Mathematica Pannonica 19/1 (2008), 3–12

SUPPORTING SPHERE FOR A SPE-CIAL FAMILY OF COMPACT CON-VEX SETS IN THE EUCLIDEAN SPACE

Horst Kramer

Nesselweg 39, D-65527 Niederhausen, Germany

A. B. Németh

Faculty of Mathematics and Computer Science, Babeş–Bolyai University, RO-400084 Cluj-Napoca, Romania

Received: December 2006

MSC 2000: 52 A 20

Keywords: Convexity, supporting spheres, best approximant.

Abstract: For a family of compact convex sets $A^1, A^2, \ldots, A^{n+1}$ in \mathbb{R}^n having empty intersection and such that each n of them have a nonvoid intersection we are proving that there is one and only one supporting sphere in the unique bounded connected component of $\mathbb{R}^n \setminus \bigcup_{i=1}^{n+1} A^i$. It is constructed a homeomorphism of the mentioned bounded connected component with the open n-dimensional simplex.

1. Introduction and the main result

In the following there will be said that a family \mathcal{K} of sets in the Euclidean space \mathbb{R}^n has a *supporting sphere*, if there exists a sphere S in \mathbb{R}^n having common points with each member of the family \mathcal{K} and the interior of S contains no point of any member of \mathcal{K} . The family \mathcal{K} of sets in \mathbb{R}^n will said to be *independent*, if for any n + 1 pairwise distinct

E-mail addresses: f.h.kramer@gmail.com, nemab@math.ubbcluj.ro

members K_1, \ldots, K_{n+1} of \mathcal{K} , any set of points p_1, \ldots, p_{n+1} , where $p_i \in K_i, i = 1, \ldots, n+1$ determines a simplex of dimension n. In the papers [7, 8, 9] we have used Brouwer's fixed point theorem for the proof of a supporting sphere for an independent family of n + 1 compact convex sets in \mathbb{R}^n (see also [6]) and respectively in a Minkowski space. The same method was used in [10] for proving the existence of a supporting sphere for a special not independent family of three compact convex sets in the Euclidean plane \mathbb{R}^2 .

Our terminology used next is in accordance with that in the books [1], [3], [4], [13] and [14].

Let us consider $N = \{1, 2, ..., n+1\}$ and the family $\mathcal{H} = \{A^1, A^2, ..., A^{n+1}\}$ of convex compact sets in \mathbb{R}^n . For $S \subset N$ we denote

$$A^S = \bigcap_{i \in S} A^i.$$

Suppose that the family \mathcal{H} possesses the following properties:

- (i) $A^{N\setminus\{j\}} \neq \emptyset, \forall j \in N,$
- (ii) $A^N = \emptyset$.

A family of compact convex sets having the above properties (i) and (ii) will be called in the sequel an \mathcal{H} -family.

Our main result is as follows:

Theorem 1. Let $\mathcal{H} = \{A^1, A^2, \dots, A^{n+1}\}$ be an \mathcal{H} -family. Then the following assertions hold:

1. The set $\mathbb{R}^n \setminus \bigcup_{i \in N} A^i$ possesses exactly two connected components, one of them U (called in the sequel the hole), being bounded.

2. The hole U contains a unique equally spaced point from the sets in \mathcal{H} , that is, U contains a unique supporting sphere for these sets.

3. The hole U is homeomorphic with the open n-dimensional simplex.

2. Preliminaries

We gather in this section some notions, as well as some well known and easily verifiable results (occasionally with their short proofs) which will play a role in our next proofs.

We shall denote by \mathbb{R}^n the *n*-dimensional Euclidean vector space. If $M \subset \mathbb{R}^n$ is nonempty, we shall denote by co M the convex hull and by aff M the affine hull of M.

Consider the space \mathbb{R}^n to be endowed with the usual scalar product $\langle ., . \rangle$, the norm $\|.\|$ and the topology it induces. The interior, the closure

and the boundary of a set $M \subset \mathbb{R}^n$ will be denoted by int M, $\operatorname{cl} M$, and $\operatorname{bd} M$ respectively.

If $C \subset \mathbb{R}^n$ is a nonempty closed convex set, then each $x \in \mathbb{R}^n$ possesses a unique best approximant in C, i. e., a unique $y \in C$ with $||x - y|| = \inf\{||x - c|| : c \in C\}$. We shall use the notation $d(x, C) = \inf\{||x - c|| : c \in C\}$. The function d(., C) is continuous.

The nonempty subset K in \mathbb{R}^n is called a *convex cone* if it is satisfying the following properties:

1. (k_1) $K + K \subset K$, and

2. (k_2) $\lambda K \subset K$, for every $\lambda \in \mathbb{R}_+$.

3. (k_3) The convex cone K is called *pointed*, if $K \cap (-K) = \{0\}$.

The notions of convex cone and pointed convex cone will be used also for translations of the above defined sets. Then the point corresponding to 0 by the translation will be called the *vertex* of the cone.

The dual cone K^* of the convex cone K is the set $K^* = \{ y \in \mathbb{R}^n : \langle x, y \rangle \ge 0, \forall x \in K \}.$

$$K = \{ y \in \mathbb{R} : \langle x, y \rangle \ge 0, \forall x \in K \}$$

 K^* is a closed set satisfying the axioms $(k_1), (k_2)$.

If C is a nonempty convex set in \mathbb{R}^n , then the affine functional $f = \langle h, . \rangle + \alpha$ with $h \in \mathbb{R}^n$, $h \neq 0$ and its kernel $H = \{x \in \mathbb{R}^n : f(x) = 0\}$ is called a supporting hyperplane to C at $c \in C$, if $C \subset H_+ = \{x \in \mathbb{R}^n : f(x) \geq 0\}$ and $c \in H$. In this case H_+ is said the supporting halfspace, the vector h the normal to the supporting hyperplane. (We consider that the normal of the supporting hyperplane is oriented always towards C, if C has a nonempty interior.) If C is a closed convex set with nonempty interior, then at each point of its boundary it has a supporting hyperplane. We need also the notation $H_- = \{x \in \mathbb{R}^n : f(x) \leq 0\}$ for the other halfspace, determined by the supporting hyperplane to C at c.

If K is a convex cone and does not coincide with the whole space, it possesses a supporting hyperplane at 0.

Lemma 1. Let us consider the cone given by the intersection $K = \bigcap_{i=1}^{m} H_i^+$ of the halfspaces determined by the hyperplanes H_1, \ldots, H_m through the origin with the normals h_1, \ldots, h_m . If $K \neq \{0\}$, then there exists a supporting hyperplane H through 0 to K^* such that $h_i \in H_+$, $i = 1, \ldots, m$.

Proof. Since K is not the whole space and is not reducing to $\{0\}$, K^* is a convex cone with the same property. Let be H a supporting hyperplane to K^* . Then $h_i \in K^* \subset H_+$, i = 1, ..., m. \diamond

We say that the boundary of a convex set with nonempty interior is

smooth, if in each of its points there exists a unique supporting hyperplane to the convex set. An immediate consequence of the above lemma is:

Corollary 1. If C_1, \ldots, C_m are compact convex sets with smooth boundaries in \mathbb{R}^n , such that int $\bigcap_{i=1}^m C_i \neq \emptyset$ and x is a point of the intersection of the boundaries of C_i , $i = 1, \ldots, m$, then the normals in x to the supporting hyperplanes of C_i , $i = 1, \ldots, m$ are contained in a halfspace determined by some supporting hyperplane in x to $\bigcap_{i=1}^m C_i$.

In the following we need also the notion of the ϵ -neighborhood of a convex body ([3] p. 2, [14] p. 91), which is also known in the German literature as the "Parallelkörper" ([1] p. 48, [4] p. 30, [13] p. 160), and in the English literature "outer parallel body" ([11], p. 134). For $\varepsilon > 0$ we denote by $B(x;\varepsilon)$ the (open) ball centered at x of radius ε , i.e., the set $B(x;\varepsilon) = \{y \in \mathbb{R}^n : ||y-x|| < \varepsilon\}$. If $M \subset \mathbb{R}^n$ is nonempty, the set $M^{\varepsilon} = \bigcup_{x \in M} B(x;\varepsilon)$ is called the ε -neighborhood of M (it is called also the outer parallel body of M in [11], p. 134) $M_{\varepsilon} = \operatorname{cl} M^{\varepsilon}$ will be called the ε -neighborhood of M.

If $C \subset \mathbb{R}^n$ is a nonempty convex set, then C^{ε} and C_{ε} are booth convex sets. It is immediate that $C_{\varepsilon} = \{x \in \mathbb{R}^n : d(x, C) \leq \varepsilon\}.$

Lemma 2. If C is a nonempty compact convex set in \mathbb{R}^n , then for any $\varepsilon > 0$, the set C_{ε} has a smooth boundary.

Proof. Let $x \in \operatorname{bd} C_{\varepsilon}$. If y is the best approximant of x in C, then obviously $x \in \operatorname{bd} B(y; \varepsilon)$. Let H be a supporting hyperplane to C_{ε} in x. Then, since $\operatorname{cl} B(x; \varepsilon) \subset C_{\varepsilon}$, H will be also a supporting hyperplane to $\operatorname{cl} B(y; \varepsilon)$ at x. Since $\operatorname{bd} B(y; \varepsilon)$ is an Euclidean sphere, it has a unique tangent hyperplane at x. This shows that H is unique. \Diamond

3. The proof

We shall carry the proof by verifying a sequence of lemmas.

Lemma 3. [The existence of a bounded connected component.] Consider the \mathcal{H} -family $\mathcal{H} = \{A^1, A^2, \dots, A^{n+1}\}$. Then we have the assertions:

1. If $a_i \in A^{N\setminus\{i\}}$, then the points $a_1, a_2, \ldots, a_{n+1}$ are in general position (they are affinely independent, respectively are tuples of an *n*-dimensional simplex).

2. If $\Delta^{N\setminus\{i\}} = \operatorname{co}\{a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n+1}\}$ then $\Delta^{N\setminus\{i\}} \subset A^i$.

3. The simplex Δ^N contains in its interior a bounded connected component of the set

$$\mathbb{R}^n \setminus \bigcup_{i \in N} A^i.$$

Proof. 1. It is enough to show that for an arbitrary $k \in N$, $a_k \notin$ \notin aff $\{a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_{n+1}\}$.

Assume the contrary. Denote

$$H = \inf \{a_1, \dots, a_{k-1}, a_{k+1}, \dots, a_{n+1}\}.$$

Thus dim $H \leq n-1$. The points a_i are all in the manifold H. Denote $B^i = H \cap A^i$.

Since
$$a_i \in A^{N \setminus \{i\}}$$
 and $a_i \in H$ it follows that
 $a_i \in \bigcap_{j \in N \setminus \{i\}} A^j \cap H = \bigcap_{j \in N \setminus \{i\}} B^j, \ \forall i \in N.$

This means that the family of convex compact sets $\{B^j : j \in N\}$ in H possesses the property that any n of them have nonempty intersection. Then by Helly's theorem they have a common point. But this would be a point of A^N too, which contradicts (ii).

2. Since $a_i \in \bigcap_{l \in N \setminus \{i\}} A^l$, it follows that $a_i \in A^j$, $\forall i \in N \setminus \{j\}$. Thus

$$\Delta^{N \setminus \{j\}} = \operatorname{co} \{a_1, \dots, a_{j-1}, a_{j+1}, \dots, a_{n+1}\} \subset A^j.$$

3. The assertion follows from an equivalent of Sperner's lemma (see [5]), which asserts that if a collection of closed sets $F^j : j \in N$ possesses the property, that it covers Δ^N and $\Delta^{N\setminus\{j\}} \subset F^j$, then $\bigcap_{j\in N} F^j \neq \emptyset$. \Diamond **Remark 1.** The above reasonings have overlappings with the proof of a theorem due to C. Berge [2] (see also [12], Th. 3.7.5) who proved that if a convex compact set in \mathbb{R}^n is covered by a family of n + 1 convex subsets, each n of them having nonempty intersection, then the whole family has a nonempty intersection. The lemma can be deduced in fact from this theorem. We have supplied the proof for the sake of completeness.

Lemma 4. [The existence in Δ of an equally spaced point.] Let A^i_{ε} be the $\varepsilon > 0$ -hull of the set A^i , i.e., the set of points with the distance $\leq \varepsilon$ from the set A^i . Then:

- 1. There exists an $\varepsilon_0 > 0$ such that:
 - (i) $\{A^i_{\varepsilon}: i \in N\}$ is a \mathcal{H} -family for $\varepsilon < \varepsilon_0$,
 - (ii) $B_{\varepsilon} = \bigcap_{i \in N} (\Delta \cap A^i_{\varepsilon}) \neq \emptyset \text{ for } \varepsilon \geq \varepsilon_0.$
- 2. B_{ε_0} reduces to a single point.

Here Δ is the simplex Δ^N defined in Lemma 3. **Proof.** 1. Assume the contrary: for no $\varepsilon > 0$ is $\mathcal{H}_{\varepsilon} = \{A_{\varepsilon}^1, A_{\varepsilon}^2, \dots, A_{\varepsilon}^{n+1}\}$ an \mathcal{H} -family. This is equivalent with saying that

$$C_{\varepsilon} = \bigcap_{i \in N} A^i_{\varepsilon} \neq \emptyset, \ \forall \varepsilon > 0$$

The family $\{C_{\varepsilon} : \varepsilon > 0\}$ is centered (every finite collection of its members possesses a nonempty intersection). Hence, according the compactness

of its sets, the whole family has nonempty intersection. But a direct verification yields that

$$\bigcap_{\varepsilon>0} C_{\varepsilon} = \bigcap_{i \in N} A^i = \emptyset.$$

(ii) Obviously, B_{ε} is compact and nonempty for ε great enough, and $B_{\varepsilon_1} \subset B_{\varepsilon_2}$ as soon $\varepsilon_1 \leq \varepsilon_2$.

The family of sets $\{B_{\varepsilon} : B_{\varepsilon} \neq \emptyset\}$ possesses a nonempty intersection by the compactness of its members. Denote $\varepsilon_0 = \inf\{\varepsilon : B_{\varepsilon} \neq \emptyset\}$. Then $B_{\varepsilon_0} = \cap\{B_{\varepsilon} : B_{\varepsilon} \neq \emptyset\}$.

We shall show first that no point of B_{ε_0} can be an interior point of some $A_{\varepsilon_0}^i$. Assuming the contrary, e.g. that $b \in B_{\varepsilon_0} \cap \operatorname{int} A_{\varepsilon_0}^i$ we have first of all that $d(b, A^i) < \varepsilon_0$ and $d(b, A^j) \leq \varepsilon_0$, $j \in N$. Since $A^{N \setminus \{i\}}$ is nonempty, $\varepsilon_0 > 0$ by the property (i), the set $A_{\varepsilon_0}^{N \setminus \{i\}}$ is convex and has a nonempty interior. Now, $b \in A_{\varepsilon_0}^{N \setminus \{i\}}$ and each of its neighborhoods contains interior points of $A_{\varepsilon_0}^{N \setminus \{i\}}$. Hence so does $\operatorname{int} A_{\varepsilon_0}^i$. Let be x a such point. Then $d(x, A^j) < \varepsilon_0, j \in N$. Denote by $\delta = \sup\{d(x, A^j) : j \in N\}$. It follows that $x \in B_{\delta}$ with $\delta < \varepsilon_0$, in contradiction with the definition of ε_0 .

Thus B_{ε_0} is on the boundary of every $A_{\varepsilon_0}^i$. Hence:

$$d(b, A^j) = \varepsilon_0, \ \forall j \in N \ \forall b \in B_{\varepsilon_0}.$$

2. If B_{ε_0} would contain two distinct points, b_1 and b_2 , the line segment determined by these two points would be in this set too.

The line determined by these points should meet the boundary of Δ^N which is in $\bigcup_{j\in N} A^j$. Thus the line would meet some set A^i in a point a. Suppose that b_1 is between a and b_2 . Let c be the point in A^i at distance ε_0 from b_2 . Consider the plane of dimension two determined by the line cb_2 and the line b_1b_2 . This plane meets the supporting hyperplane to A^i at c and perpendicular on cb_2 in a line λ which is perpendicular to cb_2 . Now, a must be behind the supporting hyperplane, hence the line b_2b_1 meets the line λ in a point d between a and b_2 . Thus the triangle dcb_2 is rectangular at c. Since B_{ε_0} is convex, we can suppose without loss of generality that b_1 is on the segment fb_2 , where f is the base of the perpendicular from c to b_1b_2 . But then the distance from b_1 to c is less then the distance of b_2 to c which is ε_0 . This contradiction shows that B_{ε_0} reduces to a point. \Diamond

Remark 2. In the above lemma it was shown that in Δ there exists a unique equally spaced point of minimal distance from the sets A^i . The proof yields in fact also the existence of such a point for a family of

compact convex sets $\{C^1, C^2, \ldots, C^{m+1}\}$ with the property that $C^{i_1} \cap C^{i_2} \cap \ldots \cap C^{i_m} \neq \emptyset \ \forall i_j \in \{1, 2, \ldots, m+1\}$ and $\bigcap_{i=1}^{m+1} C^i = \emptyset$, only the uniqueness needs m = n.

Lemma 5. [The uniqueness of the equally spaced point in Δ .] Suppose that $U = \Delta \setminus \bigcup_{i \in N} A^i$. Then U is an open set contained in int Δ . Suppose that $u \in U$ and b_i , $i = 1, \ldots, n + 1$ are the best approximants of u in A^i , $i = 1, \ldots, n + 1$ respectively. Let be $\delta_i = ||b_i - u||, i = 1, \ldots, n + 1$. Then

$$\bigcap_{i\in N} A^i_{\delta_i} = \{u\}.$$

Here Δ is the simplex Δ^N in Lemma 3. As a consequence of this assertion we shall show that there exists a unique point in U which is equally spaced from the sets A^i , i = 1, ..., n + 1.

Proof. We observe first that the vectors $b_i - u$, i = 1, ..., n + 1 are in general position in the sense that they cannot be contained in a halfspace determined by some hyperplane through u. Indeed, if H_i is the supporting hyperplane to A^i through b_i with the normal vector $u - b_i$, then $H_i + (u - b_i)$ will be the tangent hyperplane to $A^i_{\delta_i}$ at u. The set $\bigcap_{i \in N} H_{i-}$ will contain in its interior the point u and will be disjoint from $\bigcup_{i \in N} A_i$. Hence it must be in U and so in int Δ . But then it must be an n-dimensional simplex with the vectors $b_i - u$, i = 1, ..., m the perpendiculars to the faces of dimension n - 1 of this simplex whose affine hull contains the point b_i . Hence these vectors are in general position. But $b_i - u$ are in same time normals of the hyperplanes $H_i + (u - b_i)$ which are supporting hyperplanes to $A^i_{\delta_i}$ in the common point u of their boundaries. By Cor. 1 then int $\bigcap_{i \in N} A^i_{\delta_i}$ is empty.

The single common point of the boundaries of $A_{\delta_i}^i$ can be u, because if contrary then the common part of these boundaries would contain a segment and we would arrive to a contradiction in the mode it was done earlier in our proof.

Denote $B_{\varepsilon_0} = \{v\}$. We shall show that v is the only point in Δ which is equally spaced from A^i , $i = 1, \ldots, n + 1$. It was shown above that v is the single equally spaced point of minimal distance ε_0 from A^i , $i = 1, \ldots, n + 1$. Then if there exists another point w in Δ which is equally spaced from A^i , $i = 1, \ldots, n + 1$, its distance η must be strictly greater as ε_0 . From the definition of ε_0 this would mean that we have int $\bigcap_{i \in N} A^i_{\eta} \neq \emptyset$ and w must be a common point of the boundaries of the sets A^i_{η} , $i = 1, \ldots, n + 1$. The normals at the point w of the supporting hyperplanes to A^i_{η} are by the above assertion in general position, but by Cor. 1 they must be in a halfspace determined by a hyperplane through w. The obtained contradiction shows that w cannot exist. \Diamond

Gathering the considerations used in the proofs of Lemmas 4 and 5 we can verify the following assertion:

Corollary 2. Let us consider the functions ϕ_i , $i \in N$ acting in $[0, \infty)$ having the properties:

(a) ϕ_i is continuous and strictly increasing,

(b) $\phi_i(0) = 0$, (c) $\lim_{t\to\infty} \phi_i(t) = \infty$, $i \in N$. Then there exists a unique $t_0 > 0$ such that:

(i) $\{A^i_{\phi_i(t)} : i \in N\}$ is an \mathcal{H} -family for $0 < t < t_0$,

(ii) $B_t = \bigcap_{i \in N} (\Delta \cap A^i_{\phi_i(t)}) \neq \emptyset$ for $t \ge t_0$.

(iii) B_{t_0} reduces to a single point.

Here Δ is the simplex Δ^N considered in Lemma 3.

We shall show that the hole U is homeomorphic with the interior of the standard unit simplex

 $T = \{ (t_1, t_2, \dots, t_{n+1}) \in \mathbb{R}^{n+1} : \\ t_i \ge 0, \ i = 1, 2, \dots, n+1, t_1 + t_2 + \dots + t_{n+1} = 1 \}$

by constructing effectively the homeomorphism. (This interior is in fact the relative interior of T with respect to the topology of the affine hull of T. We shall denote it by int T.)

Lemma 6. The mapping

$$\Phi(x) = \left(\frac{d(x, A^1)}{\sum_{i \in N} d(x, A^i)}, \frac{d(x, A^2)}{\sum_{i \in N} d(x, A^i)}, \dots, \frac{d(x, A^{n+1})}{\sum_{i \in N} d(x, A^i)}\right)$$

is a well defined continuous mapping from U to int T, which is a bijection, and since U is locally compact, a homeomorphism.

Proof. Φ is injective. Assume that $\Phi(x) = \Phi(y)$ for some $x \neq y$ in U. Denote

$$\alpha = \frac{1}{\sum_{i \in N} d(x, A^i)}, \qquad \beta = \frac{1}{\sum_{i \in N} d(y, A^i)}.$$

Then $\alpha d(x, A^i) = \beta d(y, A^i), \ i = 1, 2, \dots, n+1.$

Using the notations $\varepsilon_i = d(x, A^i)$ and $\eta_i = d(y, A^i)$, $i \in N$, we have by Lemma 5 that

 $\bigcap_{i \in N} A^i_{\varepsilon_i} = \{x\} \text{ and } \bigcap_{i \in N} A^i_{\eta_i} = \{y\}.$

Assume $\alpha > \beta$. Then $\varepsilon_i = d(x, A^i) < d(y, A^i) = \eta_i, i \in N$. Hence $x \in \text{int } A^i_{\eta_i}, i \in N$ and hence

 $x \in \bigcap_{i \in N} \operatorname{int} A^i_{\eta_i} \subset \bigcap_{i \in N} A^i_{\eta_i} = \{y\},\$

which is a contradiction.

10

Thus we must have $\alpha = \beta$. But then it follows that $d(x, A^i) = d(y, A^i)$, $i \in N$ which by Lemma 5 shows that x = y.

 Φ is surjective. Let $(t_1, t_2, \ldots, t_{n+1}) \in \text{int } T$. We shall use Cor. 2 with $\phi_i(t) = t_i t$, $i \in N$ to conclude: There exist a unique $\delta > 0$ and a unique point $z \in U$, such that

$$\bigcap_{i \in N} \Delta \cap A^i_{\delta t_i} = \{z\}.$$

Then $d(z, A^i) = \delta t_i$ and by substitution in the formula defining Φ we have obviously $\Phi(z) = (t_1, t_2, \dots, t_{n+1})$.

Let us denote next the union $\bigcup_{i \in N} A^i$ by A. We have finally to prove:

Lemma 7. The set $\mathbb{R}^n \setminus (A \cup U)$ is unbounded and connected.

Proof. Let us consider the points a_i , $i \in N$ defined in Lemma 3. Then a_i is outside A^i hence the convex cone C^i with vertex a_i , engendered by the rays issuing from a_i through A^i is pointed.

We show first that the set $D^i = \mathbb{R}^n \setminus (A \cup C^i)$ is arcwise connected.

Since C^i contains the points a_j with $j \neq i$, it will contain Δ and hence the bounded component U.

Consider an arbitrary point $v \in U$. Denote with b_i its best approximant in A^i and let H_i be the hyperplane supporting A^i at b_i with the normal $v - b_i$.

The hyperplane L_i through a_i parallel with H_i will be contained, excepting the point a_i , in the set $B^i = \mathbb{R}^n \setminus C^i$.

The ray d in B^i issuing from a_i meets the set A in a bounded line segment. Indeed, it cannot meet A^i and meets A^j , $j \neq i$ in a line segment a_ic_j on d. The union of these segments yield a line segment a_ic on d. Then $d' = d \setminus a_ic$ will be a ray without $A \cup U$.

Consider the points $x, y \in D^i$. Then each of them are on some rays of the above type, say d', respectively d''. Now, these rays can be joined by a path in D^i . And thus we can construct a path from x to y in D^i .

Thus D^i is connected.

Since $\mathbb{R}^n \setminus (A \cup U) = \bigcup_{i \in N} D^i$, to conclude the proof of the lemma it is enough to show that $D^i \cap D^j \neq \emptyset, \forall i, j$.

Observe that the part of the halfspace L_k^+ (where L_k is the hyperplane parallel with H_k through a_k) which is outside the ball containing A, is contained in D^k .

The halfspace L_i^+ through a_i and the halfspace L_j^+ through a_j have an unbounded intersection. This assertion could be false only if L_i and L_j would be parallel. But this is impossible, since their normals $v - b_i$ and $v - b_j$ by the proof of Lemma 5 cannot be parallel.

The unbounded intersection $L_i^+ \cap L_j^+$ must contain points in $D^i \cap D^j$ and hence the latter set is nonempty. \diamond

Acknowledgement. The authors express their gratitude to the referee for many valuable suggestions which improved the original version.

References

- [1] BLASCHKE, W.: Kreis und Kugel, Verlag von Veit & Comp., Leipzig, 1916.
- BERGE, C.: Sur un propriéte combinatoire des ensembles convexes, C. R. Acad. Sci. Paris 248 (1959), 2698.
- [3] BOLTYANSKI, V., MARTINI, H. and SOLTAN, P. S.: Excursion into Combinatorial Geometry, Springer-Verlag, Berlin–Heidelberg, 1997.
- [4] BONNESEN, T. and FENCHEL, W.: Theorie der konvexen Körper, Springer-Verlag, 1974.
- [5] FAN, Ky: A covering property of simplexes, Math. Scand. 22 (1968), 17–20.
- [6] KLEE, V., LEWIS, T. and VON HOHENBALKEN, B.: Appollonius Revisited: Supporting Spheres for Sundered Systems, *Discrete and Computational Geometry* 18 (1997), 385–395.
- [7] KRAMER, H. and NÉMETH, A. B.: Supporting spheres for families of independent convex sets, Archiv der Mathematik 24 (1973) 91–96.
- [8] KRAMER, H. and NÉMETH, A. B.: Aplicarea teoremei de punct fix a lui Brouwer in geometria corpurilor convexe, Analele Universitatii din Timisoara, Ser. St. Mat. 13 (1975) 1, 33–39.
- [9] KRAMER, H. and NÉMETH, A. B.: Equally spaced points for families of compact convex sets in Minkowski spaces, *Mathematica* 15 (38) (1973) 1, 71–78.
- [10] KRAMER, H.: On a special family of compact convex sets in the Euclidean plane R², Mathematica Pannonica 17 (2006) 2, 255–265.
- [11] SCHNEIDER, R.: Convex Bodies: the Brunn–Minkowski Theory, Cambridge University Press, Cambridge, 1993.
- [12] STOER, J. and WITZGALL, Ch.: Convexity and Optimization in Finite Dimensions I, Springer-Verlag, Berlin–Heidelberg–New York, 1970.
- [13] VALENTINE, F. A.: Konvexe Mengen, Hochschultaschenbücher-Verlag, Mannheim, 1968.
- [14] WEBSTER, R.: Convexity, Oxford University Press, 1994.