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9, HR-31 000 Osijek, Croatia

Z. Kolar-Begović
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Abstract: The concept of the first Lemoine circle, Lemoine hexagon and the
Brocard angle will be introduced in an isotropic plane. Some statements about
relationships between introduced concepts and some other previously studied
geometric concepts about triangle will be investigated in an isotropic plane. A
number of these statements are new, and some of them are known in Euclidean
geometry.

Each triangle ABC in an isotropic plane can be set by a suitable
choice of the coordinate system in the standard position, in which its
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circumscribed circle has the equation y = x2, and its vertices are the
points A = (a, a2), B = (b, b2), C = (c, c2), where a + b + c = 0
(see [6]). With the labels p = abc, q = bc + ca + ab a number of use-
ful equalities are valid as for example q = bc − a2, (b − c)2 =
= −(q+3bc), (c−a)(a−b) = 2q−3bc, (b−c)2 +(c−a)2 +(a−b)2 = −6q,
(b − c)2(c − a)2(a − b)2 = −(27p2 + 4q3). Really, we get

(b − c)2 = (b + c)2
− 4bc = a2

− 4bc = −q − 3bc,

(c − a)(a − b) = −a2
− bc + ca + ab = −(bc − q) − 2bc + q = 2q − 3bc,

(b − c)2 + (c − a)2 + (a − b)2 = −3q − 3(bc + ca + ab) = −6q,

(b − c)2(c − a)2(a − b)2 =

= −(q + 3bc)(q + 3ca)(q + 3ab) =

= −q3
− 3q2(bc + ca + ab) − 9qabc(a + b + c) − 27a2b2c2 =

= −27p2
− 4q3.

Further, let the considered triangle be always in the standard po-
sition.
Theorem 1. If the lines through the point T = (xo, yo) parallel to the

lines BC, CA, AB intersect successively the pairs of the lines CA, AB;

AB, BC; BC, CA in the pairs of the points Ba, Ca; Cb, Ab; Ac, Bc,

then these six points have successively the abscissas

Ba . . .
ax0 + y0 + ca

a − b
, Ca . . . −

axo + yo + ab

c − a
,

Cb . . .
bx0 + y0 + ab

b − c
, Ab . . . −

bxo + yo + bc

a − b
,

Ac . . .
cx0 + y0 + bc

c − a
, Bc . . . −

cxo + yo + ca

b − c
.

Proof. The lines BC and CA have the equations y = −ax − bc and
y = −bx − ca, and the line through the point T parallel to the line BC

has the equation y = −a(x − xo) + yo. For the abscissa of the point Ba

from the last two equations follows the equation

−bx − ca = −ax + axo + yo

with the solution

x =
axo + yo + ca

a − b
.

The abscissa of the point Ca is got by the substitution b ↔ c, and abscis-
sas of the reminder points are got by the cyclic permutation a → b →

→ c → a. ♦
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If T is symmedian center K of the triangle ABC, then according
to [5] we get

xo =
3p

2q
, yo = −

q

3
.

For that point we get for example

axo + yo + bc =
3ap

2q
−

q

3
+ bc =

1

6q
(9a2bc − 2q2 + 6bcq) =

=
1

6q
[9bc(bc − q) − 2q2 + 6bcq] =

1

6q
(9b2c2

− 3bcq − 2q2) =

=
1

6q
(3bc + q)(3bc − 2q) =

1

6q
(b − c)2(c − a)(a − b)

and similarly

bxo + yo + ca =
1

6q
(c − a)2(a − b)(b − c),

cxo + yo + ab =
1

6q
(a − b)2(b − c)(c − a).

Because of that it follows for example

axo + yo + ca = axo + yo + bc + c(a − b) =

=
1

6q
(b − c)2(c − a)(a − b) + c(a − b) =

= (a − b)[c +
1

6q
(b − c)2(c − a)],

axo + yo + ab = axo + yo + bc − b(c − a) =

=
1

6q
(b − c)2(c − a)(a − b) − b(c − a) =

= −(c − a)[b −
1

6q
(b − c)2(a − b)],

and in this case the abscissas of the points Ba i Ca from Th. 1 get the
values c + 1

6q
(b − c)2(c − a) and b − 1

6q
(b − c)2(a − b). We have proved:

Theorem 2. If the lines through the symmedian center K of the triangle

ABC parallel to the lines BC, CA, AB intersect successively the pairs

of the lines CA, AB; AB, BC; BC, CA in the pairs of the points Ba,

Ca; Cb, Ab; Ac, Bc, then these six points have successively the abscissas

Ba . . . c +
1

6q
(b − c)2(c − a), Ca . . . b −

1

6q
(b − c)2(a − b),
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Cb . . . a +
1

6q
(c − a)2(a − b), Ab . . . c −

1

6q
(c − a)2(b − c),

Ac . . . b +
1

6q
(a − b)2(b − c), Bc . . . a −

1

6q
(a − b)2(c − a).

Theorem 3. In the conditions of Th. 2 for the oriented lengths on the

lines BC, CA, AB these equalities

BAc =
1

6q
(a−b)2(b−c), AcAb =

1

6q
(b−c)3, AbC =

1

6q
(c−a)2(b−c),

CBa =
1

6q
(b−c)2(c−a), BaBc =

1

6q
(c−a)3, BcA =

1

6q
(a−b)2(c−a),

ACb =
1

6q
(c−a)2(a−b), CbCa =

1

6q
(a−b)3, CaB =

1

6q
(b−c)2(a−b)

are valid.

Proof. By using the abscissas b and c of the points B and C and the
abscissas of the points Ba and Ca from Th. 2 we get the equalities for
BAc and AbC, and besides that

AcAb = c − b −
b − c

6q
[(c − a)2 + (a − b)2] =

= c − b −
b − c

6q
[−6q − (b − c)2] =

=
1

6q
(b − c)3 =

BC3

BC2 + CA2 + AB2
. ♦

Corollary 1. With the labels from Th. 2 the proportions

BAc : AcAb : AbC = AB2 : BC2 : CA2,

CBa : BaBc : BcA = BC2 : CA2 : AB2,

ACb : CbCa : CaB = CA2 : AB2 : BC2,

AcAb : BaBc : CbCa = BC3 : CA3 : AB3

and equalities

AcAb : BC3 = BaBc : CA3 = CbCa : AB3 = 1 : (BC2 + CA2 + AB2)

are valid.
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The relationships from Cor. 1 are identical to those ones in the
Euclidean geometry.

Because of

BcCb =
1

6q
(c − a)2(a − b) +

1

6q
(a − b)2(c − a) =

= −
1

6q
(b − c)(c − a)(a − b) =

=
(b − c)(c − a)(a − b)

(b − c)2 + (c − a)2 + (a − b)2
= −

BC · CA · AB

BC2 + CA2 + AB2
,

the following theorem is valid.

Theorem 4. With the labels from Th. 3 the equalities

BcCb = CaAc = AbBa = −
BC · CA · AB

BC2 + CA2 + AB2

are valid.

The equalities from Th. 4 are in accordance to the analogous equal-
ities in the Euclidean geometry.

Theorem 5. With the labels from Th. 2 the triangles BcCaAb and CbAcBa

are directly similar to the triangle ABC and the lengths of their sides are

successively 1

2
BC, 1

2
CA, 1

2
AB.

Proof. By means of the abscissas from Th. 2 we get for example

CaAb = c − b −
1

6q
(c − a)2(b − c) +

1

6q
(b − c)2(a − b) =

=
c − b

6q
[6q + (c − a)2

− (b − c)(a − b)] =

=
c − b

6q
[6q − (q + 3ca) − (2q − 3ca)] =

c − b

6q
· 3q =

1

2
BC,

AcBa = c − b +
1

6q
(b − c)2(c − a) −

1

6q
(a − b)2(b − c) =

=
c − b

6q
[6q − (b − c)(c − a) + (a − b)2] =

=
c − b

6q
[6q − (2q − 3ab) − (q + 3ab)] =

c − b

6q
· 3q =

1

2
BC. ♦

Theorem 6. The points Ab, Ac, Bc, Ba, Ca, Cb from Th. 2 lie on one

circle with the equation

(1) y = 2x2
−

3p

q
x +

27p2 − 2q3

18q2
.
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Proof. From the equation (1) and the equation y = −ax − bc of the
line BC it follows the equation for the abscissa of the intersection of the
circle (1) with the line BC

2x2 +

(

a −
3p

q

)

x + bc +
27p2 − 2q3

18q2
= 0.

It is enough to prove that the abscissas of the points Ab i Ac from Th. 2
satisfy this equation. However, for the sum and the product of these
abscissas we get the expressions

b + c +
b − c

6q
[(a − b)2

− (c − a)2] =

= −a +
b − c

6q
(c − b)(2a − b − c) =

= −a −
(b − c)2

6q
· 3a = −

a

2q
[2q − (q + 3bc)] =

= −
a

2q
(q − 3bc) = −

1

2

(

a −
3p

q

)

,

[b + 1

6q
(a − b)2(b − c)][c − 1

6q
(c − a)2(b − c)] =

= bc +
b − c

6q
[c(a − b)2

− b(c − a)2] −
1

36q2
(b − c)2(c − a)2(a − b)2 =

= bc +
b − c

6q
(bc − a2)(b − c) +

1

36q2
(27p2 + 4q3) =

= bc +
1

6
(b − c)2 +

1

36q2
(27p2 + 4q3) =

= bc −
1

6
(q + 3bc) +

1

36q2
(27p2

− 2q3) +
1

6
q =

=
1

2

(

bc +
27p2 − 2q3

18q3

)

,

and the statement is proved. ♦

By the analogy with the euclidean case the circle from Th. 6 will
be called the first Lemoine circle of the triangle ABC (see also [7]). For
its segments on the sides BC, CA, AB the relationships from Cor. 1 are
valid.
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Theorem 7. The corresponding sides of the similar triangles ABC and

CbAcBa from Th. 5, as well as the similar triangles BcCaAb and ABC,

form the angles equal to

(2) ω = −
1

3q
(b − c)(c − a)(a − b).

Proof. The chord AcBa with the ends (x1, y1) and (x2, y2) on the circle
(1) has the slope

y1−y2

x1−x2

=
2(x2

1
− x2

2
) − 3p

q
(x1 − x2)

x1 − x2

= 2(x1 + x2) −
3p

q
=

= 2(b + c) +
b − c

3q
[(a − b)2 + (b − c)(c − a)] −

3p

q
=

= −2a +
b − c

3q
[−(q + 3ab) + 2q − 3ab] −

3p

q
=

= −a −
a

q
(q + 3bc) +

b − c

3q
(q − 6ab) =

= −a +
a

q
(b − c)2 +

b − c

3q
(q − 6ab) =

= −a +
b−c

3q
[3a(b−c) + q−6ab] = −a +

b−c

3q
(q−3ca−3ab) =

= −a +
b − c

3q
(3bc − 2q) = −a −

b − c

3q
(c − a)(a − b) = ω − a.

As the line BC has the slope −a, it follows ∡(BC,AcBa) = ω. The
analogous calculation gives for the chord CaAb

y1−y2

x1−x2

= 2(x1 + x2) −
3p

q
=

= 2(b + c) −
b − c

3q
[(b − c)(a − b) + (c − a)2] −

3p

q
=

= −2a−
b − c

3q
[2q − 3ca − (q+3ca)] −

3p

q
=

=−a−
a

q
(q+3bc)−

b−c

3q
(q−6ca)=−a+

a

q
(b−c)2

−
b−c

3q
(q−6ca)=

=−a+
b−c

3q
[3a(b−c)−q+6ca] =−a+

b−c

3q
(3ca+3ab−q) =

= −a +
b − c

3q
(2q − 3bc) = −a +

b − c

3q
(c − a)(a − b) = −ω − a
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and so ∡(CaAb, BC) = ω. Because of the cyclical symmetry of the both
obtained formulae the same results follow for the remainder two angles
of the corresponding sides of the considered pairs of the triangles. ♦

The triangle ABC with the vertices A = (a, a2), B = (b, b2), C =
= (c, c2) has the area △ given by formula

2△ =

∣

∣

∣

∣

∣

∣

a a2 1
b b2 1
c c2 1

∣

∣

∣

∣

∣

∣

= (b − c)(c − a)(a − b) = −BC · CA · AB,

so because of the equality −6q = BC2 + CA2 + AB2 from (2) follows

ω = −
4△

BC2 + CA2 + AB2
.

Because of the analogy of this formula with the formula in the Euclidean
geometry, the angle ω from Th. 7 will be called Brocard’s angle of the
triangle ABC (see [9], [10], [11] and [13]).

The hexagon, whose vertices are the points Ac, Ab, Ba, Bc, Cb, Ca

will be called (like in the Euclidean geometry) Lemoine hexagon of the
triangle ABC.

The four points Ab, Ac, Bc, Cb lie on the first Lemoine circle, and as
AbCb∩AcBc = K, it follows that intersections AbAc∩BcCb = BC∩BcCb

and CbAc ∩ AbBc lie on the polar line of the point K for the considered
circle. The same thing is valid for the pairs of the intersections CA ∩

∩ CaAc, AcBa ∩ BcCa and AB ∩ AbBa, BaCb ∩ CaAb. We have proved:

Theorem 8. The intersections of the opposite sides of the Lemoine hexa-

gon of the triangle ABC and the intersections of the corresponding sides

of the triangle BaCbAc and CaAbBc from Th. 5 lie on the polar line K of

symmedian center K of the triangle ABC with respect to its first Lemoine

circle.

Let us find the equation of the polar line K from Th. 8. The point
(xo, yo) has the polar line with the equation

y + yo = 4xox −
3p

q
(x + xo) +

27p2 − 2q3

9q2

with respect to the circle (1). With xo = 3p

2q
, yo = −

q

3
we get

4xo −
3p

q
=

3p

q
,

−yo −
3p

q
xo +

27p2 − 2q3

9q2
=

q

3
−

9p2

2q2
+

27p2 − 2q3

9q2
=

1

18q2
(2q3

− 27p2),
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so the equation we were looking for is

(3) y =
3p

q
x +

1

18q2
(2q3

− 27p2).

The same equation will be got if the equation (1) is subtracted from the
equation 2y = 2x2 of the circumscribed circle of the triangle ABC, so
(3) is the equation of the potential line of these two circles, i.e. it is valid

Theorem 9. The polar line of the symmedian center of the triangle with

respect to its first Lemoine circle is the potential line of that circle and

the circumscribed circle of the considered triangle.

In [6] it is shown that the curve with the equation K(x, y) = 0
in the standard triangle ABC is complementary to the curve with the
equation K(−2x,−2y − 2q) = 0. Because of that the Euler circle, as
the complementary circle to its circumscribed circle, has the equation
−2y − 2q = (−2x)2, i.e. y = −2x2 − q. If we add this equation to the
equation (1) of the first Lemoine circle, after dividing by 2 we get this
equation

(4) y = −
3p

2q
x +

27p2 − 20q3

36q2

of the potential line of these two circles. This potential line can be got
in the geometrical way too, because the following is valid.

Theorem 10. The potential axis of the Euler circle and the first Lemoine

circle of the triangle passes through the intersections of the sides of its

orthic triangle with the lines through its symmedian center parallel to its

corresponding sides.

Proof. The standard triangle ABC has the orthic triangle AhBhCh

where the line BhCh has the equation

(5) y = 2ax + 2bc − q

(see [6]). The line with the equation

(6) y = −ax +
3ap

2q
−

q

3

is parallel to the line BC and passes through the point K = (3p

2q
,− q

3
). It

is necessary to prove that there is the point, which lie on all three lines
(5), (6) and (4). This is the point (x, y), given by the formula
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x =
1

18aq
(4q2

− 12bcq + 9ap), y =
1

9q
(6bcq + 9ap − 5q2).

Really, for that point we get successively

y − 2ax =
1

9q
(6bcq + 9ap − 5q2

− 4q2 + 12bcq − 9ap) =

=
1

9q
(18bcq − 9q2) = 2bc − q,

y + ax =
1

18q
(12bcq + 18ap − 10q2 + 4q2

− 12bcq + 9ap) =

=
1

18q
(27ap − 6q2) =

3ap

2q
−

q

3
,

y +
3p

2q
x =

1

36aq2
(24pq2 + 36a2pq − 20aq3 + 12pq2

− 36bcpq + 27ap2) =

=
1

36aq2
[36pq(q + a2

− bc) + 27ap2
− 20aq3] =

=
1

36aq2
(27ap2

− 20aq3) =
27p2 − 20q3

36q2
. ♦

The results about the first Lemoine circle in an isotropic plane are
analogous to those in Euclidean plane, and there is very reach bibliogra-
phy about it. In the bibliography of this article only the most important
articles and books are quoted [1]–[4] and [8]. The analogous statements
for Cor. 1 can be found in [8], [2] and [3], for Th. 4 in [4], for Th. 8 in
[2], [3, p. 49], [1, p. 159], for Th. 9 in [3, p. 49–50] and [1, p. 297].

The authors are grateful to the referee for very useful suggestions.
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BRKIĆ, J.: Metrical relationships in a standard triangle in an isotropic plane,
Mathematical Communications 10 (2005), 149–157.

[7] LANG, J.: Zur isotropen Dreiecksgeometrie und zum Appolonischen
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and Geometrie 47 (2006), 167–174.

[11] STRUBECKER, K.: Zwei Anwendungen der isotropen Dreiecksgeometrie auf
ebene Ausgleichsprobleme, Sitz.-Ber. d. Österr. Akad. Wiss. 192 (1983), 497–
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