.6 and
2.7, we have ai ≤ 2 since qf2 + 1 is not divisible by 4. This shows ai ≤ 2.
The latter part of the lemma immediately follows from 2f1qf2 = σ∗(N) =
=
∏

(pei

i + 1). ♦

Lemma 3.3. ω(N) ≥ 3.

Proof. First we assume that N = pe1

1 . Since we have σ∗(N)/N = 1 +
+ 1/N and σ∗(σ∗(N))/σ∗(N) ≤ (1 + 1/2)(1 + 2/N) by Lemma 3.1, we
have N ≤ 9. We can easily confirm that N = 9 is the sole odd USP with
N ≤ 9.

Next we assume that N = pe1

1 pe2

2 . Since we have σ∗(N)/N ≤
≤ (1 + 1/3)(1 + 3/N) and σ∗(σ∗(N))/σ∗(N) ≤ (1 + 1/4)(1 + 4/N), we
have N < 37. We can easily confirm that there is no odd USP N with
N < 37 and ω(N) = 2.

Another proof of impossibility of ω(N) = 1 unless N = 2, 9 (whether
N is even or odd) can be found in [5, Th. 3.2] and impossibility of ω(N) =
= 2 (again, N may be even) is stated in [5, Th. 3.3] with their proof
presented only in the case N is even. ♦

4. q cannot be 3

In this section, we show that q 6= 3. There are two cases: the case
3 | N and the case 3 ∤ N .
Proposition 4.1. If 3 ∤ N and 3 | σ∗(N), then f1 and f2 are even, pi

has the form 2 · 3bi − 1 with positive integers bi.

Proof. We have ei = 1 by Lemma 2.3. Thus any pi must be of the form
2ai · 3bi − 1 with nonnegative integers ai, bi. Since 3f2 + 1 is not divisible
by 4, f2 must be even. Since 3 does not divide 2f1 + 1, f1 must also be
even. By Lemma 2.6, any prime factor of N is congruent to 1 (mod 4)
and therefore ai must be odd. By Lemma 3.2, we have ai = 1. ♦

Hence we have pi ∈ {5, 17, 53, 4373, . . .}.
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Lemma 4.2. If 3 | σ∗(N), then 3 | N .

Proof. Suppose 3 | σ∗(N) and 3 ∤ N . By Prop. 4.1, we have

(3)
σ∗(N)

N
≤

6

5
·
18

17
·
54

53
·

(

∞
∏

i=7

2 · 3i

2 · 3i − 1

)

.

Since

(4)

∞
∏

i=7

2 · 3i

2 · 3i − 1
≤ exp

∞
∑

i=7

1

2 · 3i − 1
≤ exp

(

1

2 · 37 − 1

∞
∑

i=0

3−i

)

,

we have

(5)
σ∗(N)

N
<

6

5
·
18

17
·
54

53
· exp

(

3

8744

)

.

Since k ≥ 3 by Lemma 3.3, we have f1 = k ≥ 3 and f2 ≥ 3 + 2 +
+ 1 = 6. Thus we obtain

(6)
σ∗(σ∗(N))

σ∗(N)
≤

9

8
·
730

729
.

Multiplying (5) and (6), we obtain

(7) 2 =
σ∗(σ∗(N))

N
<

9

8
·
730

729
·
6

5
·
18

17
·
54

53
· exp

(

3

8744

)

= 1.4588 · · · < 2,

which is a contradiction. ♦

Lemma 4.3. It is impossible that 3 | N and 3 | σ∗(N).

Proof. Suppose 3 | N and 3 | σ∗(N). We have ei = 1 by Lemma 2.3. By
Lemma 2.6, 2ai +1 is divisible by no Mersenne prime other than 3. Since
3bi + 1 cannot be divisible by 4, bi must be odd and therefore 3bi + 1 is
divisible by no Mersenne prime. Hence it follows from Lemma 3.2 that
any pi must be of the form 2ai · 3bi − 1, where ai ≤ 2 and bi are positive
integers. Hence pi ∈ {5, 11, 17, 53, 107, 971, 4373, . . .}.

Thus we obtain

(8)
σ∗(N)

N
≤

4

3
·
6

5
·
12

11
·
18

17
·
54

53
·
108

107
·

(

∞
∏

i=7

2 · 3i

2 · 3i − 1

)

·

(

∞
∏

i=5

4 · 3i

4 · 3i − 1

)

.
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As in the proof of the previous lemma, substituting the inequality

(9)
∞
∏

i=5

4 · 3i

4 · 3i − 1
≤ exp

(

1

4 · 35 − 1

∞
∑

i=0

3−i

)

we have

(10)
σ∗(N)

N
≤

4

3
·
6

5
·
12

11
·
18

17
·
54

53
·
108

107
· exp

(

3

8744
+

3

1942

)

.

Since k ≥ 46 by [5, Th. 3.4], we have

(11)
σ∗(σ∗(N))

σ∗(N)
≤

246 + 1

246
·
345 + 1

345
.

Multiplying (10) and (11), we obtain

(12) 2 =
σ∗(σ∗(N))

N

≤
246+1

246
·
345+1

345
·
4

3
·
6

5
·
12

11
·
18

17
·
54

53
·
108

107
· exp

(

3

8744
+

3

1942

)

≤ 1.9041 · · · < 2,

which is a contradiction. ♦

It immediately follows from these two lemmas that q 6= 3.

5. The remaining part

The remaining case is the case 3 ∤ σ∗(N), i.e., q 6= 3.
Lemma 5.1. Suppose pi is not a Mersenne prime. Then pei

i has the

form 2ai · qbi − 1 with positive integers ai ≤ 2 and bi. Moreover, for any

integer b, at most one of the pairs (1, b) and (2, b) appear in (ai, bi)’s.
Proof. The former part follows from Lemma 3.2. Since q 6= 3, 3 divides
at least one of 2 · qb − 1 and 4 · qb − 1. If both pairs (ai, bi) = (1, b) and
(aj , bj) = (2, b) appear, then at least one of pei

i and p
ej

j must be a power
of three, which violates the condition that pi and pj are not Mersenne. ♦

Lemma 5.2. q ≤ 13. Furthermore, provided f2 ≥ 2, we have q = 5 or

q = 7.
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Proof. By Lemma 5.1, we have

(13)
σ∗(N)

N
≤ C ·

(

∞
∏

a=1

2 · qa

2 · qa − 1

)

.

Since
∏∞

a=1 2 · qa/(2 · qa − 1) ≤ exp (q/ {(q − 1)(2q − 1)}), we have

(14)
σ∗(N)

N
≤ C · exp

(

q

(q − 1)(2q − 1)

)

.

By Lemma 3.3, we have

(15)
σ∗(σ∗(N))

σ∗(N)
≤

2f1 + 1

2f1

·
qf2 + 1

qf2

≤
23 + 1

23
·
qf2 + 1

qf2

.

Combining these inequalities, we obtain

(16) 2 ≤
σ∗(σ∗(N))

N
≤

23 + 1

23
· C ·

qf2 + 1

qf2

· exp

(

q

(q − 1)(2q − 1)

)

.

Hence

(17)
qf2 + 1

qf2

· exp

(

q

(q − 1)(2q − 1)

)

≥
16

9C
≥ 1.102087.

This yields q ≤ 13. If f2 ≥ 2, then this inequality yields q ≤ 7. ♦

Theorem 5.3. q 6= 5.

Proof. Suppose that q=5. Then we have pei

i =2 · 5bi − 1 or pei

i =4 · 5bi−
−1 or pi is Mersenne. Hence pei

i ∈ {19, 499, 7812499, . . . , 9, 49, 1249, . . . ,
3, 7, 31, 127, 8191, . . .}. We note that 9 = 32 and 49 = 72.

Let us assume that 19 | N . Then f1 ≡ 9 (mod 18) and hence
33 | N . By (2), we have

(18)
σ∗(N)

N
≤

3

4
·
28

27
· C · exp

(

5

36

)

.

Since f1 ≥ 9, we have

(19)
σ∗(σ∗(N))

N
≤

29 + 1

29
·
6

5
·
7

9
· C · exp

(

5

36

)

= 1.7332 · · · < 2,

which is contradiction. Thus 19 cannot divide N . From this we deduce
that if pei

i = 2 · 5bi − 1 or pei

i = 4 · 5bi − 1, then bi ≥ 3.
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It is impossible that 7 | N since 7 does not divide 2x + 1 or 5x + 1
for any integer x.

Hence, by Lemma 3.3 we have

(20)
σ∗(σ∗(N))

N
≤

7

8
· C · exp

(

5

4
·
250

249

)

·
6

5
·
9

8
< 1.9150 · · · < 2.

So that, we cannot have q = 5. ♦

Theorem 5.4. q 6= 7, 11, 13.

Proof. Suppose q = 7. Observing that 4 · 7b − 1 is divisible by 3, we
deduce from Lemma 3.2 that, for any i, pi is a Mersenne prime or pei

i =
= 2 · 7bi − 1. By Lemma 2.6, (2f1 + 1)(7f2 + 1) is not divisible by 7.
Hence

σ∗(N)

N
≤

4

3
·

(

∞
∏

i=2

22i+1

22i+1 − 1

)

·

(

∞
∏

i=1

2 · 7i

2 · 7i − 1

)

(21)

≤
4

3
· exp

(

1

31
·
4

3
+

1

13
·
8

7

)

.

By Lemma 3.3, we have k ≥ 3. We deduce from Lemma 3.2 that we
can take an integer s with 1 ≤ s ≤ 3 for which the following statement
holds: there is at least 3 − s indices i such that pi is a Mersenne prime
and ei is odd, and there is at least s indices i such that pei

i = 2 · 7bi − 1.
If s = 1, then f1 ≥ 6 and f2 ≥ 1. If s = 2, then f1 ≥ 4 and f2 ≥ 3. If
s = 3, then f1 ≥ 3 and f2 ≥ 6.
(22)
σ∗(σ∗(N))

σ∗(N)
≤ max

{

26 + 1

26
·
8

7
·
24 + 1

24
·
73 + 1

73
,
23 + 1

23
·
76 + 1

76

}

≤
65

56
.

Combining two inequalities (21) and (22), we have

(23)
σ∗(σ∗(N))

N
≤

65

56
·
4

3
· exp

(

1

31
·
4

3
+

1

13
·
8

7

)

= 1.7604 · · · < 2,

which is a contradiction.
Suppose q = 11. Observing that 2 · 112b+1 − 1 and 4 · 112b − 1 is

divisible by 3, we deduce from Lemma 3.2 that, for any i, pi is a Mersenne
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prime or pei

i = 2ai · 7bi − 1 with ai + bi odd.

σ∗(N)

N
≤

4

3
·

(

∞
∏

i=2

22i+1

22i+1 − 1

)

·

(

∞
∏

i=1

2 · 11i

2 · 11i − 1

)

(24)

≤
4

3
· exp

(

1

31
·
4

3
+

1

21
·
12

11

)

.

In a similar way to derive (22), we obtain

(25)
σ∗(σ∗(N))

σ∗(N)
≤

23 + 1

23
·
116 + 1

116
.

Combining these inequalities, we have

2 =
σ∗(σ∗(N))

N
≤

23 + 1

23
·
116 + 1

116
·
4

3
·
8

7
· exp

(

1

31
·
4

3
+

1

21
·
12

11

)

(26)

≤ 1.8850 · · · < 2,

which is a contradiction.
Suppose q = 13. 3 | N and 3 ∤ (qf2 + 1) since q = 13 ≡ 1 (mod 3).

Hence f1 must be odd. Moreover, f2 = 1 by Lemma 5.2. Hence σ∗(N) =
= 2f1 · 13 and N = 7(2f1 + 1). There is exactly one index j such that p

ej

j

is of the form 2a13b − 1 for some positive integers a, b. By Lemma 3.2,
we have a ≤ 2. Moreover, we have b = 1 since b ≤ f2 = 1. Hence
p

ej

j = 25 = 52. Since 13f2 + 1 = 2 · 7, 2f1 + 1 must be divisible by 5. But
this is impossible since f1 is odd. ♦

Now Th. 1.1 is clear. By Lemma 5.2, q must be one of 3, 5, 7, 11, 13.
In the previous section, it is shown that q 6= 3. Th. 5.3 shows that q 6= 5.
Th. 5.4 eliminates the remaining possibilities.
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