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Abstract: In this short paper we consider geometries over pairs (K, L) of
finite fields. All this is done in complete analogy to the Gauss-plane. We have
finite miquelian Möbius-planes. In these geometries we investigate products of
reflections. It turns out that there exist two classes of homographies and two
classes of anti-homographies as well. With this, some mistakes found in the
literature are corrected.

1. Introduction: ingredients

In complete analogy to the Gauss-plane over (R, C) we develop a finite
(K, L)-plane. For better understanding the reader should always have
this analogy in the backhead.

1.1. Some algebra

We start with a finite field K = GF(q) = GF(pe), p prime, p > 2, e ∈
∈ N. Using a polynomial f(x) = x2 + b irreducible in K we adjoin an
element ε with ε2 = −b /∈ (K∗)2. In this way a quadratic extension field
is obtained. We have L = {x1, x2 ∈ K | x1 + εx2}.
Notions. K∗ = K \ {0}, L∗ = L \ {0}.

X = x1 − εx2 is called the conjugate element of X = x1 + εx2 and
N(X) = X ·X = x2

1 + bx2
2 the norm of X.
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Lemmata. If N(L∗) is the set of norms of all elements in L∗ then (only
in the finite case) we have N(L∗) = K∗ ⊂ (L∗)2. In L∗ there exist
squares and non-squares with cardinality 1

2
(q2 − 1) each. Fig. 1 shows

the situation in the case L = GF(9).

Figure 1. The field L = GF(9).

1.2. The geometric elements in the (K,L)-plane

Points: P = L ∪ {∞}, |P |= q2 + 1. Lines: G = {X ∈ L | XM +
+ XM + d = 0} ∪ {∞} with M ∈ L∗, d ∈ K.

XM +XM +d = 0 and NX +NX + e = 0 represent the same line
if there exists r ∈ K∗ such that N = rM , e = rd (equivalence).

With X = x1 + εx2, M = m1 + εm2 the equation may be written
as x1m1 + bx2m2 + 1

2
d = 0.

Some properties. A, B ∈ P , |{A, B}| = 2. There exists exactly one
line g(A, B) with A, B ∈ g(A, B).

Each line contains exactly q + 1 points.
Cardinality of G: |G |= q(q + 1).
Circles: K = {X∈L |N(X−M)=c} with M ∈ L, c ∈ N(L∗)=K∗.
Again it is possible to write the equation in another way:

(x1 −m1)
2 + b (x2 −m2)

2 = c.

Some properties. A, B, C ∈ P , |{A, B, C}| = 3. There exists exactly
one circle k(A, B, C) with A, B, C ∈ k(A, B, C).

Each circle contains exactly q + 1 points.
Cardinality of K: |K |= q2(q − 1).
Circles: Z = G ∪ K, |Z |= q(q2 + 1).



Reflections in finite (K, L)-planes 15

1.3. Mappings

1.3.1. Cycle preserving mappings M

M : µ(X) : X ′ =
Sρ(X) + T

Uρ(X) + V
S, T, U, V ∈ L, det = SV − TU 6= 0.

ρ(X) are automorphisms of L: ρ(X) ∈
{
Xp, Xp2

, . . . , Xq, . . . , X2q
}
.

The case ρ(X) = Xq corresponds to the conjugation ρ(X) = X
(Frobenius) and ρ(X) = X2q to ρ(X) = X (Fermat).

In respect of the point at infinity ∞ special definitions must be
given.

µ(∞) = S
U

if U 6= 0, µ(∞) = ∞ if U = 0 and µ(X) = ∞ if
Uρ(X) + V = 0.

A mapping is called cycle preserving if not only the set of points
P is mapped bijective on itself but also the set of cycles. It turns out
that all the mappings of M are cycle preserving. And much more the
mappings M are exactly the cycle preserving mappings (v. Staudt).
Some properties. |M | = 2eq2 (q4 − 1).
Remark. Multiplying the numerator and the denominator with Z ∈ L∗

we obtain
det = (SV − TU) · Z2.

The determinant is therefore only determined up to factors from (L∗)2.

1.3.2. Homographies H. We take ρ(X) = X and obtain

H : µ(X) : X ′ =
SX + T

UX + V
S, T, U, V ∈ L, det = SV − TU 6= 0.

Special definitions in connection with the point at infinity as before.
These special mappings are called homographies.
Some properties. The mappings H are cycle preserving.

Composition of mappings in H yields a group which operates sharply
3-transitive on P .

|H| = q2(q4 − 1).
1.3.3. Lemma. There exist two classes H1, H2 of homographies with
cardinality |H1| = |H2| = 1

2
q2 (q4 − 1).

Definition. If det ∈ (L∗)2 we speak about homographies of the first
class H1 and in the other case det /∈ (L∗)2 about homographies of the
second class H2.
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There remains only to prove the supposition concerning the cardi-
nality.

Let α(X) a mapping from H1.

α(X) : X ′ =
SX + T

UX + V
, det = SV − TU ∈ (L∗)2 .

We multiply the numerator with P /∈ (L∗)2 and obtain a mapping
β(X).

β(X) : X ′ =
PSX + PT

UX + V
, det = P (SV − TU) /∈ (L∗)2 .

We have a mapping from H2. Every mapping α ∈ H1 induces a
mapping β ∈ H2. Therefore we have |H1| ≤ |H2|.

Now we start with a mapping α(X) ∈ H2.

α(X) : X ′ =
SX + T

UX + V
, det = A = SV − TU /∈ (L∗)2 .

Multiplying the numerator with A yields a new homography

γ(X) : X ′ =
ASX + AT

UX + V
, det = A(SV − TU) = A2.

We have γ(X) ∈ H1 and |H2| ≤ |H1|.
With this we obtain |H1| = |H2| = 1

2
q2 (q4 − 1).

Remark. In the case K = R, L = C there don’t exist two classes H1

and H2. Due to the fundamental theorem of algebra the determinant of
each homography is a square in C. Therefore there remains only the first
class.
1.3.4. Anti-homographies. We take ρ(X) = X and obtain

H : µ(X) : X ′ =
SX + T

UX + V
, S, T, U, V ∈ L, det = SV − TU 6= 0.

These mappings are called anti-homographies.

Some properties. The anti-homographies are cycle preserving.
Composition of such mappings does not yield a group.
|H| = q2(q4 − 1).
Exactly as in the case of homographies we distinguish two classes

H1, H2 with |H1| = |H2| = 1
2
q2 (q4 − 1).
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1.3.5. Reflections

Definition. Cycle preserving mappings from M with exactly one fixed
point cycle k are called reflections σk in k. Other fixed points are not
allowed.

Reflection in a line: g = {X ∈ L | XM + XM + d = 0} ∪∞

σg : X ′ =
−XM − d

M
, det = −MM ∈ K∗ ⊂ (L∗)2 .

Reflection in a circle: k = {X ∈ L | XX −XM −XM + MM = c}

σk : X ′ =
XM−MM + c

X −M
, det=−MM+MM−c = −c ∈ K∗⊂(L∗)2 .

We see that all reflections are elements in H. If we replace X ′ by
X in the mapping equation we obtain the respective fixed point cycle.
Other fixed points cannot exist.

Only now we arrive the end of our ingredients chapter. We had to
do with a lot of well-known material.

2. Products of reflections

2.1. Some fundamental homographies

2.1.1. Definitions. In analogy to classical geometry we define some
very special homographies.

Translation τ : X ′ = X + A, A ∈ L∗

Reciprocation α: X ′ =
1

X
Rotation ρ: X ′ = DX, D ∈ L∗, N(D) = 1, D 6= 1

Central dilatation ζ: X ′ = rX, r ∈ K∗, r 6= 1.
2.1.2. Lemma. The rotation ρ may be written in the following way

X ′ = DX =
G

G
X, G ∈ L∗.

Proof.
G

G
=

g1 + εg2

g1 − εg2

= d1 + εd2, N(D) = d2
1 + bd2

2 = 1.

Multiplication yields
g1 (1− d1)− g2bd2 = 0

−g1d2 + g2 (1 + d1) = 0
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det = (1− d1) (1 + d1)− bd2
2 = 1− d2

1 − bd2
2 = 0.

The system of equations therefore has a non-trivial solution g1, g2.
2.1.3. Lemma. Every special homography in 2.1.1 may be decomposed
in two reflections.
Proof. Translation τ :

σ1: X1 = −A

A
X − A, reflection in XA + XA + AA = 0

σ2: X ′ = −A

A
X1, reflection in XA + XA = 0

τ = σ1σ2.
Reciprocation α

σ1: X1 =
1

X
, reflection in XX = 1

σ2: X ′ = X1, reflection in X −X = 0

α = σ1σ2.
Central dilatation ζ

σ1: X1 =
1

X
, reflection in XX = 1

σ2: X ′ =
r

X1

, reflection in XX = r

ζ = σ1σ2.
Rotation ρ. We prefer the presentation with G.

σ1: X1 = −G

G
X, reflection in XG + X G = 0

σ2: X ′ = −X1, reflection in X + X = 0

ρ = σ1σ2.

2.1.4. Lemma. The mapping µ: X ′ = AX, A ∈ L∗ is product of a
rotation ρ and a central dilatation ζ if and only if A ∈ (L∗)2. The center
of the dilatation ζ and the center of the rotation ρ coincide.
Proof. First direction µ = ζσ ⇒ A ∈ (L∗)2:

ζ: X1 = rX, r 6= 1, r ∈ K∗ ⊂ (L∗)2

ρ: X ′ =
G

G
X1, G ∈ L∗, G 6= 1

µ = ζρ: X ′ =
G

G
rX = AX
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A =
GG

GG
r =

G2

GG
r ∈ (L∗)2 .

Second direction A = B2 ⇒ µ = ζρ:

µ: X ′ = B2X =
BBB

B
X = (BB)

B

B
X

ρ: X1 =
B

B
X

ζ: X ′ = BBX1

µ = ρζ.

2.2. Theorem. Every product of an even number of reflections (product
of even length) yields a homography of H1.
Proof. It is enough to give a proof for two reflections. Here we calculate
only the case of two reflections in lines.

g1 : XM1 + XM1 + d1 = 0, σg1 : X1 =
−XM1 − d1

M1

, det = −M1M1 ∈ (L∗)2,

g2 : X2M2 + XM2 + d2 = 0, σg2 : X ′ =
−X1M2 − d2

M2

, det = −M2M2 ∈ (L∗)2,

σg1σg2 : X ′ =
XM2M1 + M2d1 −M1d2

M2M1

, det =
(
M1M1

) (
M2M2

)
∈ (L∗)2.

The multiplication of σ1 and σ2 yields a homography of the first
class. In the same way the proof works if we have other cycles (line and
circle, circle and circle). The proofs are becoming very easy if we use
the well-known fact that the determinant of a product in our case is the
product of determinants: det σ1σ2 = det σ1 det σ2.

2.3. Theorem. Every first class homography may be represented as a
product of reflections with even length.
Proof. Given the mapping µ ∈ H1

µ : X ′ =
SX + T

UX + V
, det = SV − TU ∈ (L∗)2 , U 6= 0.

(In the case U = 0 the mapping µ is a translation and all is done.)
First of all we decompose µ in the following way.
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µ1: X1 = − U2

SV − TU
X, det = − U2

SV − TU

µ2: X2 = X1 −
UV

SV − TU
, det = 1

µ3: X3 =
1

X2

, det = −1

µ4: X ′ = X3 +
S

U
, det = 1.

Indeed we obtain
µ1 µ2 µ3 µ4 :

X ′ = X3 +
S

U
=

1

X2

+
S

U
=

1

X1 − UV
SV −TU

+
S

U

=
SV − TU

−U(UX + V )
+

S

U
=

SX + T

UX + V
= µ.

µ2, µ4 are translations and µ3 the reciprocation. With SV − TU ∈
∈ (L∗)2 Lemma 2.1.4 shows that µ1 is the product of a rotation and a
central dilatation. Using Lemma 2.1.3 the proof is perfect. ♦
2.4. Theorem. Summarizing 2.2 and 2.3 we obtain our main result:

The elements of H1 are exactly the products of reflections with even
length. In the case (R, C) H1 is to be replaced by H.

2.5. Theorem. The elements of H1 are exactly the products of reflec-
tions with odd length. In the case (R, C) H1 is to be replaced by H.

The proof is running completely analogous to the case of products
with even length.

Figure 2. Summary

3. Final comment

It is possible to prove a lot of surprising theorems within the (K, L)-
Geometry. Instead of doing in this way we make an important remark
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concerning the method. We emphasize that all proofs given in this paper
are working only by calculation in the fields K, L. No pictures are needed.
So we encounter an abstract geometry which can be done also by blind
people.
Acknowledgement. The referee has found some mistakes and in this
way improved the paper. Many thanks!
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