SUPPORTING SPHERE FOR A SPECIAL FAMILY OF COMPACT CONVEX SETS IN THE EUCLIDEAN SPACE

Horst Kramer

Nesselweg 39, D-65527 Niederhausen, Germany

A. B. Németh
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, RO-400084 Cluj-Napoca, Romania

Received: December 2006
MSC 2000: 52 A 20
Keywords: Convexity, supporting spheres, best approximant.

Abstract

For a family of compact convex sets $A^{1}, A^{2}, \ldots, A^{n+1}$ in \mathbb{R}^{n} having empty intersection and such that each n of them have a nonvoid intersection we are proving that there is one and only one supporting sphere in the unique bounded connected component of $\mathbb{R}^{n} \backslash \cup_{i=1}^{n+1} A^{i}$. It is constructed a homeomorphism of the mentioned bounded connected component with the open n-dimensional simplex.

1. Introduction and the main result

In the following there will be said that a family \mathcal{K} of sets in the Euclidean space \mathbb{R}^{n} has a supporting sphere, if there exists a sphere S in \mathbb{R}^{n} having common points with each member of the family \mathcal{K} and the interior of S contains no point of any member of \mathcal{K}. The family \mathcal{K} of sets in \mathbb{R}^{n} will said to be independent, if for any $n+1$ pairwise distinct

[^0]members K_{1}, \ldots, K_{n+1} of \mathcal{K}, any set of points p_{1}, \ldots, p_{n+1}, where $p_{i} \in$ $\in K_{i}, i=1, \ldots, n+1$ determines a simplex of dimension n. In the papers $[7,8,9]$ we have used Brouwer's fixed point theorem for the proof of a supporting sphere for an independent family of $n+1$ compact convex sets in \mathbb{R}^{n} (see also [6]) and respectively in a Minkowski space. The same method was used in [10] for proving the existence of a supporting sphere for a special not independent family of three compact convex sets in the Euclidean plane \mathbb{R}^{2}.

Our terminology used next is in accordance with that in the books [1], [3], [4], [13] and [14].

Let us consider $N=\{1,2, \ldots, n+1\}$ and the family $\mathcal{H}=\left\{A^{1}, A^{2}, \ldots\right.$, $\left.A^{n+1}\right\}$ of convex compact sets in \mathbb{R}^{n}. For $S \subset N$ we denote

$$
A^{S}=\cap_{i \in S} A^{i}
$$

Suppose that the family \mathcal{H} possesses the following properties:
(i) $A^{N \backslash\{j\}} \neq \emptyset, \forall j \in N$,
(ii) $A^{N}=\emptyset$.

A family of compact convex sets having the above properties (i) and (ii) will be called in the sequel an \mathcal{H}-family.

Our main result is as follows:
Theorem 1. Let $\mathcal{H}=\left\{A^{1}, A^{2}, \ldots, A^{n+1}\right\}$ be an \mathcal{H}-family. Then the following assertions hold:

1. The set $\mathbb{R}^{n} \backslash \cup_{i \in N} A^{i}$ possesses exactly two connected components, one of them U (called in the sequel the hole), being bounded.
2. The hole U contains a unique equally spaced point from the sets in \mathcal{H}, that is, U contains a unique supporting sphere for these sets.
3. The hole U is homeomorphic with the open n-dimensional simplex.

2. Preliminaries

We gather in this section some notions, as well as some well known and easily verifiable results (occasionally with their short proofs) which will play a role in our next proofs.

We shall denote by \mathbb{R}^{n} the n-dimensional Euclidean vector space. If $M \subset \mathbb{R}^{n}$ is nonempty, we shall denote by co M the convex hull and by aff M the affine hull of M.

Consider the space \mathbb{R}^{n} to be endowed with the usual scalar product $\langle.,$.$\rangle , the norm \|$.$\| and the topology it induces. The interior, the closure$
and the boundary of a set $M \subset \mathbb{R}^{n}$ will be denoted by int $M, \mathrm{cl} M$, and bd M respectively.

If $C \subset \mathbb{R}^{n}$ is a nonempty closed convex set, then each $x \in \mathbb{R}^{n}$ possesses a unique best approximant in C, i. e., a unique $y \in C$ with $\|x-y\|=\inf \{\|x-c\|: c \in C\}$. We shall use the notation $d(x, C)=$ $=\inf \{\|x-c\|: c \in C\}$. The function $d(., C)$ is continuous.

The nonempty subset K in \mathbb{R}^{n} is called a convex cone if it is satisfying the following properties:

1. $\left(k_{1}\right) \quad K+K \subset K$, and
2. $\left(k_{2}\right) \quad \lambda K \subset K$, for every $\lambda \in \mathbb{R}_{+}$.
3. $\left(k_{3}\right)$ The convex cone K is called pointed, if $K \cap(-K)=\{0\}$.

The notions of convex cone and pointed convex cone will be used also for translations of the above defined sets. Then the point corresponding to 0 by the translation will be called the vertex of the cone.

The dual cone K^{*} of the convex cone K is the set

$$
K^{*}=\left\{y \in \mathbb{R}^{n}:\langle x, y\rangle \geq 0, \forall x \in K\right\}
$$

K^{*} is a closed set satisfying the axioms $\left(k_{1}\right),\left(k_{2}\right)$.
If C is a nonempty convex set in \mathbb{R}^{n}, then the affine functional $f=$ $=\langle h,\rangle+.\alpha$ with $h \in R^{n}, h \neq 0$ and its kernel $H=\left\{x \in \mathbb{R}^{n}: f(x)=0\right\}$ is called a supporting hyperplane to C at $c \in C$, if $C \subset H_{+}=\{x \in$ $\left.\in \mathbb{R}^{n}: f(x) \geq 0\right\}$ and $c \in H$. In this case H_{+}is said the supporting halfspace, the vector h the normal to the supporting hyperplane. (We consider that the normal of the supporting hyperplane is oriented always towards C, if C has a nonempty interior.) If C is a closed convex set with nonempty interior, then at each point of its boundary it has a supporting hyperplane. We need also the notation $H_{-}=\left\{x \in \mathbb{R}^{n}: f(x) \leq 0\right\}$ for the other halfspace, determined by the supporting hyperplane to C at c.

If K is a convex cone and does not coincide with the whole space, it possesses a supporting hyperplane at 0 .
Lemma 1. Let us consider the cone given by the intersection $K=$ $=\cap_{i=1}^{m} H_{i}^{+}$of the halfspaces determined by the hyperplanes H_{1}, \ldots, H_{m} through the origin with the normals h_{1}, \ldots, h_{m}. If $K \neq\{0\}$, then there exists a supporting hyperplane H through 0 to K^{*} such that $h_{i} \in H_{+}$, $i=1, \ldots, m$.
Proof. Since K is not the whole space and is not reducing to $\{0\}, K^{*}$ is a convex cone with the same property. Let be H a supporting hyperplane to K^{*}. Then $h_{i} \in K^{*} \subset H_{+}, i=1, \ldots, m$. \diamond

We say that the boundary of a convex set with nonempty interior is
smooth, if in each of its points there exists a unique supporting hyperplane to the convex set. An immediate consequence of the above lemma is:
Corollary 1. If C_{1}, \ldots, C_{m} are compact convex sets with smooth boundaries in \mathbb{R}^{n}, such that int $\cap_{i=1}^{m} C_{i} \neq \emptyset$ and x is a point of the intersection of the boundaries of $C_{i}, i=1, \ldots, m$, then the normals in x to the supporting hyperplanes of $C_{i}, i=1, \ldots, m$ are contained in a halfspace determined by some supporting hyperplane in x to $\cap_{i=1}^{m} C_{i}$.

In the following we need also the notion of the ϵ-neighborhood of a convex body ([3] p. 2, [14] p. 91), which is also known in the German literature as the "Parallelkörper" ([1] p. 48, [4] p. 30, [13] p. 160), and in the English literature "outer parallel body" ([11], p. 134). For $\varepsilon>0$ we denote by $B(x ; \varepsilon)$ the (open) ball centered at x of radius ε, i.e., the set $B(x ; \varepsilon)=\left\{y \in \mathbb{R}^{n}:\|y-x\|<\varepsilon\right\}$. If $M \subset \mathbb{R}^{n}$ is nonempty, the set $M^{\varepsilon}=\cup_{x \in M} B(x ; \varepsilon)$ is called the ε-neighborhood of M (it is called also the outer parallel body of M in [11], p. 134) $M_{\varepsilon}=\operatorname{cl} M^{\varepsilon}$ will be called the ε-hull of M.

If $C \subset \mathbb{R}^{n}$ is a nonempty convex set, then C^{ε} and C_{ε} are booth convex sets. It is immediate that $C_{\varepsilon}=\left\{x \in \mathbb{R}^{n}: d(x, C) \leq \varepsilon\right\}$.
Lemma 2. If C is a nonempty compact convex set in \mathbb{R}^{n}, then for any $\varepsilon>0$, the set C_{ε} has a smooth boundary.
Proof. Let $x \in \operatorname{bd} C_{\varepsilon}$. If y is the best approximant of x in C, then obviously $x \in \operatorname{bd} B(y ; \varepsilon)$. Let H be a supporting hyperplane to C_{ε} in x. Then, since $\operatorname{cl} B(x ; \varepsilon) \subset C_{\varepsilon}, H$ will be also a supporting hyperplane to $\operatorname{cl} B(y ; \varepsilon)$ at x. Since $\operatorname{bd} B(y ; \varepsilon)$ is an Euclidean sphere, it has a unique tangent hyperplane at x. This shows that H is unique. \diamond

3. The proof

We shall carry the proof by verifying a sequence of lemmas.
Lemma 3. [The existence of a bounded connected component.] Consider the \mathcal{H}-family $\mathcal{H}=\left\{A^{1}, A^{2}, \ldots, A^{n+1}\right\}$. Then we have the assertions:

1. If $a_{i} \in A^{N \backslash\{i\}}$, then the points $a_{1}, a_{2}, \ldots, a_{n+1}$ are in general position (they are affinely independent, respectively are tuples of an n dimensional simplex).
2. If $\Delta^{N \backslash\{i\}}=\mathrm{co}\left\{a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n+1}\right\}$ then $\Delta^{N \backslash\{i\}} \subset A^{i}$.
3. The simplex Δ^{N} contains in its interior a bounded connected component of the set

$$
\mathbb{R}^{n} \backslash \cup_{i \in N} A^{i}
$$

Proof. 1. It is enough to show that for an arbitrary $k \in N, a_{k} \notin$ $\notin \operatorname{aff}\left\{a_{1}, \ldots, a_{k-1}, a_{k+1}, \ldots, a_{n+1}\right\}$.

Assume the contrary. Denote

$$
H=\operatorname{aff}\left\{a_{1}, \ldots, a_{k-1}, a_{k+1}, \ldots, a_{n+1}\right\}
$$

Thus $\operatorname{dim} H \leq n-1$. The points a_{i} are all in the manifold H. Denote

$$
B^{i}=H \cap A^{i} .
$$

Since $a_{i} \in A^{N \backslash\{i\}}$ and $a_{i} \in H$ it follows that

$$
a_{i} \in \cap_{j \in N \backslash\{i\}} A^{j} \cap H=\cap_{j \in N \backslash\{i\}} B^{j}, \forall i \in N .
$$

This means that the family of convex compact sets $\left\{B^{j}: j \in N\right\}$ in H possesses the property that any n of them have nonempty intersection. Then by Helly's theorem they have a common point. But this would be a point of A^{N} too, which contradicts (ii).
2. Since $a_{i} \in \cap_{l \in N \backslash\{i\}} A^{l}$, it follows that $a_{i} \in A^{j}, \forall i \in N \backslash\{j\}$. Thus

$$
\Delta^{N \backslash\{j\}}=\operatorname{co}\left\{a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n+1}\right\} \subset A^{j}
$$

3. The assertion follows from an equivalent of Sperner's lemma (see [5]), which asserts that if a collection of closed sets $F^{j}: j \in N$ possesses the property, that it covers Δ^{N} and $\Delta^{N \backslash\{j\}} \subset F^{j}$, then $\cap_{j \in N} F^{j} \neq \emptyset$. \diamond
Remark 1. The above reasonings have overlappings with the proof of a theorem due to C. Berge [2] (see also [12], Th. 3.7.5) who proved that if a convex compact set in \mathbb{R}^{n} is covered by a family of $n+1$ convex subsets, each n of them having nonempty intersection, then the whole family has a nonempty intersection. The lemma can be deduced in fact from this theorem. We have supplied the proof for the sake of completeness.
Lemma 4. [The existence in Δ of an equally spaced point.] Let A_{ε}^{i} be the $\varepsilon>0$-hull of the set A^{i}, i.e., the set of points with the distance $\leq \varepsilon$ from the set A^{i}. Then:
4. There exists an $\varepsilon_{0}>0$ such that:
(i) $\left\{A_{\varepsilon}^{i}: i \in N\right\}$ is a \mathcal{H}-family for $\varepsilon<\varepsilon_{0}$,
(ii) $B_{\varepsilon}=\cap_{i \in N}\left(\Delta \cap A_{\varepsilon}^{i}\right) \neq \emptyset$ for $\varepsilon \geq \varepsilon_{0}$.
5. $B_{\varepsilon_{0}}$ reduces to a single point.

Here Δ is the simplex Δ^{N} defined in Lemma 3.
Proof. 1. Assume the contrary: for no $\varepsilon>0$ is $\mathcal{H}_{\varepsilon}=\left\{A_{\varepsilon}^{1}, A_{\varepsilon}^{2}, \ldots, A_{\varepsilon}^{n+1}\right\}$ an \mathcal{H}-family. This is equivalent with saying that

$$
C_{\varepsilon}=\cap_{i \in N} A_{\varepsilon}^{i} \neq \emptyset, \quad \forall \varepsilon>0
$$

The family $\left\{C_{\varepsilon}: \varepsilon>0\right\}$ is centered (every finite collection of its members possesses a nonempty intersection). Hence, according the compactness
of its sets, the whole family has nonempty intersection. But a direct verification yields that

$$
\cap_{\varepsilon>0} C_{\varepsilon}=\cap_{i \in N} A^{i}=\emptyset
$$

(ii) Obviously, B_{ε} is compact and nonempty for ε great enough, and $B_{\varepsilon_{1}} \subset B_{\varepsilon_{2}}$ as soon $\varepsilon_{1} \leq \varepsilon_{2}$.

The family of sets $\left\{B_{\varepsilon}: B_{\varepsilon} \neq \emptyset\right\}$ possesses a nonempty intersection by the compactness of its members. Denote $\varepsilon_{0}=\inf \left\{\varepsilon: B_{\varepsilon} \neq \emptyset\right\}$. Then $B_{\varepsilon_{0}}=\cap\left\{B_{\varepsilon}: B_{\varepsilon} \neq \emptyset\right\}$.

We shall show first that no point of $B_{\varepsilon_{0}}$ can be an interior point of some $A_{\varepsilon_{0}}^{i}$. Assuming the contrary, e.g. that $b \in B_{\varepsilon_{0}} \cap$ int $A_{\varepsilon_{0}}^{i}$ we have first of all that $d\left(b, A^{i}\right)<\varepsilon_{0}$ and $d\left(b, A^{j}\right) \leq \varepsilon_{0}, j \in N$. Since $A^{N \backslash\{i\}}$ is nonempty, $\varepsilon_{0}>0$ by the property (i), the set $A_{\varepsilon_{0}}^{N \backslash\{i\}}$ is convex and has a nonempty interior. Now, $b \in A_{\varepsilon_{0}}^{N \backslash\{i\}}$ and each of its neighborhoods contains interior points of $A_{\varepsilon_{0}}^{N \backslash\{i\}}$. Hence so does int $A_{\varepsilon_{0}}^{i}$. Let be x a such point. Then $d\left(x, A^{j}\right)<\varepsilon_{0}, j \in N$. Denote by $\delta=\sup \left\{d\left(x, A^{j}\right): j \in N\right\}$. It follows that $x \in B_{\delta}$ with $\delta<\varepsilon_{0}$, in contradiction with the definition of ε_{0}.

Thus $B_{\varepsilon_{0}}$ is on the boundary of every $A_{\varepsilon_{0}}^{i}$. Hence:

$$
d\left(b, A^{j}\right)=\varepsilon_{0}, \forall j \in N \forall b \in B_{\varepsilon_{0}} .
$$

2. If $B_{\varepsilon_{0}}$ would contain two distinct points, b_{1} and b_{2}, the line segment determined by these two points would be in this set too.

The line determined by these points should meet the boundary of Δ^{N} which is in $\cup_{j \in N} A^{j}$. Thus the line would meet some set A^{i} in a point a. Suppose that b_{1} is between a and b_{2}. Let c be the point in A^{i} at distance ε_{0} from b_{2}. Consider the plane of dimension two determined by the line $c b_{2}$ and the line $b_{1} b_{2}$. This plane meets the supporting hyperplane to A^{i} at c and perpendicular on $c b_{2}$ in a line λ which is perpendicular to $c b_{2}$. Now, a must be behind the supporting hyperplane, hence the line $b_{2} b_{1}$ meets the line λ in a point d between a and b_{2}. Thus the triangle $d c b_{2}$ is rectangular at c. Since $B_{\varepsilon_{0}}$ is convex, we can suppose without loss of generality that b_{1} is on the segment $f b_{2}$, where f is the base of the perpendicular from c to $b_{1} b_{2}$. But then the distance from b_{1} to c is less then the distance of b_{2} to c which is ε_{0}. This contradiction shows that $B_{\varepsilon_{0}}$ reduces to a point. \diamond
Remark 2. In the above lemma it was shown that in Δ there exists a unique equally spaced point of minimal distance from the sets A^{i}. The proof yields in fact also the existence of such a point for a family of
compact convex sets $\left\{C^{1}, C^{2}, \ldots, C^{m+1}\right\}$ with the property that $C^{i_{1}} \cap$ $\cap C^{i_{2}} \cap \ldots \cap C^{i_{m}} \neq \emptyset \forall i_{j} \in\{1,2, \ldots, m+1\}$ and $\cap_{i=1}^{m+1} C^{i}=\emptyset$, only the uniqueness needs $m=n$.
Lemma 5. [The uniqueness of the equally spaced point in Δ.] Suppose that $U=\Delta \backslash \cup_{i \in N} A^{i}$. Then U is an open set contained in int Δ. Suppose that $u \in U$ and $b_{i}, i=1, \ldots, n+1$ are the best approximants of u in $A^{i}, i=1, \ldots, n+1$ respectively. Let be $\delta_{i}=\left\|b_{i}-u\right\|, i=1, \ldots, n+1$. Then

$$
\cap_{i \in N} A_{\delta_{i}}^{i}=\{u\} .
$$

Here Δ is the simplex Δ^{N} in Lemma 3. As a consequence of this assertion we shall show that there exists a unique point in U which is equally spaced from the sets $A^{i}, i=1, \ldots, n+1$.
Proof. We observe first that the vectors $b_{i}-u, i=1, \ldots, n+1$ are in general position in the sense that they cannot be contained in a halfspace determined by some hyperplane through u. Indeed, if H_{i} is the supporting hyperplane to A^{i} through b_{i} with the normal vector $u-b_{i}$, then $H_{i}+\left(u-b_{i}\right)$ will be the tangent hyperplane to $A_{\delta_{i}}^{i}$ at u. The set $\cap_{i \in N} H_{i-}$ will contain in its interior the point u and will be disjoint from $\cup_{i \in N} A_{i}$. Hence it must be in U and so in int Δ. But then it must be an n-dimensional simplex with the vectors $b_{i}-u, i=1, \ldots, m$ the perpendiculars to the faces of dimension $n-1$ of this simplex whose affine hull contains the point b_{i}. Hence these vectors are in general position. But $b_{i}-u$ are in same time normals of the hyperplanes $H_{i}+\left(u-b_{i}\right)$ which are supporting hyperplanes to $A_{\delta_{i}}^{i}$ in the common point u of their boundaries. By Cor. 1 then int $\cap_{i \in N} A_{\delta_{i}}^{i}$ is empty.

The single common point of the boundaries of $A_{\delta_{i}}^{i}$ can be u, because if contrary then the common part of these boundaries would contain a segment and we would arrive to a contradiction in the mode it was done earlier in our proof.

Denote $B_{\varepsilon_{0}}=\{v\}$. We shall show that v is the only point in Δ which is equally spaced from $A^{i}, i=1, \ldots, n+1$. It was shown above that v is the single equally spaced point of minimal distance ε_{0} from $A^{i}, i=1, \ldots, n+1$. Then if there exists another point w in Δ which is equally spaced from $A^{i}, i=1, \ldots, n+1$, its distance η must be strictly greater as ε_{0}. From the definition of ε_{0} this would mean that we have int $\cap_{i \in N} A_{\eta}^{i} \neq \emptyset$ and w must be a common point of the boundaries of the sets $A_{\eta}^{i}, i=1, \ldots, n+1$. The normals at the point w of the supporting hyperplanes to A_{η}^{i} are by the above assertion in general position, but by

Cor. 1 they must be in a halfspace determined by a hyperplane through w. The obtained contradiction shows that w cannot exist. \diamond

Gathering the considerations used in the proofs of Lemmas 4 and 5 we can verify the following assertion:
Corollary 2. Let us consider the functions $\phi_{i}, i \in N$ acting in $[0, \infty)$ having the properties:
(a) ϕ_{i} is continuous and strictly increasing,
(b) $\phi_{i}(0)=0$, (c) $\lim _{t \rightarrow \infty} \phi_{i}(t)=\infty, i \in N$.

Then there exists a unique $t_{0}>0$ such that:
(i) $\left\{A_{\phi_{i}(t)}^{i}: i \in N\right\}$ is an \mathcal{H}-family for $0<t<t_{0}$,
(ii) $B_{t}=\cap_{i \in N}\left(\Delta \cap A_{\phi_{i}(t)}^{i}\right) \neq \emptyset$ for $t \geq t_{0}$.
(iii) $B_{t_{0}}$ reduces to a single point.

Here Δ is the simplex Δ^{N} considered in Lemma 3.
We shall show that the hole U is homeomorphic with the interior of the standard unit simplex

$$
\begin{aligned}
T=\{ & \left(t_{1}, t_{2}, \ldots, t_{n+1}\right) \in \mathbb{R}^{n+1}: \\
& \left.t_{i} \geq 0, i=1,2, \ldots, n+1, t_{1}+t_{2}+\cdots+t_{n+1}=1\right\}
\end{aligned}
$$

by constructing effectively the homeomorphism. (This interior is in fact the relative interior of T with respect to the topology of the affine hull of T. We shall denote it by int T.)
Lemma 6. The mapping

$$
\Phi(x)=\left(\frac{d\left(x, A^{1}\right)}{\sum_{i \in N} d\left(x, A^{i}\right)}, \frac{d\left(x, A^{2}\right)}{\sum_{i \in N} d\left(x, A^{i}\right)}, \ldots, \frac{d\left(x, A^{n+1}\right)}{\sum_{i \in N} d\left(x, A^{i}\right)}\right)
$$

is a well defined continuous mapping from U to int T, which is a bijection, and since U is locally compact, a homeomorphism.
Proof. Φ is injective. Assume that $\Phi(x)=\Phi(y)$ for some $x \neq y$ in U.
Denote

$$
\alpha=\frac{1}{\sum_{i \in N} d\left(x, A^{i}\right)}, \quad \beta=\frac{1}{\sum_{i \in N} d\left(y, A^{i}\right)}
$$

Then $\alpha d\left(x, A^{i}\right)=\beta d\left(y, A^{i}\right), i=1,2, \ldots, n+1$.
Using the notations $\varepsilon_{i}=d\left(x, A^{i}\right)$ and $\eta_{i}=d\left(y, A^{i}\right), i \in N$, we have by Lemma 5 that

$$
\cap_{i \in N} A_{\varepsilon_{i}}^{i}=\{x\} \text { and } \cap_{i \in N} A_{\eta_{i}}^{i}=\{y\} .
$$

Assume $\alpha>\beta$. Then $\varepsilon_{i}=d\left(x, A^{i}\right)<d\left(y, A^{i}\right)=\eta_{i}, i \in N$. Hence $x \in \operatorname{int} A_{\eta_{i}}^{i}, i \in N$ and hence

$$
x \in \cap_{i \in N} \operatorname{int} A_{\eta_{i}}^{i} \subset \cap_{i \in N} A_{\eta_{i}}^{i}=\{y\},
$$

which is a contradiction.

Thus we must have $\alpha=\beta$. But then it follows that $d\left(x, A^{i}\right)=$ $=d\left(y, A^{i}\right), i \in N$ which by Lemma 5 shows that $x=y$.
Φ is surjective. Let $\left(t_{1}, t_{2}, \ldots t_{n+1}\right) \in \operatorname{int} T$. We shall use Cor. 2 with $\phi_{i}(t)=t_{i} t, i \in N$ to conclude: There exist a unique $\delta>0$ and a unique point $z \in U$, such that

$$
\cap_{i \in N} \Delta \cap A_{\delta t_{i}}^{i}=\{z\} .
$$

Then $d\left(z, A^{i}\right)=\delta t_{i}$ and by substitution in the formula defining Φ we have obviously $\Phi(z)=\left(t_{1}, t_{2}, \ldots, t_{n+1}\right)$. \diamond

Let us denote next the union $\cup_{i \in N} A^{i}$ by A. We have finally to prove:
Lemma 7. The set $\mathbb{R}^{n} \backslash(A \cup U)$ is unbounded and connected.
Proof. Let us consider the points $a_{i}, i \in N$ defined in Lemma 3. Then a_{i} is outside A^{i} hence the convex cone C^{i} with vertex a_{i}, engendered by the rays issuing from a_{i} through A^{i} is pointed.

We show first that the set $D^{i}=\mathbb{R}^{n} \backslash\left(A \cup C^{i}\right)$ is arcwise connected.
Since C^{i} contains the points a_{j} with $j \neq i$, it will contain Δ and hence the bounded component U.

Consider an arbitrary point $v \in U$. Denote with b_{i} its best approximant in A^{i} and let H_{i} be the hyperplane supporting A^{i} at b_{i} with the normal $v-b_{i}$.

The hyperplane L_{i} through a_{i} parallel with H_{i} will be contained, excepting the point a_{i}, in the set $B^{i}=\mathbb{R}^{n} \backslash C^{i}$.

The ray d in B^{i} issuing from a_{i} meets the set A in a bounded line segment. Indeed, it cannot meet A^{i} and meets $A^{j}, j \neq i$ in a line segment $a_{i} c_{j}$ on d. The union of these segments yield a line segment $a_{i} c$ on d. Then $d^{\prime}=d \backslash a_{i} c$ will be a ray without $A \cup U$.

Consider the points $x, y \in D^{i}$. Then each of them are on some rays of the above type, say d^{\prime}, respectively $d^{\prime \prime}$. Now, these rays can be joined by a path in D^{i}. And thus we can construct a path from x to y in D^{i}.

Thus D^{i} is connected.
Since $\mathbb{R}^{n} \backslash(A \cup U)=\cup_{i \in N} D^{i}$, to conclude the proof of the lemma it is enough to show that $D^{i} \cap D^{j} \neq \emptyset, \forall i, j$.

Observe that the part of the halfspace L_{k}^{+}(where L_{k} is the hyperplane parallel with H_{k} through a_{k}) which is outside the ball containing A, is contained in D^{k}.

The halfspace L_{i}^{+}through a_{i} and the halfspace L_{j}^{+}through a_{j} have an unbounded intersection. This assertion could be false only if L_{i} and
L_{j} would be parallel. But this is impossible, since their normals $v-b_{i}$ and $v-b_{j}$ by the proof of Lemma 5 cannot be parallel.

The unbounded intersection $L_{i}^{+} \cap L_{j}^{+}$must contain points in $D^{i} \cap D^{j}$ and hence the latter set is nonempty. \diamond
Acknowledgement. The authors express their gratitude to the referee for many valuable suggestions which improved the original version.

References

[1] BLASCHKE, W.: Kreis und Kugel, Verlag von Veit \& Comp., Leipzig, 1916.
[2] BERGE, C.: Sur un propriéte combinatoire des ensembles convexes, C. R. Acad. Sci. Paris 248 (1959), 2698.
[3] BOLTYANSKI, V., MARTINI, H. and SOLTAN, P. S.: Excursion into Combinatorial Geometry, Springer-Verlag, Berlin-Heidelberg, 1997.
[4] BONNESEN, T. and FENCHEL, W.: Theorie der konvexen Körper, SpringerVerlag, 1974.
[5] FAN, Ky: A covering property of simplexes, Math. Scand. 22 (1968), 17-20.
[6] KLEE, V., LEWIS, T. and VON HOHENBALKEN, B.: Appollonius Revisited: Supporting Spheres for Sundered Systems, Discrete and Computational Geometry 18 (1997), 385-395.
[7] KRAMER, H. and NÉMETH, A. B.: Supporting spheres for families of independent convex sets, Archiv der Mathematik 24 (1973) 91-96.
[8] KRAMER, H. and NÉMETH, A. B.: Aplicarea teoremei de punct fix a lui Brouwer in geometria corpurilor convexe, Analele Universitatii din Timisoara, Ser. St. Mat. 13 (1975) 1, 33-39.
[9] KRAMER, H. and NÉMETH, A. B.: Equally spaced points for families of compact convex sets in Minkowski spaces, Mathematica 15 (38) (1973) 1, 71-78.
[10] KRAMER, H.: On a special family of compact convex sets in the Euclidean plane R^{2}, Mathematica Pannonica 17 (2006) 2, 255-265.
[11] SCHNEIDER, R.: Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993.
[12] STOER, J. and WITZGALL, Ch.: Convexity and Optimization in Finite Dimensions I, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
[13] VALENTINE, F. A.: Konvexe Mengen, Hochschultaschenbücher-Verlag, Mannheim, 1968.
[14] WEBSTER, R.: Convexity, Oxford University Press, 1994.

[^0]: E-mail addresses: f.h.kramer@gmail.com, nemab@math.ubbcluj.ro

