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Abstract: For a family of compact convex sets A1, A2, . . . , An+1 in R
n having

empty intersection and such that each n of them have a nonvoid intersection
we are proving that there is one and only one supporting sphere in the unique
bounded connected component of R

n \ ∪n+1

i=1
Ai. It is constructed a home-

omorphism of the mentioned bounded connected component with the open
n-dimensional simplex.

1. Introduction and the main result

In the following there will be said that a family K of sets in the
Euclidean space R

n has a supporting sphere , if there exists a sphere S
in R

n having common points with each member of the family K and the
interior of S contains no point of any member of K. The family K of
sets in R

n will said to be independent, if for any n + 1 pairwise distinct
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members K1, . . . , Kn+1 of K, any set of points p1, . . . , pn+1, where pi ∈
∈ Ki, i = 1, . . . , n+1 determines a simplex of dimension n. In the papers
[7, 8, 9] we have used Brouwer’s fixed point theorem for the proof of a
supporting sphere for an independent family of n + 1 compact convex
sets in R

n (see also [6]) and respectively in a Minkowski space. The same
method was used in [10] for proving the existence of a supporting sphere
for a special not independent family of three compact convex sets in the
Euclidean plane R

2.
Our terminology used next is in accordance with that in the books

[1], [3], [4], [13] and [14].

Let us consider N = {1, 2, . . . , n+1} and the family H = {A1, A2, ...,
An+1} of convex compact sets in R

n. For S ⊂ N we denote

AS = ∩i∈SAi.
Suppose that the family H possesses the following properties:
(i) AN\{j} 6= ∅, ∀ j ∈ N,
(ii) AN = ∅.
A family of compact convex sets having the above properties (i)

and (ii) will be called in the sequel an H-family.
Our main result is as follows:

Theorem 1. Let H = {A1, A2, . . . , An+1} be an H-family. Then the
following assertions hold:

1. The set R
n\∪i∈NAi possesses exactly two connected components,

one of them U (called in the sequel the hole), being bounded.
2. The hole U contains a unique equally spaced point from the sets

in H, that is, U contains a unique supporting sphere for these sets.
3. The hole U is homeomorphic with the open n-dimensional sim-

plex.

2. Preliminaries

We gather in this section some notions, as well as some well known
and easily verifiable results (occasionally with their short proofs) which
will play a role in our next proofs.

We shall denote by R
n the n-dimensional Euclidean vector space.

If M ⊂ R
n is nonempty, we shall denote by co M the convex hull and by

affM the affine hull of M .
Consider the space R

n to be endowed with the usual scalar product
〈., .〉, the norm ‖.‖ and the topology it induces. The interior, the closure
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and the boundary of a set M ⊂ R
n will be denoted by int M , cl M , and

bd M respectively.
If C ⊂ R

n is a nonempty closed convex set, then each x ∈ R
n

possesses a unique best approximant in C, i. e., a unique y ∈ C with
‖x − y‖ = inf{‖x − c‖ : c ∈ C}. We shall use the notation d(x, C) =
= inf{‖x − c‖ : c ∈ C}. The function d(., C) is continuous.

The nonempty subset K in R
n is called a convex cone if it is satis-

fying the following properties:
1. (k1) K + K ⊂ K, and
2. (k2) λK ⊂ K, for every λ ∈ R+.
3. (k3) The convex cone K is called pointed, if K ∩ (−K) = {0}.
The notions of convex cone and pointed convex cone will be used

also for translations of the above defined sets. Then the point corre-
sponding to 0 by the translation will be called the vertex of the cone.

The dual cone K∗ of the convex cone K is the set
K∗ = {y ∈ R

n : 〈x, y〉 ≥ 0, ∀x ∈ K}.

K∗ is a closed set satisfying the axioms (k1), (k2).
If C is a nonempty convex set in R

n, then the affine functional f =
= 〈h, .〉+ α with h ∈ Rn, h 6= 0 and its kernel H = {x ∈ R

n : f(x) = 0}
is called a supporting hyperplane to C at c ∈ C, if C ⊂ H+ = {x ∈
∈ R

n : f(x) ≥ 0} and c ∈ H . In this case H+ is said the supporting
halfspace, the vector h the normal to the supporting hyperplane. (We
consider that the normal of the supporting hyperplane is oriented always
towards C, if C has a nonempty interior.) If C is a closed convex set with
nonempty interior, then at each point of its boundary it has a supporting
hyperplane. We need also the notation H− = {x ∈ R

n : f(x) ≤ 0} for
the other halfspace, determined by the supporting hyperplane to C at c.

If K is a convex cone and does not coincide with the whole space,
it possesses a supporting hyperplane at 0.
Lemma 1. Let us consider the cone given by the intersection K =
= ∩m

i=1H
+
i of the halfspaces determined by the hyperplanes H1, . . . ., Hm

through the origin with the normals h1, . . . , hm. If K 6= {0}, then there
exists a supporting hyperplane H through 0 to K∗ such that hi ∈ H+,
i = 1, . . . , m.
Proof. Since K is not the whole space and is not reducing to {0}, K∗ is
a convex cone with the same property. Let be H a supporting hyperplane
to K∗. Then hi ∈ K∗ ⊂ H+, i = 1, . . . , m. ♦

We say that the boundary of a convex set with nonempty interior is
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smooth, if in each of its points there exists a unique supporting hyperplane
to the convex set. An immediate consequence of the above lemma is:
Corollary 1. If C1, . . . , Cm are compact convex sets with smooth bound-
aries in R

n, such that int ∩m
i=1Ci 6= ∅ and x is a point of the intersection

of the boundaries of Ci, i = 1, . . . , m, then the normals in x to the
supporting hyperplanes of Ci, i = 1, . . . , m are contained in a halfspace
determined by some supporting hyperplane in x to ∩m

i=1Ci.
In the following we need also the notion of the ǫ-neighborhood of a

convex body ([3] p. 2, [14] p. 91), which is also known in the German
literature as the “Parallelkörper” ([1] p. 48, [4] p. 30, [13] p. 160), and
in the English literature “outer parallel body” ([11], p. 134). For ε > 0
we denote by B(x; ε) the (open) ball centered at x of radius ε, i.e., the
set B(x; ε) = {y ∈ R

n : ‖y − x‖ < ε}. If M ⊂ R
n is nonempty, the set

Mε = ∪x∈MB(x; ε) is called the ε-neighborhood of M (it is called also
the outer parallel body of M in [11], p. 134) Mε = cl Mε will be called
the ε-hull of M .

If C ⊂ R
n is a nonempty convex set, then Cε and Cε are booth

convex sets. It is immediate that Cε = {x ∈ R
n : d(x, C) ≤ ε}.

Lemma 2. If C is a nonempty compact convex set in R
n, then for any

ε > 0, the set Cε has a smooth boundary.
Proof. Let x ∈ bd Cε. If y is the best approximant of x in C, then
obviously x ∈ bd B(y; ε). Let H be a supporting hyperplane to Cε in x.
Then, since cl B(x; ε) ⊂ Cε, H will be also a supporting hyperplane to
cl B(y; ε) at x. Since bd B(y; ε) is an Euclidean sphere, it has a unique
tangent hyperplane at x. This shows that H is unique. ♦

3. The proof

We shall carry the proof by verifying a sequence of lemmas.
Lemma 3. [The existence of a bounded connected component.] Con-
sider the H-family H = {A1, A2, . . . , An+1}. Then we have the assertions:

1. If ai ∈ AN\{i}, then the points a1, a2, . . . , an+1 are in general
position (they are affinely independent, respectively are tuples of an n-
dimensional simplex).

2. If ∆N\{i} = co {a1, . . . , ai−1, ai+1, . . . , an+1} then ∆N\{i} ⊂ Ai.
3. The simplex ∆N contains in its interior a bounded connected

component of the set
R

n \ ∪i∈NAi.
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Proof. 1. It is enough to show that for an arbitrary k ∈ N , ak /∈
/∈ aff {a1, . . . , ak−1, ak+1, . . . , an+1}.

Assume the contrary. Denote
H = aff {a1, . . . , ak−1, ak+1, . . . , an+1}.

Thus dim H ≤ n − 1. The points ai are all in the manifold H . Denote
Bi = H ∩ Ai.

Since ai ∈ AN\{i} and ai ∈ H it follows that
ai ∈ ∩j∈N\{i}A

j ∩ H = ∩j∈N\{i}B
j , ∀ i ∈ N.

This means that the family of convex compact sets {Bj : j ∈ N} in H
possesses the property that any n of them have nonempty intersection.
Then by Helly’s theorem they have a common point. But this would be
a point of AN too, which contradicts (ii).

2. Since ai ∈ ∩l∈N\{i}A
l, it follows that ai ∈ Aj , ∀ i ∈ N \ {j}.

Thus
∆N\{j} = co {a1, . . . , aj−1, aj+1, . . . , an+1} ⊂ Aj .

3. The assertion follows from an equivalent of Sperner’s lemma (see
[5]), which asserts that if a collection of closed sets F j : j ∈ N possesses
the property, that it covers ∆N and ∆N\{j} ⊂ F j, then ∩j∈NF j 6= ∅. ♦

Remark 1. The above reasonings have overlappings with the proof of a
theorem due to C. Berge [2] (see also [12], Th. 3.7.5) who proved that if a
convex compact set in R

n is covered by a family of n + 1 convex subsets,
each n of them having nonempty intersection, then the whole family has
a nonempty intersection. The lemma can be deduced in fact from this
theorem. We have supplied the proof for the sake of completeness.
Lemma 4. [The existence in ∆ of an equally spaced point.] Let Ai

ε be
the ε > 0-hull of the set Ai, i.e., the set of points with the distance ≤ ε
from the set Ai. Then:

1. There exists an ε0 > 0 such that:
(i) {Ai

ε : i ∈ N} is a H-family for ε < ε0,
(ii) Bε = ∩i∈N (∆ ∩ Ai

ε) 6= ∅ for ε ≥ ε0.
2. Bε0

reduces to a single point.
Here ∆ is the simplex ∆N defined in Lemma 3.
Proof. 1. Assume the contrary: for no ε > 0 is Hε = {A1

ε, A
2
ε, . . . , A

n+1
ε }

an H-family. This is equivalent with saying that
Cε = ∩i∈NAi

ε 6= ∅, ∀ε > 0.

The family {Cε : ε > 0} is centered (every finite collection of its members
possesses a nonempty intersection). Hence, according the compactness
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of its sets, the whole family has nonempty intersection. But a direct
verification yields that

∩ε>0Cε = ∩i∈NAi = ∅.
(ii) Obviously, Bε is compact and nonempty for ε great enough,

and Bε1
⊂ Bε2

as soon ε1 ≤ ε2.
The family of sets {Bε : Bε 6= ∅} possesses a nonempty intersection

by the compactness of its members. Denote ε0 = inf{ε : Bε 6= ∅}. Then
Bε0

= ∩{Bε : Bε 6= ∅}.
We shall show first that no point of Bε0

can be an interior point of
some Ai

ε0
. Assuming the contrary, e.g. that b ∈ Bε0

∩ int Ai
ε0

we have
first of all that d(b, Ai) < ε0 and d(b, Aj) ≤ ε0, j ∈ N. Since AN\{i} is

nonempty, ε0 > 0 by the property (i), the set A
N\{i}
ε0

is convex and has

a nonempty interior. Now, b ∈ A
N\{i}
ε0

and each of its neighborhoods
contains interior points of A

N\{i}
ε0

. Hence so does int Ai
ε0

. Let be x a such
point. Then d(x, Aj) < ε0, j ∈ N . Denote by δ = sup{d(x, Aj) : j ∈ N}.
It follows that x ∈ Bδ with δ < ε0, in contradiction with the definition
of ε0.

Thus Bε0
is on the boundary of every Ai

ε0
. Hence:

d(b, Aj) = ε0, ∀ j ∈ N ∀ b ∈ Bε0
.

2. If Bε0
would contain two distinct points, b1 and b2, the line

segment determined by these two points would be in this set too.
The line determined by these points should meet the boundary of

∆N which is in ∪j∈NAj. Thus the line would meet some set Ai in a
point a. Suppose that b1 is between a and b2. Let c be the point in Ai at
distance ε0 from b2. Consider the plane of dimension two determined by
the line cb2 and the line b1b2. This plane meets the supporting hyperplane
to Ai at c and perpendicular on cb2 in a line λ which is perpendicular to
cb2. Now, a must be behind the supporting hyperplane, hence the line
b2b1 meets the line λ in a point d between a and b2. Thus the triangle
dcb2 is rectangular at c. Since Bε0

is convex, we can suppose without loss
of generality that b1 is on the segment fb2, where f is the base of the
perpendicular from c to b1b2. But then the distance from b1 to c is less
then the distance of b2 to c which is ε0. This contradiction shows that
Bε0

reduces to a point. ♦

Remark 2. In the above lemma it was shown that in ∆ there exists a
unique equally spaced point of minimal distance from the sets Ai. The
proof yields in fact also the existence of such a point for a family of
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compact convex sets {C1, C2, . . . , Cm+1} with the property that Ci1 ∩
∩ Ci2 ∩ . . . ∩ Cim 6= ∅ ∀ ij ∈ {1, 2, . . . , m + 1} and ∩m+1

i=1 Ci = ∅, only the
uniqueness needs m = n.
Lemma 5. [The uniqueness of the equally spaced point in ∆.] Suppose
that U = ∆\∪i∈NAi. Then U is an open set contained in int ∆. Suppose
that u ∈ U and bi, i = 1, . . . , n + 1 are the best approximants of u in
Ai, i = 1, . . . , n + 1 respectively. Let be δi = ‖bi − u‖, i = 1, . . . , n + 1.
Then

∩i∈NAi
δi

= {u}.

Here ∆ is the simplex ∆N in Lemma 3. As a consequence of this assertion
we shall show that there exists a unique point in U which is equally spaced
from the sets Ai, i = 1, . . . , n + 1.
Proof. We observe first that the vectors bi − u, i = 1, . . . , n + 1 are
in general position in the sense that they cannot be contained in a half-
space determined by some hyperplane through u. Indeed, if Hi is the
supporting hyperplane to Ai through bi with the normal vector u − bi,
then Hi + (u − bi) will be the tangent hyperplane to Ai

δi
at u. The set

∩i∈NHi− will contain in its interior the point u and will be disjoint from
∪i∈NAi. Hence it must be in U and so in int ∆. But then it must be
an n-dimensional simplex with the vectors bi − u, i = 1, . . . , m the per-
pendiculars to the faces of dimension n − 1 of this simplex whose affine
hull contains the point bi. Hence these vectors are in general position.
But bi − u are in same time normals of the hyperplanes Hi + (u − bi)
which are supporting hyperplanes to Ai

δi
in the common point u of their

boundaries. By Cor. 1 then int ∩ i∈NAi
δi

is empty.
The single common point of the boundaries of Ai

δi
can be u, because

if contrary then the common part of these boundaries would contain a
segment and we would arrive to a contradiction in the mode it was done
earlier in our proof.

Denote Bε0
= {v}. We shall show that v is the only point in ∆

which is equally spaced from Ai, i = 1, . . . , n + 1. It was shown above
that v is the single equally spaced point of minimal distance ε0 from
Ai, i = 1, . . . , n + 1. Then if there exists another point w in ∆ which is
equally spaced from Ai, i = 1, . . . , n + 1, its distance η must be strictly
greater as ε0. From the definition of ε0 this would mean that we have
int ∩ i∈NAi

η 6= ∅ and w must be a common point of the boundaries of the
sets Ai

η, i = 1, . . . , n + 1. The normals at the point w of the supporting
hyperplanes to Ai

η are by the above assertion in general position, but by
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Cor. 1 they must be in a halfspace determined by a hyperplane through w.
The obtained contradiction shows that w cannot exist. ♦

Gathering the considerations used in the proofs of Lemmas 4 and
5 we can verify the following assertion:
Corollary 2. Let us consider the functions φi, i ∈ N acting in [0,∞)
having the properties:

(a) φi is continuous and strictly increasing,
(b) φi(0) = 0, (c) limt→∞ φi(t) = ∞, i ∈ N .

Then there exists a unique t0 > 0 such that:
(i) {Ai

φi(t)
: i ∈ N} is an H-family for 0 < t < t0,

(ii) Bt = ∩i∈N (∆ ∩ Ai
φi(t)

) 6= ∅ for t ≥ t0.

(iii) Bt0 reduces to a single point.
Here ∆ is the simplex ∆N considered in Lemma 3.

We shall show that the hole U is homeomorphic with the interior
of the standard unit simplex

T =
{

(t1, t2, . . . , tn+1) ∈ R
n+1 :

ti ≥ 0, i = 1, 2, . . . , n + 1, t1 + t2 + · · · + tn+1 = 1
}

by constructing effectively the homeomorphism. (This interior is in fact
the relative interior of T with respect to the topology of the affine hull
of T . We shall denote it by int T .)
Lemma 6. The mapping

Φ(x) =

(

d(x, A1)
∑

i∈N d(x, Ai)
,

d(x, A2)
∑

i∈N d(x, Ai)
, . . . ,

d(x, An+1)
∑

i∈N d(x, Ai)

)

is a well defined continuous mapping from U to int T , which is a bijection,
and since U is locally compact, a homeomorphism.
Proof. Φ is injective. Assume that Φ(x) = Φ(y) for some x 6= y in U .

Denote

α =
1

∑

i∈N d(x, Ai)
, β =

1
∑

i∈N d(y, Ai)
.

Then αd(x, Ai) = βd(y, Ai), i = 1, 2, . . . , n + 1.
Using the notations εi = d(x, Ai) and ηi = d(y, Ai), i ∈ N, we have

by Lemma 5 that
∩i∈NAi

εi
= {x} and ∩ i∈NAi

ηi
= {y}.

Assume α > β. Then εi = d(x, Ai) < d(y, Ai) = ηi, i ∈ N. Hence
x ∈ int Ai

ηi
, i ∈ N and hence

x ∈ ∩i∈N int Ai
ηi
⊂ ∩i∈NAi

ηi
= {y},

which is a contradiction.
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Thus we must have α = β. But then it follows that d(x, Ai) =
= d(y, Ai), i ∈ N which by Lemma 5 shows that x = y.

Φ is surjective. Let (t1, t2, . . . tn+1) ∈ int T . We shall use Cor. 2
with φi(t) = tit, i ∈ N to conclude: There exist a unique δ > 0 and a
unique point z ∈ U , such that

∩i∈N∆ ∩ Ai
δti

= {z}.

Then d(z, Ai) = δti and by substitution in the formula defining Φ
we have obviously Φ(z) = (t1, t2, . . . , tn+1). ♦

Let us denote next the union ∪i∈NAi by A. We have finally to
prove:
Lemma 7. The set R

n \ (A ∪ U) is unbounded and connected.
Proof. Let us consider the points ai, i ∈ N defined in Lemma 3. Then
ai is outside Ai hence the convex cone Ci with vertex ai, engendered by
the rays issuing from ai through Ai is pointed.

We show first that the set Di = R
n \ (A∪Ci) is arcwise connected.

Since Ci contains the points aj with j 6= i, it will contain ∆ and
hence the bounded component U .

Consider an arbitrary point v ∈ U . Denote with bi its best approx-
imant in Ai and let Hi be the hyperplane supporting Ai at bi with the
normal v − bi.

The hyperplane Li through ai parallel with Hi will be contained,
excepting the point ai, in the set Bi = R

n \ Ci.
The ray d in Bi issuing from ai meets the set A in a bounded line

segment. Indeed, it cannot meet Ai and meets Aj , j 6= i in a line segment
aicj on d. The union of these segments yield a line segment aic on d.
Then d′ = d \ aic will be a ray without A ∪ U .

Consider the points x, y ∈ Di. Then each of them are on some rays
of the above type, say d′, respectively d′′. Now, these rays can be joined
by a path in Di. And thus we can construct a path from x to y in Di.

Thus Di is connected.
Since R

n \ (A ∪ U) = ∪i∈NDi, to conclude the proof of the lemma
it is enough to show that Di ∩ Dj 6= ∅, ∀ i, j.

Observe that the part of the halfspace L+
k (where Lk is the hyper-

plane parallel with Hk through ak) which is outside the ball containing
A, is contained in Dk.

The halfspace L+
i through ai and the halfspace L+

j through aj have
an unbounded intersection. This assertion could be false only if Li and
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Lj would be parallel. But this is impossible, since their normals v − bi

and v − bj by the proof of Lemma 5 cannot be parallel.
The unbounded intersection L+

i ∩L+
j must contain points in Di∩Dj

and hence the latter set is nonempty. ♦
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