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Abstract: In the setting of normal topological real vector spaces with dimen-

sion greater than one and dual separating points, we prove that the barycentre

is the unique mapping on the set of masses with convex compact support which

is associative, internal and weak-continuous.

Let X be a normal topological real vector space with dimension
greater than one on which the dual space X∗ separates points and F a
field on X including all open sets. We denote by µ (with or without in-
dices) any non-null mass (i.e. positive bounded finitely additive measure)
on F and by δx the Dirac mass at x ∈ X (i.e. δx({x}) = δx(X) = 1).
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Moreover, we call support of µ any set F such that µ(F ) = µ(X) =
= ‖µ‖. Finally, given a net of masses {µd; d ∈ D}, the symbol µd → wµ

means that the net weakly converges to µ (i.e. D
∫

X
fdµd → D

∫

X
fdµ for

any bounded continuous real function f on X, where letter D denotes
Dunford–Schwartz integral as defined in [1; Sec. 4.4]); moreover, xd

w
→ x

means that the net {xd; d ∈ D} in X weakly converges to the point x (in
the usual sense).

Now, denoting by S the convex cone of simple masses (i.e. non-null
positive linear combinations of Dirac masses), we prove in [3] that the
unique mapping m : S 7→ X satisfying the following properties:

A1 (associativity): m(α1µ1 +α2µ2) = m(α1ν1 +α2ν2), whenever α1 +
+ α2 > 0, αi ≥ 0 and ‖µi‖ = ‖νi‖, m(µi) = m(νi) and µi, νi ∈
∈ S (i = 1, 2).

A2 (internality): m(αδx + βδy) ∈ [x, y] = {tx + (1 − t)y : t ∈ [0, 1]},
for any α, β > 0 and x, y ∈ X.

A3 (continuity): m(µn) → m(µ), whenever, for some natural number

k, we have µn =
∑k

i=1 α
(n)
i δ

x
(n)
i

for all n, µ =
∑k

i=1 αiδxi
and α

(n)
i →

→ αi, x
(n)
i → xi (i = 1, . . . , k) and all x

(n)
i belong to a polytope.

is the barycentre of simple masses defined as:

b(µ) =
1

‖µ‖

n
∑

i=1

αixi =
n

∑

i=1

αi

α1 + · · · + αn

xi

for any µ =
∑n

i=1 αiδxi
.

Moreover, in the same paper we extend the previous notion by
defining the barycentre of a mass µ (when it exists) as:

b(µ) =
1

‖µ‖

∫

X

xµ(dx),

where the integral is a finitely additive version of Pettis integral (that
is, given Φ : X → X and µ, the integral

∫

X
Φ dµ ≡

∫

X
Φ(x) µ(dx) is

the unique element of X such that Λ(
∫

X
Φ dµ) = D

∫

X
(Λ ◦Φ) dµ for any

Λ ∈ X∗).

Finally, for a mapping m from a set of masses including S to X, in
[3] we also introduce the following continuity property (extension of A3):

A3′ (weak-continuity): Let {µd; d ∈ D} be a net in S. Then, m(µd)
w
→

w
→ m(µ), whenever µd → wµ and all µ, µd have a common convex
compact support.
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and claim, without proof, that the following theorem holds.

Theorem. Let M be the set of non-null masses having a convex compact

support. Then, for any mass µ ∈ M, the barycentre is well defined and

belongs to any convex compact support of µ. Moreover, the barycentre is

the unique mapping m : M 7→ X satisfying associativity, internality and

weak-continuity properties.

In order to supply a proof of this theorem, we start with the fol-
lowing lemma.

Lemma. Let Φ : X 7→ X be a continuous mapping. Then, the following

statements hold:

(i) Let K be a compact set such that coΦ(K) is compact. Then, given

a probability µ having K as a support, the mapping Φ is integrable

w.r.t. µ and
∫

X
Φ dµ ∈ coΦ(K);

(ii) The mapping
∫

X
Φ d · is linear on the convex cone of masses with

compact support and w.r.t. which Φ is integrable;

(iii) Given µ and a net {µd; d ∈ D} such that all µ, µd have a common

compact support, let µd → wµ. Then, if Φ is integrable w.r.t. µ

and all µd, we have
∫

X
Φ dµd

w
→

∫

X
Φ dµ.

Proof. (i) We start proving that any function f : X 7→ R continuous on
K (in the induced topology) is D-integrable w.r.t. µ and

(1) D

∫

X

fdµ = D

∫

K

f |K dµ|F∩K ,

where F ∩ K = {F ∩ K : F ∈ F} ⊂ F . Assume f to be not constant
on K. Then, given a natural number n, consider real numbers y0, . . . , ytn

such that min f(K) = y0 < y1 < · · · < ytn−1 < ytn = max f(K) and
yi − yi−1 < 1

n
(i = 1, . . . , tn). Now, denoting by IF the indicator function

of F ⊂ X, let fn = y0IKc +
∑tn

i=1 yi−1IFi
, where Fi = f−1([yi−1, yi[) ∩

∩K ∈ F ∩K (i = 1, . . . , tn −1) and Ftn = f−1([ytn−1, ytn ])∩K ∈ F ∩K.
Note that {x : |fn(x) − f(x)| > 1

n
} ⊂ Kc and hence

µ∗

({

x : |fn(x) − f(x)| >
1

n

})

≤ µ(Kc) = ‖µ‖ − µ(K) = 0.

Therefore, the sequence (fn) converges to f hazily w.r.t. µ; more-
over, on noting that |fm − fn| ≤ |fm − f | + |f − fn| and fm|Kc = fn|Kc

we have |fm−fn| ≤
1
m

+ 1
n

and hence lim
m,n→+∞

D
∫

X
|fm−fn|dµ = 0. Con-

sequently, the sequence (fn) is a determining sequence of D-integrable
simple functions for f so that f is D-integrable w.r.t. µ.
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Finally, on noting that the sequence (fn|K) is a determining
sequence of D-integrable simple functions for f |K w.r.t. µ|F∩K and
D

∫

X
fndµ = D

∫

K
fn|K dµ|F∩K for all n, we get (1).

Now we prove (i). First consider the finitely additive probability
space (K,F ∩ K,µ|F∩K) and note that Φ|K is a continuous mapping
on the compact Hausdorff space K such that the closed convex hull of
Φ|K(K) is compact. Then, by the same arguments as in the proof of
Th. 3.27 in [4], one can verify that there is y ∈ coΦ|K(K) = coΦ(K)
such that

Λ(y) = D

∫

K

(Λ ◦ Φ|K) dµ|F∩K

for any Λ ∈ X∗. Therefore, from (1) we get

Λ(y) = D

∫

K

(Λ ◦ Φ)|K dµ|F∩K = D

∫

X

(Λ ◦ Φ) dµ

for any Λ ∈ X∗, so that y =
∫

X
Φ dµ.

(ii) Let µi be a mass having Ki as a compact support and Φ in-
tegrable w.r.t. µi (i = 1, 2). Given Λ ∈ X∗, let f = (Λ ◦ Φ)IK , where
K = K1 ∪ K2. Then, denoting by S

∫

X
fdµ the Stieltjes type integral

defined in [1; Sec. 4.5], observe that this integral exists for any mass µ

and is equal to D
∫

X
fdµ. Therefore, since K is a support of µi (i = 1, 2),

by (1) and the linearity of the S-integral w.r.t. masses, we have

Λ

(

2
∑

i=1

αi

∫

X

Φ dµi

)

= α1Λ

(

∫

X

Φ dµ1

)

+ α2Λ

(

∫

X

Φ dµ2

)

=

= α1 D

∫

X

(Λ ◦ Φ) dµ1 + α2 D

∫

X

(Λ ◦ Φ) dµ2 =

= α1 D

∫

X

f dµ1 + α2 D

∫

X

f dµ2 =

= α1 S

∫

X

f dµ1 + α2 S

∫

X

f dµ2 =

= S

∫

X

f d(α1µ1 + α2µ2) = D

∫

X

f d(α1µ1 + α2µ2) =

= D

∫

X

(Λ ◦ Φ) d(α1µ1 + α2µ2).



A characterization of the barycentre of masses 251

Since Λ is arbitrarily chosen, we get
∫

X
Φ d(α1µ1 +α2µ2) = α1

∫

X
Φ dµ1 +

+ α2

∫

X
Φ dµ2.

(iii) Let K be a common compact support for all µ, µd. Moreover,
let Φ be integrable w.r.t. all µ, µd. Given Λ ∈ X∗, by Tietze Extension
Theorem, there is a bounded continuous real extension f of (Λ ◦ Φ)|K
over X. Since µd → wµ, by (1), we get

Λ

(

∫

X

Φ dµd

)

= D

∫

X

(Λ ◦ Φ) dµd = D

∫

X

f dµd →

→ D

∫

X

f dµ = D

∫

X

(Λ ◦ Φ) dµ = Λ

(

∫

X

Φ dµ

)

.

This completes the proof of the lemma. ♦

Now, we are able to prove the existence of the barycentre of any
mass in M and the necessity of properties A1, A2 and A3′. Given µ ∈ M,
let K be a convex compact support of µ and consider, in the lemma,
the identity mapping of X as Φ. Then, by (i) and (ii), we get b(µ) =
= b( 1

‖µ‖
µ) ∈ co(K) = K. Consequently, the internality property holds

and, from(ii), the associativity one follows as well. Finally, from (iii)
we get the weak-continuity property. Indeed, let {µd; d ∈ D} be a net
in S such that µd → wµ and all µ, µd have a common convex compact
support. Therefore, ‖µd‖ = D

∫

X
IX dµd → D

∫

X
IX dµ = ‖µ‖ and, by

(iii),
∫

X
xµd(dx)

w
→

∫

X
xµ(dx), so that b(µd)

w
→ b(µ).

Now, we are going to verify the sufficiency of A1, A2 and A3′. Re-
calling that A3′ implies A3 and the characterization theorem proved in
[3] (X is Hausdorff!), we have m(µ) = b(µ) for all µ ∈ S. Given µ ∈ M,
let K be a convex compact support of µ. Then, by Th. 5.3 in [2] (K
is a normal subspace of X!), the set of simple masses in ba+(K,F ∩ K)
is dense in ba+(K,F ∩ K) endowed with the Lévy topology. Conse-
quently, there is a net {νd; d ∈ D} of simple masses in ba+(K,F ∩ K)
such that D

∫

K
f |K dνd → D

∫

K
f |K dµ|F∩K for any bounded continuous

function f on X. Now, let µd(F ) = νd(F ∩ K) for any F ∈ F and for
all d ∈ D. Plainly, K is a support for all simple masses µd and hence,
by (1), D

∫

X
f dµd → D

∫

X
f dµ for any bounded continuous function f

on X. Consequently, µd → wµ and hence, by the weak-continuity of the
barycentre, we have m(µd) = b(µd)

w
→ b(µ). On the other hand, by A3′,

we get m(µd)
w
→ m(µ), so that m(µ) = b(µ). This completes the proof

of the theorem. ♦
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